首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetically engineered pacemaking in ventricular cells has been achieved by down-regulation of the time independent inward rectifying current (I K1), or insertion of the hyperpolarisation-activated funny current (I f). We analyse the membrane system (i.e. ionic concentrations clamped) of an epicardial Luo-Rudy dynamic cell model using continuation algorithms with the maximum conductance () of I K1 and I f as bifurcation parameters. Pacemaker activity can be induced either via Hopf or homoclinic bifurcations. As K1 is decreased by ≈74%, autorhythmicity emerged via a homoclinic bifurcation, i.e., the periodicity first appear with infinitely large periods. In contrast, the insertion of f induced periodicity via a subcritical Hopf bifurcation at f≈ 0.25 mSμF−1. Stable autorhythmic action potentials occurred at f > 0.329 mSμF−1.  相似文献   

2.
为了解巴西橡胶树(Hevea brasiliensis)栽培种质的变异情况,以53份在云南植胶区综合性状表现较好的巴西橡胶树栽培种质为材料,采用流式细胞术测定了基因组C值,并进行了变异分析。结果表明,浅绿色嫩叶是巴西橡胶树流式细胞术测定的最适样品。53份巴西橡胶树栽培种质的细胞核DNA含量和基因组C值存在一定差异,基因组的平均C值是1.531 696×109 bp,最小的是CRTG-272种质(1.465 908×10~9 bp),最大的是CRTG-83种质(1.600 381×10~9 bp),变异系数较小(CV=0.035 5)。53份巴西橡胶树栽培种质中有47份为二倍体,6份为三倍体。在已测定基因组大小的40种大戟科(Euphorbiaceae)植物中,基因组大小变异较大(CV=1.248 6),与"C值悖论"观点相一致。因此,应用流式细胞术能快速、准确地测定巴西橡胶树细胞核DNA含量、基因组C值和染色体倍性。  相似文献   

3.
[目的]甘肃马先蒿与感染内生真菌的禾草(紫花针茅和麦宾草)建立根寄生关系,有关内生真菌对根寄生危害禾草光合作用调控方面的研究较少。[方法]本研究以紫花针茅和麦宾草带菌(E+)、不带菌(E-)植株为研究对象,研究甘肃马先蒿寄生和未寄生处理对紫花针茅和麦宾草E+、E-植株不同生长阶段光合特性影响的动态变化。[结果]甘肃马先蒿寄生显著降低紫花针茅和麦宾草的净光合速率、蒸腾速率和气孔导度,而胞间二氧化碳浓度和水分利用率却显著增加,这与禾草是否感染内生真菌无关。甘肃马先蒿寄生后E+紫花针茅的净光合速率、气孔导度和蒸腾速率高于E-植株,而麦宾草E+植株的净光合速率、气孔导度和蒸腾速率却低于E-植株;同时,根寄生条件下E+紫花针茅的胞间二氧化碳浓度和水分利用率低于E-植株;而E-麦宾草植株的胞间二氧化碳浓度和水分利用率却低于E+植株。[结论]内生真菌侵染影响甘肃马先蒿根寄生危害禾草的光合作用;甘肃马先蒿和内生真菌同时成为禾草营养消耗库时,内生真菌与禾草的共生关系处于一种互惠共生和相互拮抗的动态变化。  相似文献   

