首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fluorescent techniques were used to study binding of peptide elongation factor Tu (EF-Tu) to Escherichia coli ribosomes and to determine the distances of the bound factor to points on the ribosome. Thermus thermophilus EF-Tu was labeled with 3-(4-maleimidylphenyl)-4-methyl-7-(diethyl-amino)coumarin (CPM) without loss of activity. In the presence of Phe-tRNA and a nonhydrolyzable analogue of GTP, 70S ribosomes bind the CPM-EF-Tu [Kb = (3 +/- 1.2) X 10(6) M-1] causing a decrease of CPM fluorescence. Binding of CPM-EF-Tu to 50S subunits was at least 1 order of magnitude lower than with 70S ribosomes, and binding to 30S subunits could not be detected. Reconstituted 70S ribosomes containing either S1 labeled with fluoresceinmaleimide or ribosomal RNAs labeled at their 3' ends with fluorescein thiosemicarbazide were used for energy transfer from CPM-EF-Tu. The distances between CPM-EF-Tu bound to the ribosomes and the 3' ends of 16S RNA, 5S RNA, 23S RNA, and the closest sulfhydryl group of S1 were calculated to be 82, 70, 73, and 62-68 A, respectively.  相似文献   

2.
Oversynthesis of elongation factors G and Tu in Escherichia coli.   总被引:2,自引:0,他引:2       下载免费PDF全文
We induced the oversynthesis of elongation factors Tu and G by using multicopy plasmids carrying the structural genes for these proteins under the control of the lac operator-promoter. We found no evidence that accumulation of excess elongation factor Tu or G affects the expression of genes for ribosomal proteins or elongation factors.  相似文献   

3.
Barends S  Wower J  Kraal B 《Biochemistry》2000,39(10):2652-2658
Aminoacylation and transportation of tmRNA to stalled ribosomes constitute prerequisite steps for trans-translation, a process facilitating the release of stalled ribosomes from 3' ends of truncated mRNAs and the degradation of incompletely synthesized proteins. Kinetic analysis of the aminoacylation of tmRNA indicates that tmRNA has both a lower affinity and a lower turnover number than cognate tRNA(Ala) for alanyl-tRNA synthetase, resulting in a 75-fold lower k(cat)/K(M) value. The association rate constant of Ala-tmRNA for elongation factor Tu in complex with GTP is about 150-fold lower than that of Ala-tRNA(Ala), whereas its dissocation rate constant is about 5-fold lower. These observations can be interpreted to suggest that additional factors facilitate tmRNA binding to ribosomes.  相似文献   

4.
5.
6.
The interaction of the polypeptide chain elongation factor Tu (EF-Tu) with the antibiotic kirromycin and tRNA has been studied by measuring the extent of protein modification with N-tosyl-L-phenylalanine chloromethylketone (TPCK) and N-ethylmaleimide (NEM). Kirromycin protects both EF-Tu.GDP and EF-Tu.GTP against modification with TPCK. Binding of aminoacyl-tRNA added at increasing concentrations to a solution of 40 microM EF-Tu.GDP.kirromycin complex re-exposes the TPCK target site on the protein. However, when the aminoacyl-tRNA concentration is raised beyond 20 microM, TPCK labeling drops again and is blocked completely at approximately 300 microM aminoacyl-tRNA. By contrast, addition of uncharged tRNA or N- acetylaminoacyl -tRNA enhances TPCK labeling of the protein over the entire tRNA concentration range studied. These data strongly suggest that kirromycin induces in EF-Tu.GDP an additional tRNA binding site that can bind uncharged tRNA, aminoacyl-tRNA, and N- acetylaminoacyl -tRNA. Support for this assumption is provided by measuring the modification of EF-Tu.GDP with the sulfhydryl reagent NEM. Moreover, NEM modification also indicates an additional tRNA binding site on EF-Tu.GTP.kirromycin, which could not be detected with TPCK. Mapping of the tryptic peptides of EF-Tu.GDP labeled with [14C]TPCK revealed only one target site for this agent, i.e., cysteine-81. Modification occurred at the same site in the presence and in the absence of kirromycin and uncharged tRNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We have studied the interaction between EF-Tu-GDP or EF-Tu-GTP in complex with kirromycin or aurodox (N1-methylkirromycin) and aminoacyl-tRNA, N-acetylaminoacyl-tRNA, or deacylated tRNA. Three independent methods were used: zone-interference gel electrophoresis, GTPase stimulation, and fluorescence. All three methods revealed that kirromycin induces a severe drop in the stability of the complex of EF-Tu-GTP and aminoacyl-tRNA of about 3 orders of magnitude. The affinities of EF-Tu-kirromycin-GTP and EF-Tu-kirromycin-GDP for aa-tRNA were found to be of about the same order of magnitude. We conclude that kirromycin and related compounds do not induce a so-called GTP-like conformation of EF-Tu with respect to tRNA binding. The findings shed new light on the mechanism of action of the antibiotic during the elongation cycle. In contrast to indirect evidence previously obtained in our laboratory [Van Noort et al. (1982) EMBO J. 1, 1199-1205; Van Noort et al. (1986) Proc. Natl. Acad. Sci. U.S.A. 71, 4910-4914], we were unable to demonstrate complexes of EF-Tu-aurodox-GTP/GDP with N-acetylaminoacyl-tRNA or deacylated tRNA by direct detection using zone-interference gel electrophoresis. Modification with N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) decreases the affinity of EF-Tu-kirromycin-GTP for aminoacyl-tRNA, just like it does in the absence of the antibiotic.  相似文献   

