首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To localize basic protein (BP) in the lamellar structure of central and peripheral myelin, we perfused newborn and 7-11-day rat pups with a phosphate-buffered fixative that contained 4% paraformaldehyde and 0.05 or 0.2% glutaraldehyde. Teased, longitudinally split or "brush" preparations of optic and trigeminal nerves were made by gently teasing apart groups of myelinated fibers with fine forceps or needles. Some of these preparations were immunostained without pretreatment in phosphate-buffered antiserum to BP according to the peroxidase-antiperoxidase method. Others were pretreated in ethanol before immunostaining. Then, all of them were dehydrated, embedded in Epon, and sectioned for electron microscopic study. In optic and trigeminal nerves that were not pretreated, myelin, glial cells, and their organelles were well preserved. BP immunostaining was present on cytoplasmic faces of oligodendroglial and Schwann cell membranes that formed mesaxons and loose myelin spirals. In compact central and peripheral myelin, reaction product was located in major dense line regions, and the myelin periodicity was the same as that observed in unstained control myelin that had been treated with preimmune serum. In ethanol-pretreated tissue, the myelin periodicity was reduced but dense line staining still was present. Our immunocytochemical demonstration of dense line localization of BP in both CNS and PNS myelin that was not disrupted or pretreated with solvents is important because of conflicting evidence in earlier immunostaining studies. Our results also support biochemical and histochemical evidence suggesting that BP exists in vivo as a membrane protein interacting with lipids on the cytoplasmic side of the bilayer in the spirally wrapped compact myelin membrane.  相似文献   

2.
3.
4.
Phosphorylation of myelin basic protein   总被引:15,自引:0,他引:15  
  相似文献   

5.
6.
7.
8.
Heats of solution for myelin basic protein have been determined using microcalorimetry. All aqueous systems studied yielded negative heats of solution; in contrast, trifluoroethanol produced a small positive heat of solution, while reaction with dimethyl sulfoxide was strikingly exothermic. The heat of interaction for native myelin basic protein with 8 M urea at pH 4.0, 29 degrees C, was found to be -79 +/- 16 kcal/mol. The significance of these results in terms of the protein's structural organization is discussed.  相似文献   

9.
D-aspartic acid in purified myelin and myelin basic protein   总被引:4,自引:0,他引:4  
The presence of the biologically uncommon D-isomer of aspartic acid in the white matter of human brains has been reported previously from this laboratory (1). We now report that the level of D-aspartate in human brains is higher in purified myelin than in white matter and is even higher in the myelin basic protein fraction. There also appears to be a difference in the level of D-aspartate found in human brain as compared to bovine brain, possibly a species or age-related difference.  相似文献   

10.
P0 protein, the dominant protein in peripheral nervous system myelin, was studied immunocytochemically in both developing and mature Schwann cells. Trigeminal and sciatic nerves from newborn, 7-d, and adult rats were processed for transmission electron microscopy. Alternating 1- micrometer-thick Epon sections were stained with paraphenylenediamine (PD) or with P0 antiserum according to the peroxidase-antiperoxidase method. To localize P0 in Schwann cell cytoplasm and myelin membranes, the distribution of immunostaining observed in 1-micrometer sections was mapped on electron micrographs of identical areas found in adjacent thin sections. The first P0 staining was observed around axons and/or in cytoplasm of Schwann cells that had established a 1:1 relationship with axons. In newborn nerves, staining of newly formed myelin sheaths was detected more readily with P0 antiserum than with PD. Myelin sheaths with as few as three lamellae could be identified with the light microscope. Very thin sheaths often stained less intensely and part of their circumference frequently was unstained. Schmidt-Lanterman clefts found in more mature sheaths also were unstained. As myelination progressed, intensely stained myelin rings became much more numerous and, in adult nerves, all sheaths were intensely and uniformly stained. Particulate P0 staining also was observed in juxtanuclear areas of Schwann cell cytoplasm. It was most prominent during development, then decreased, but still was detected in adult nerves. The cytoplasmic areas stained by P0 antiserum were rich in Golgi complex membranes.  相似文献   