4.
We present a new approach for analyzing directional mutation pressure and nucleotide content in protein-coding genes. Directional mutation pressure, the heterogeneity in the likelihood of different nucleotide substitutions, is used to explain the increasing or decreasing guanine-cytosine content (GC%) in DNA and is represented by µD, in agreement with Sueoka (1962, Proc Natl Acad Sci USA 48:582–592). The new method uses simulation to facilitate identification of significant A + T or G + C pressure as well as the comparison of directional mutation pressure among genes, even when they are translated by different genetic codes. We use the method to analyze the evolution of directional mutation pressure and nucleotide content of mitochondrial cytochrome b genes. Results from a survey of 110 taxa indicate that the cytochrome b genes of most taxa are subjected to significant directional mutation pressure and that the gene is subject to A + T pressure in most cases. Only in the anseriform bird Cairina moschata is the cytochrome b gene subject to significant G + C pressure. The GC% at nonsynonymous codon sites decreases proportionately with increasing A + T pressure, and with a slope less than one, indicating a presence of selective constraints. The cytochrome b genes of insects, nematodes, and eumycotes are subject to extreme A + T pressures (µD = 0.123, 0.224, and 0.130) and, in parallel, the GC% of the nonsynonymous codon sites has decreased from about 0.44 in organisms that are not subjected to A + T or G + C pressure to about 0.332, 0.323, and 0.367, respectively. The distribution of taxa according to the GC% at nonsynonymous codon sites and directional mutation pressure supports the notion that variation in these parameters is a phylogenetic component.  相似文献   

5.
The amber mutation sites of 6 purR(am) mutants were determined by cloning and DNA sequencing. The results showed that the mutations were distributed at three different sites in PurR coding region, G721(→A), C933(→T) and C1155(→T), which respectively turn Trp-147,Gln-218 and Gln-292 of PurR into TAG terminal codon. To determine the effect of the three amino acid residues on regulatory function of PurR protein 5 different kinds of tRNA suppressor genes, Su3, Su4, Su6, Su7 and Su9 were used for creating the PurR protein variants with single amino acid substitution. The results indicated that Cys, Glu, Gly, His and Arg which substituted Trp-147 respectively all could not recover the regulation function of PurR. It confirmed that Trp-147 is a critical amino acid for the PurR function. Gln-292 substituted respectively by the same amino acids also could not recover the PurR function, demonstrating that Gln-292 is also an important amino acid residue in PurR.  相似文献   

6.
Changes in heart rate (f H) and cloacal ventilation frequency (f C) were investigated in the Fitzroy turtle, Rheodytes leukops, under normoxic (17.85 kPa) and hypoxic (3.79 kPa) conditions at 25°C. Given R. leukops’ high reliance on aquatic respiration via the cloacal bursae, the objective of this study was to examine the effect of varying aquatic PO2 levels upon the expression of a bradycardia in a freely diving, bimodally respiring turtle. In normoxia, mean diving f H and f C for R. leukops remained constant with increasing submergence length, indicating that a bradycardia failed to develop during extended dives of up to 3 days. Alternatively, exposure to aquatic hypoxia resulted in the expression of a bradycardia as recorded by a decreasing mean diving f H with increasing dive duration. The observed bradycardia is attributed to a hypoxic-induced metabolic depression, possibly facilitated by a concurrent decrease in f C. Results suggest that R. leukops alters its strategy from aquatic O2 extraction via cloacal respiration in normoxia to O2 conservation when exposed to aquatic hypoxia for the purpose of extending dive duration. Upon surfacing, a significant tachycardia was observed for R. leukops regardless of aquatic PO2, presumably functioning to rapidly equilibrate blood and tissue gas tensions with alveolar gas to reduce surfacing duration.  相似文献   

7.
Directional mutation pressure,selective constraints,and genetic equilibria   总被引:8,自引:0,他引:8  
Summary Rates of substitution mutations in two directions, v [from an A-T or T-A nucleotide pair (AT-pair) to a G-C or C-G nucleotide pair (GC-pair)] and u [from a GC-pair to an AT-pair], are usually not the same. The net effect, v/(u + v), has previously been defined as directional mutation pressure ( d ), which explains the wide interspecific variation and narrow intragenomic heterogeneity of DNA G+C content in bacteria. In this article, first, a theory of the evolution of DNA G+C content is presented that is based on the equilibrium among three components: directional mutation pressure, DNA G+C content, and selective constraints. According to this theory, consideration of both u and v as well as selective constraints is essential to explain the molecular evolution of the DNA base composition and sequence. Second, the theory of directional mutation pressure is applied to the analysis of the wide intragenomic heterogeneity of DNA G+C content in multicellular eukaryotes. The theory explains the extensive intragenomic heterogeneity of G+C content of higher eukaryotes primarily as the result of the intragenomic differences of directional mutation pressure and selective constraints rather than the result of positive selections for functional advantages of the DNA G+C content itself.  相似文献   