8.
Interaction of Phe-tRNA.elongation factor Tu.GTP with poly(U)-programmed ribosomes containing an occupied P site can be described by a three-step kinetic mechanism. Initial binding is followed by the cleavage of GTP, and then a new peptide bond is formed. Rate constants controlling the first and third of these reactions are known, but only a lower limit for the rate constant of the cleavage step has been reported. We have determined this rate constant to be 20 s-1 at 5 degrees C, 30 s-1 at 15 degrees C, and 50 s-1 at 25 degrees C. This is much faster than the reverse step of the initial binding process and implies that the intrinsic accuracy of the ribosome in the initial selection step is sacrificed in favor of speed. The similarity of the kinetic and chemical mechanism of this GTP cleavage step with other nucleoside 5'-triphosphatases is discussed.  相似文献   

9.
The interaction between Escherichia coli aminoacyl-tRNAs and elongation factor Tu (EF-Tu) x GTP was examined. Ternary complex formation with Phe-tRNAPhe and Lys-tRNALys was compared to that with the respective misaminoacylated Tyr-tRNAPhe and Phe-tRNALys. There was no pronounced difference in the efficiency of aminoacyl-tRNA x EF-Tu x GTP complex formation between Phe-tRNAPhe and Tyr-tRNAPhe. However, Phe-tRNALys was bound preferentially to EF-Tu x GTP as compared to Lys-tRNALys. This was shown by the ability of EF-Tu x GTP to prevent the hydrolysis of the aminoacyl ester linkage of the aminoacyl-tRNA species. Furthermore, gel filtration of ternary complexes revealed that the complex formed with the misaminoacylated tRNALys was also more stable than the one formed with the correctly aminoacylated tRNALys. Both misaminoacylated aminoacyl-tRNA species could participate in the ribosomal peptide elongation reaction. Poly(U)-directed synthesis of poly(Tyr) using Tyr-tRNAPhe occurred to a comparable extent as the synthesis of poly(Phe) with Phe-tRNAPhe. In the translation of poly(A) using native Lys-tRNALys, poly(Lys) reached a lower level than poly(Phe) when Phe-tRNALys was used. It was concluded that the side-chain of the amino acid linked to a tRNA affects the efficiency of the aminoacyl-tRNA x EF-Tu x GTP ternary complex formation.  相似文献   

10.
M R Ahmadian  R Kreutzer  M Sprinzl 《Biochimie》1991,73(7-8):1037-1043
The elongation factor Tu (EF-Tu) encoded by the tufl gene of the extreme thermophilic bacterium Thermus thermophilus HB8 was expressed under control of the tac promoter from the recombinant plasmid pEFTu-10 in Escherichia coli. Thermophilic EF-Tu-GDP, which amounts to as much as 35% of the cellular protein content, was separated from the E coli EF-Tu-GDP by thermal denaturation at 60 degrees C. The overproduced E coli-born T thermophilus EF-Tu was characterized by: i) recognition through T thermophilus anti-EF-Tu antibodies; ii) analysis of the peptides obtained by cyanogen bromide cleavage; iii) thermostability; iv) guanine nucleotide binding activity in the absence and the presence of elongation factor Ts; and v) ternary complex formation with phenylalanyl-tRNAPhe and GTP.  相似文献   