11.
Myelin basic protein (MBP) is the predominant extrinsic protein in both central and peripheral nervous system myelins. It is thought to be involved in the stabilizing interactions between myelin membranes, and it may play an important role in demyelinating diseases such as multiple sclerosis. In spite of the fact that this abundant protein has been known for almost three decades, its three-dimensional crystal structure has not yet been determined. In this study we report on our extensive attempts to crystallize the major 18.5 kDa isoform of MBP. We used MBP having different degrees of purity, ranging from crude MBP (that was acid or salt extracted from isolated myelin), to highest purity single isoform. We used conventional strategies in our search for a suitable composition or a crystallization medium. We applied both full and incomplete factorial searches for crystallization conditions. We analyzed the available data on proteins which have previously resisted crystallization, and applied this information to our own experiments. Nevertheless, despite our efforts which included 4600 different conditions, we were unable to induce crystallization of MBP. Previous work on MBP indicates that when it is removed from its native environment in the myelin membrane and put in crystallization media, the protein adopts a random coil conformation and persists as a population of structurally non-identical molecules. This thermodynamically preferred state presumably hinders crystallization, because the most fundamental factor of protein crystallization-homogeneity of tertiary structure-is lacking. We conclude that as long as its random coil flexibility is not suppressed, 18.5 kDa MBP and possibly also its isoforms will remain preeminent examples of proteins that cannot be crystallized.  相似文献   

12.
Differential scanning calorimetry was employed to investigate the interaction of GM1 gangliosides with phospholipids (phosphatidylethanolamine, phosphatidylserine or phosphatidylcholine). It was found that GM1 is completely miscible with phosphatidylethanolamine; however, the interaction with phosphatidylserine is minimal. Addition of excess Ca2+ to the interaction products of GM1 with phosphatidylcholine or phosphatidylethanolamine did not induce phase separation. The influence of myelin basic protein on the thermotropic behaviour of GM1 was also studied. It was found that basic protein has a very strong perturbing effect on GM1 micelles.  相似文献   

13.
M W Nowak  H A Berman 《Biochemistry》1991,30(30):7642-7651
This paper examines the influence of electrolytes on fluorescence spectral properties of the single tryptophanyl residue, Trp-115, within the 18.5-kDa species of myelin basic protein from bovine brain. Steady-state fluorescence spectra and intensities and time-correlated fluorescence lifetimes increased in the presence of increasing concentrations of mono- and divalent electrolytes (Li+, Na+, K+, Mg2+, Ca2+, Cl-, ClO4-, SO4(2-), and PO4(3-)). In all cases, the increases closely paralleled the ionic strength of the bulk aqueous medium and resembled that observed upon immersion of the protein in solutions of urea. This behavior was therefore concluded to reflect changes in the solution conformation of myelin basic protein. Bimolecular quenching of Trp-115 by acrylamide was rapid (10(9) M-1 s-1), approaching the diffusion limitation, and markedly dependent on the viscosity of the bulk aqueous medium. Rotational depolarization of myelin basic protein was rapid (phi less than or equal to 1 ns), occurring at rates exceeding those predicted for a rigid particle of revolution, and markedly dependent on the viscosity of the surrounding medium. Whereas the bimolecular quenching constants were unaltered in the presence of electrolytes, rotational depolarization of myelin basic protein underwent substantial slowing as indicated by the appearance of an additional decay component characterized by a correlation time of 5-10 ns. These studies indicate that Trp-115 of myelin basic protein is readily accessible to the bulk aqueous medium and is associated with a highly mobile segment of the protein. The slowing of rotational depolarization upon immersion of myelin basic protein in electrolyte solutions is consistent with an electrolyte-induced self-association of myelin basic protein molecules and indicates a relationship between the lability of solution conformation on the one hand and the capacity for self-association on the other.  相似文献   

14.
Microheterogeneity of guinea pig myelin basic protein   总被引:5,自引:0,他引:5  
  相似文献   

15.
Hand-vortexed dispersions of several lipids (cerebrosides, sulfatides, PC, PE, PS and sphingomyelin), mixed in the ratios found for these categories of lipids in myelin, exhibit 31P-NMR spectra which have contributions from both isotropic and lamellar resonances. Investigation of this system by freeze-fracture electron microscopy and X-ray diffraction revealed that this lipid mixture has spontaneously formed small unilamellar vesicles (SUVs) (diam. approximately 400 A) and large highly convoluted unilamellar vesicles (LUVs) (diam. approximately 1000 A), the latter possibly resulting from aggregation and fusion of the SUV structures. This vesicularization of the myelin lipids was reversed by the addition of myelin basic protein: only large multilamellar aggregates were formed in the presence of protein, as shown by all three experimental methods. Although no rigorous physical-chemical explanation for these phenomena is yet available, the possibility is suggested that the high concentration of cerebrosides and/or phosphatidylethanolamine in this particular mixture of myelin lipids play pivotal roles in the formation of these unusual vesicles. Spontaneous vesicularization of myelin lipids is discussed as a potential pathway toward destabilization of the myelin sheath.  相似文献   