8.
The spectrum of mutations induced by the carcinogen N-2-acetylaminofluorene (AAF) was analysed in Saccharomyces cerevisiae using a forward mutation assay, namely the inactivation of the URA3 gene. The URA3 gene, carried on a yeast/bacterial shuttle vector, was randomly modified in vitro using N-acetoxy-N-2-acetylaminofluorene (N-AcO-AAF) as a model reactive metabolite of the carcinogen AAF. The binding spectrum of AAF to the URA3 gene was determined and found to be essentially random, as all guanine residues reacted about equally well with N-AcO-AAF. Independent Ura mutants were selected in vivo after transformation of the modified plasmid into a ura3 yeast strain. Plasmid survival decreased as a function of AAF modification, leading to one lethal hit (37% relative survival) for an average of 50 AAF adducts per plasmid molecule. At this level of modification the mutation frequency was equal to 70 × 10–4, i.e. 50-fold above the background mutation frequency. UV irradiation of the yeast cells did not further stimulate the mutagenic response, indicating the lack of an SOS-like mutagenic response in yeast. Sequence analysis of the URA3 mutants revealed 48% frameshifts, 44% base substitutions and 8 % complex events. While most base substitutions (74%) were found to be targeted at G residues where AAF is known to form covalent C8 adducts, frameshift mutations were observed at GC base pairs in only 24% of cases. Indeed, more than 60% of frameshift events occurred at sequences such as 5-(A/T)nG-3 where a short (n = 2 or 3) monotonous run of As or Ts is located on the 5' side of a guanine residue. We refer to these mutations as semi-targeted events and present a potential mechanism that explains their occurrence.  相似文献   

9.
Summary The DNA's ofMicrococcus lysodeikticus andClostridium perfringens were fragmented to about 7 000 nucleotide pairs long by shear and fractionated with respect to buoyant density of mercury complexes in Cs2SO4. The distribution of G + C content in both DNA's was characteristically asymmetric. InM. lysodeikticus DNA, low G + C fragments were more numerous than high G + C fragments, whereas inC. perfringens DNA, high G + C fragments were more numerous than low G + C fragments. The G + C content of fragments ofM. lysodeikticus DNA varied from 70 to 77%, with a mean and standard deviation of 73.7 ± 1.92% G + C and that ofC. perfringens DNA varied from 27 to 34%, with a mean and standard deviation of 29.8 ± 1.34% G + C. The standard deviation was smaller than that ofEscherichia coli DNA fragments of similar size. Biological meanings of relatively low heterogeneity in nucleotide composition inM. lysodeikticus andC. perfringens are discussed.  相似文献   

10.
Using all currently predicted coding regions in the honeybee genome, a novel form of synonymous codon bias is presented that affects the usage of particular codons dependent on the surrounding nucleotides in the coding region. Nucleotides at the third codon site are correlated, dependent on their weak (adenine [A] or thyamine [T]) versus strong (guanine [G] or cytosine [C]) status, to nucleotides on the first codon site which are dependent on their purine (A/G) versus pyrimidine (C/T) status. In particular, for adjacent third and first site nucleotides, weak–pyrimidine and strong–purine nucleotide combinations occur much more frequently than the underabundant weak–purine and strong–pyrimidine nucleotide combinations. Since a similar effect is also found in the noncoding regions, but is present for all adjacent nucleotides, this coding effect is most likely due to a genome-wide context-dependent mutation error correcting mechanism in combination with selective constraints on adjacent first and second nucleotide pairs within codons. The position-dependent relationship of synonymous codon usage is evidence for a novel form of codon position bias which utilizes the redundancy in the genetic code to minimize the effect of nucleotide mutations within coding regions. [Reviewing Editor: Dr. Brian Morton]  相似文献   