11.
Modified Tyr-tRNATyr and Phe-tRNAPhe species from yeast having the aminoacyl residue bound specifically to the 2' and 3' position of the terminal adenosine, respectively, were investigated for their ability to form ternary complexes with Escherichia coli elongation factor Tu and GTP. Both Tyr-tRNATyr-CpCpA (2'd) and Tyr-tRNATyr-CpCpA(3' d) derivatives which are esterified with the amino acid on the 3' and 2' position respectively and which lack the vicinal hydroxyl were able to form ternary complexes. The stability of these ternary complexes was lower than in the case of native Tyr-tRNATyr-CpCpA. Tyr-tRNATyr-CpCpA(3' d) having the amino acid attached to the 2' position interacted considerably more strongly with EF-Tu - GTP than Tyr-tRNATyr-CpCpA(2' d). Ternary complex formation was observed with neither Phe-tRNAPhe-CpCpA(2'NH2) nor Phe-tRNAPhe-CpCpA(3'NH2). It is concluded that 2' as well as 3' isomers of native aminoacyl-tRNA can be utilized for ternary complex formation but in a following step a uniform 2'-aminoacyl-tRNA - EF-Tu - GTP complex is formed. Although the free vicinal hydroxyl group of the terminal adenosine is not absolutely required, replacement of the ester linkage through with the amino acid is attached to tRNA by an amide linkage leads to loss of ability to interact with elongation factor Tu.  相似文献   

12.
On the binding of tRNA to Escherichia coli RNA polymerase.   总被引:4,自引:0,他引:4  
The fixation of tRNA to Escherichia coli RNA polymerase has been investigated. Bound and free tRNA have been separated and quantified after filtration through cellulose nitrate filters, centrifugation or sucrose gradients or electrophoresis in polyacrylamide gels. We detect no differences between the fixation of E. coli fMet-tRNAfMet, Met-tRNAmMet or uncharged unfractionated tRNA to RNA polymerase. Tight complexes, with a long residence time, are formed between core enzyme and tRNA with a dissociation constant of less than 1 nM. Complexes exist between tRNA and both monomer and dimer forms of the core enzyme. In the monomer complex, one tRNA is bound per alpha 2 beta beta' unit, whereas in the dimer complex only 0.5 tRNA molecule is fixed per alpha 2 beta beta' unit. In contrast to the core enzyme, very little tRNA fixes tightly to the holoenzyme at salt concentrations greater than 80 mM. At lower salt concentrations tRNA fixation results in a loss of sigma subunit from the holo enzyme to the resulting core enzyme where it binds tightly. DNA fixation reduces the binding of tRNA to RNA polymerase and tRNA fixation reduces the binding of DNA. However, binding of DNA to polymerase is not competitive with binding of tRNA, and ternary complexes between RNA polymerase, DNA and tRNA are shown to exist. Our results are discussed in relation to other studies concerning the effects of tRNA upon RNA polymerase.  相似文献   

13.
Pulvomycin and kirromycin, two antibiotics which inhibit protein biosynthesis in Escherichia coli by complex formation with the elongation factor Tu (EF-Tu), bind to different sites on the protein. While only one molecule of kirromycin can be bound to one molecule of EF-Tu, more than one molecule of pulvomycin interacts with a molecule of EF-Tu. This has been deduced from experiments in which the aminoacyl-tRNA binding and the GTPase activity of EF-Tu were measured in the presence of varying amounts of both antibiotics. These experiments are interpreted to mean that pulvomycin but not kirromycin can replace the other antibiotic in its respective site. Our conclusions are supported by circular dichroism spectroscopy.  相似文献   

14.
15.
Trans-diamminedichloroplatinum (II) was used to induce reversible crosslinks between EF-Tu and Phe-tRNA(Phe) within the ternary EF-Tu/GTP/Phe-tRNA(Phe) complex. Up to 40% of the complex was specifically converted into crosslinked species. Two crosslinking sites have been unambiguously identified. The major one encompassing nucleotides 58 to 65 is located in the 3'-part of the T-stem, and the minor one encompassing nucleotides 31 to 42 includes the anticodon loop and part of the 3'-strand of the anticodon stem.  相似文献   