16.
Low-angle and wide-angle X-ray scattering data from phosphatidylglycerol complexed with myelin basic protein, poly(L-lysine) and calcium ions are analyzed. The results confirm our earlier report (Brady, G.W., Murthy, N.S., Fein, D.B., Wood, D.D. and Moscarello, M.A. (1981) Biophys. J. 34, 345-350) that the basic protein interacts primarily with the polar headgroups of the lipid; and that at high protein concentrations (greater than 35%) the bilayers aggregate to form multilayers with a repeat period of 68 A, the single bilayer to multilayer transition being a cooperative process. Polylysine and Ca2+ produce multilayers with a smaller repeat of approx. 55 A. Basic protein and polylysine do not change the fluid-like arrangement of the hydrocarbon chains (diffuse 4.6 A peak in the wide-angle pattern), whereas Ca2+ probably induces a two-dimensional order (4.3 A and 3.9 A peak in the wide-angle pattern). Electron density profiles of the lipid and lipid-basic protein vesicles indicate that the basic protein penetrates into the bilayer.  相似文献   

17.
Isolated rat brain myelin when incubated with γ32P labelled ATP yields proteins bearing acid labile, base stable phosphoryl groups. Phosphorylated myelin basic protein can be isolated and degraded with trypsin and pronase to yield principally phosphoarginine and phosphohistidine. Only a very small amount of phosphorerine survives the base treatment used in the isolation procedure.  相似文献   

18.
Lipid and basic protein interaction in myelin   总被引:4,自引:1,他引:3  
1. Purified myelin labelled with [(3)H]myo-inositol or [1-(14)C]acetate was incubated with trypsin or acetylated trypsin at 37 degrees C, pH8.0 for 30min. 2. After incubation and centrifugation analysis of the myelin pellet showed marked digestion of basic protein on polyacrylamide-gel electrophoresis. Proteolipid and Wolfgram proteins remained unchanged. 3. A loss of 15% of total protein and loss of all classes of lipids was also found. Most significant lipid losses were phosphoinositides, phosphatidylserine and sulphatide. 4. A low-density material containing more phospholipid than cholesterol and galactolipid was isolated from the supernatant obtained after centrifugation of trypsin-treated myelin. 5. Interaction of sulphatide and myelin basic protein was shown to take place in a biphasic system. Basic protein does not form any complex either with cerebroside or cholesterol in the same solvent system. 6. The release of acidic lipids from myelin suggests that they may be linked to basic protein by ionic forces and the neutral lipids may be by lipid-lipid interactions. 7. The relevance of these studies as a model of brain degeneration is discussed.  相似文献   

19.
When mixed with vesicles containing acidic phospholipids, myelin basic protein causes vesicle aggregation. The kinetics of this vesicle cross-linking by myelin basic protein was investigated by using stopped-flow light scattering. The process was highly cooperative, requiring about 20 protein molecules per vesicle to produce a measurable aggregation rate and about 35 protein molecules per vesicle to produce the maximum rate. The maximum aggregation rate constant approached the theoretical vesicle-vesicle collisional rate constant. Vesicle aggregation was second order in vesicle concentration and was much slower than protein-vesicle interaction. The highest myelin basic protein concentration used here did not inhibit vesicle aggregation, indicating that vesicle cross-linking occurred through protein-protein interactions. In contrast, poly(L-lysine)-induced vesicle aggregation was easily inhibited by increasing peptide concentrations, indicating that it did cross-link vesicles as a peptide monomer. The myelin basic protein:vesicle stoichiometry required for aggregation and the low affinity for protein dimerization suggested that multiple protein cross-links were needed to form a stable aggregate. Stopped-flow fluorescence was used to estimate the kinetics of myelin basic protein-vesicle binding. The half-times obtained suggested a rate constant that approached the theoretical protein-vesicle collisional rate constant.  相似文献   

20.
Myelin basic protein was isolated from both cat and bovine central nervous system. Cat and bovine myelin basic protein, which are shown to be similar by tryptic mapping, exhibit identical behavior when cross-linked with the bifunctional reagent difluorodinitrobenzene. Myelin basic protein is cross-linked into only a dimer under certain conditions in the presence of sodium dodecyl sulfate. In contrast, many oligomers are formed when myelin basic protein is cross-linked in the absence of detergent. The formation of cross-linked dimers in the absence of other oligomer formation suggests that the protein is at least partly dimeric in the presence of sodium dodecyl sulfate. The conformation of them myelin basic protein monomer in sodium dodecyl sulfate was also studied. N-Bromosuccinimide and cyanogen bromide cleavage reactions were used to demonstrate that difluorodinitrobenzene had introduced intramolecular cross-links between the two peptides resulting from each of the cleavage ractions. However, these types of intramolecular cross-links cannot be detected under conditions in which only dimers have formed. Some of the lysine residues which are modified by difluorodinitrobenzene were identified by tryptic mapping. In several respects, the conformation of myelin basic protein in a sodium dodecyl sulfate solution appears to be similar to the conformation of the protein in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号