11.
Variation in chloroplastrbcL sequences was studied in representative species of four different lineages: the tribeRubieae (Rubiaceae), and the generaDrosera (Droseraceae),Nothofagus (Nothofagaceae) andIlex (Aquifoliaceae). Each lineage has its particular non-overlapping set ofrbcL polymorphic sites, indicating that common unconstrainedrbcL sites are not shared. Large differences in the rate and pattern of nucleotide substitution are observed among the four lineages. The genusIlex has the lowest rate of substitution, the lowest transition/transversion ratio, the lowest synonymous/replacement ratio and the lowest number of substitutions at the third codon position. An apparent relationship of these measures to the age of the lineages is observed. The A + T content and codon use among the four lineages are very similar and, apparently, cannot account for the observed differences in patterns of nucleotide substitution. However, the A + T content of the two bases immediately flanking the polymorphic sites is higher inIlex than in the other lineages. This could be correlated with the transversion/transition bias observed inIlex. The particularly low synonymous/replacement ratio found inIlex could also be explained by the small population sizes of species in this genus.  相似文献   

12.
The rice BAC-DNA was used as probes and fluorescence in situ hybridization (FISH) was applied to the interphase and metaphase mitotic chromosomes of maize. To optimize the BAC-FISH technique, we respectively assayed the effect of several factors, including maize or rice genomic C o t DNA used as blocking reagent of DNA, washing temperatures and FAD concentration in the washing buffer and in the hybrid solution. The results show that C o t DNA of maize genome blocked the repetitive sequence of the rice BAC-DNA when the C o t value was below 50. Meanwhile, it was necessary to adjust the C o t value according to the different probes and their ratios. Decreasing the concentration of FAD in the hybridization mixtures, adjusting the washing rate after hybridization, and most especially, blocking the ricespecific repetitive sequences of BAC-DNA could improve the positive signals of BAC-FISH. __________ Translated from Chinese Journal of Biochemistry and Molecular Biology, 2007, 23(1): 80–84 [译自: 中国生物化学与分子生物学学报]  相似文献   

13.
The differences in pigment levels, photosynthetic activity and the chlorophyll fluorescence decrease ratio R Fd (as indicator of photosynthetic rates) of green sun and shade leaves of three broadleaf trees (Platanus acerifolia Willd., Populus alba L., Tilia cordata Mill.) were compared. Sun leaves were characterized by higher levels of total chlorophylls a + b and total carotenoids x + c as well as higher values for the weight ratio chlorophyll (Chl) a/b (sun leaves 3.23–3.45; shade leaves: 2.74–2.81), and lower values for the ratio chlorophylls to carotenoids (a + b)/(x + c) (with 4.44–4.70 in sun leaves and 5.04–5.72 in shade leaves). Sun leaves exhibited higher photosynthetic rates P N on a leaf area basis (mean of 9.1–10.1 μmol CO2 m−2 s−1) and Chl basis, which correlated well with the higher values of stomatal conductance G s (range 105–180 mmol m−2 s−1), as compared to shade leaves (G s range 25–77 mmol m−2 s−1; P N: 3.2–3.7 μmol CO2 m−2 s−1). The higher photosynthetic rates could also be detected via imaging the Chl fluorescence decrease ratio R Fd, which possessed higher values in sun leaves (2.8–3.0) as compared to shade leaves (1.4–1.8). In addition, via R Fd images it was shown that the photosynthetic activity of the leaves of all trees exhibits a large heterogeneity across the leaf area, and in general to a higher extent in sun leaves than in shade leaves.  相似文献   