16.
A method has been developed to search for the elongation factor Tu (EF-Tu) domain(s) that interact with elongation factor Ts (EF-Ts). This method is based on the suppression of Escherichia coli EF-Tu-dominant negative mutation K136E, a mutation that exerts its effect by sequestering EF-Ts. We have identified nine single-amino acid- substituted suppression mutations in the region 146-199 of EF-Tu. These mutations are R154C, P168L, A174V, K176E, D181G, E190K, D196G, S197F, and I199V. All suppression mutations but one (R154C) significantly affect EF-Tu's ability to interact with EF-Ts under equilibrium conditions. Moreover, with the exception of mutation A174V, the GDP affinity of EF-Tu appears to be relatively unaffected by these mutations. These results suggest that the domain of residues 154 to 199 on EF-Tu is involved in interacting with EF-Ts. These suppression mutations are also capable of suppressing dominant negative mutants N135D and N135I to various degrees. This suggests that dominant negative mutants N135D and N135I are likely to have the same molecular basis as the K136E mutation. The method we have developed in this study is versatile and can be readily adapted to map other regions of EF-Tu. A model of EF-Ts-catalyzed guanine-nucleotide exchange is discussed.  相似文献   

17.
When EF G2 from Escherichia coli or Pseudomonas fluorescens is pre-bound to ribosomes in the presence of GMD, or GTP and fusidic acid, a differential effect is observed on the subsequent EF Tu-catalyzed binding of aminoacyl-tRNA to ribosomes. The EF G from E. coli nearly completely prevents the binding reaction, whereas the corresponding factor from P. fluorescens displays a significantly lower inhibitory effect. Both EF G factors form stable complexes with ribosomes and are equally efficient in the polymerization reaction. The difference in inhibitory properties between the two factors persists over a wide range of NH4Cl concentration.  相似文献   

18.
Proteome analyses revealed that elongation factor-Tu (EF-Tu) is associated with cytoplasmic membranes of Gram-positive bacteria and outer membranes of Gram-negative bacteria. It is still debatable whether EF-Tu is located on the external side or the internal side of the membranes. Here, we have generated two new monoclonal antibodies (mAbs) and polyclonal rabbit antibodies against pneumococcal EF-Tu. These antibodies were used to investigate the amount of surface-exposed EF-Tu on viable bacteria using a flow cytometric analysis. The control antibodies recognizing the pneumococcal surface protein A and phosphorylcholine showed a significant binding to viable pneumococci. In contrast, anti-EF-Tu antibodies did not recognize pneumococcal EF-Tu. However, heat killing of pneumococci lacking capsular polysaccharides resulted in specific antibody binding to EF-Tu and, moreover, increased the exposure of recognized phosphorylcholine epitopes. Similarly, our EF-Tu-specific antibodies did not recognize EF-Tu of viable Neisseria meningitidis. However, pretreatment of meningococci with ethanol resulted in specific antibody binding to EF-Tu on outer membranes. Importantly, these treatments did not destroy the membrane integrity as analysed with control mAbs directed against cytoplasmic proteins. In conclusion, our flow cytrometric assays emphasize the importance of using viable bacteria and not heat-killed or ethanol-treated bacteria for surface-localization experiments of proteins, because these treatments modulate the cytoplasmic and outer membranes of bacteria and the binding results may not reflect the situation under physiological conditions.  相似文献   

19.
The phosphoryl-binding elements in the GDP-binding domain of elongation factor Tu were studied by heteronuclear proton observe methods. Five proton resonances were found below 10.5 ppm. Two of these were assigned to the amide groups of Lys 24 and Gly 83. These are conserved residues in each of the consensus sequences. Their uncharacteristic downfield proton shifts are attributed to strong hydrogen bonds to phosphate oxygens as for resonances in N-ras-p21 [Redfield, A. G., & Papastavros, M. Z. (1990) Biochemistry 29, 3509-3514]. The Lys 24 of the EF-Tu G-domain has nearly the same proton and nitrogen shifts as the corresponding Lys 16 in p21. These results suggest that this conserved lysine has a similar structural role in proteins in this class. The tentative Gly 83 resonance has no spectral analogue in p21. A mutant protein with His 84 changed to glycine was fully 15N-labeled and the proton resonance assigned to Gly 83 shifted downfield by 0.3 ppm, thereby supporting the assignment.  相似文献   

20.
The GTPase elongation factor (EF)-G is responsible for promoting the translocation of the messenger RNA-transfer RNA complex on the ribosome, thus opening up the A site for the next aminoacyl-tRNA. Chemical modification and cryo-EM studies have indicated that tRNAs can bind the ribosome in an alternative 'hybrid' state after peptidyl transfer and before translocation, though the relevance of this state during translation elongation has been a subject of debate. Here, using pre-steady-state kinetic approaches and mutant analysis, we show that translocation by EF-G is most efficient when tRNAs are bound in a hybrid state, supporting the argument that this state is an authentic intermediate during translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号