14.
Prunus dulcis, the almond, is a predominantly self-incompatible (SI) species with a gametophytic self-incompatibility system mediated by S-RNases. The economically important allele S f , which results in self-compatibility in P. dulcis, is said to have arisen by introgression from Prunus webbii in the Italian region of Apulia. We investigated the range of self-(in)compatibility alleles in Apulian material of the two species. About 23 cultivars of P. dulcis (14 self-compatible (SC) and nine SI) and 33 accessions of P. webbii (16 SC, two SI and 15 initially of unknown status), all from Apulia, were analysed using PCR of genomic DNA to amplify S-RNase alleles and, in most cases, IEF and staining of stylar protein extracts to detect S-RNase activity. Some amplification products were cloned and sequenced. The allele S f was present in nearly all the SC cultivars of P. dulcis but, surprisingly, was absent from nearly all SC accessions of P. webbii. And of particular interest was the presence in many SI cultivars of P. dulcis of a new active allele, labelled S 30 , the sequence of which showed it to be the wild-type of S f so that S f can be regarded as a stylar part mutant S 30 °. These findings indicate S f may have arisen within P. dulcis, by mutation. One SC cultivar of P. dulcis, ‘Patalina’, had a new self-compatibility allele lacking RNase activity, S n5 , which could be useful in breeding programmes. In the accessions of P. webbii, some of which were known to be SC, three new alleles were found which lacked RNase activity but had normal DNA sequences.  相似文献   

15.
Summary In order to study some internal dynamic processes of the lac operator sequence, the 13C-labeled duplex 5d(C0G1C2T3C4A5C6A7A8T9T10) · d(A10A9T8T7G6T5G4A3G2C1G0)3 was used. The spreading of both the H1 and C1 resonances brought about an excellent dispersion of the 1H1-13C1 correlations. The spinlattice relaxation parameters R(Cz), R(Cx,y) and R(HzCz) were measured for each residue of the two complementary strands, except for the 3-terminal residues which were not labeled. Variation of the relaxation rates was found along the sequence. These data were analyzed in the context of the model-free formalism proposed by Lipari and Szabo [(1982) J. Am. Chem. Soc., 104, 4546–4570] and extended to three parameters by Clore et al. [(1990) Biochemistry, 29, 7387–7401; and (1990) J. Am. Chem. Soc., 112, 4989–4991]. A careful analysis using a least-squares program showed that our data must be interpreted in terms of a three-parameter spectral density function. With this approach, the global correlation time was found to be the same for each residue. All the C1-H1 fragments exhibited both slow (s = 1.5) and fast (f = 20 ps) restricted libration motions (S inf2 sups =0.74 to 1.0 and S inf2 supf =0.52 to 0.96). Relaxation processes were described as governed by the motion of the sugar relative to the base and in terms of bending of the whole duplex. The possible role played by the special structure of the AATT sequence is discussed. No evident correlation was found between the amplitude motions of the complementary residues. The 5-terminal residues showed large internal motions (S2=0.5), which describe the fraying of the double helix. Global examination of the microdynamical parameters S inf2 supf and S inf2 sups along the nucleotide sequence showed that the adenine residues exhibit more restricted fast internal motions (S inf2 supf =0.88 to 0.96) than the others, whereas the measured relaxation rates of the four nucleosides in solution were mainly of dipolar origin. Moreover, the fit of both R(Cz) and R(HzCz) experimental relaxation rates using an only global correlation time for all the residues, gave evidence of a supplementary relaxation pathway affecting R(Cx,y) for the purine residues in the (53) G4A3 and A10A9T8T7 sequences. This relaxation process was analyzed in terms of exchange stemming from motions of the sugar around the glycosidic bond on the millisecond time scale. It should be pointed out that these residues gave evidence of close contacts with the protein in the complex with the lac operator [Boelens et al. (1987) J. Mol. Biol., 193, 213–216] and that these motions could be implied in the lac-operator-lac-repressor recognition process.  相似文献   

16.
H2 thresholds, concentrations below which H2 consumption by a microbial group stops, have been associated with microbial respiratory processes such as dechlorination, denitrification, sulfate reduction, and methanogenesis. Researchers have proposed that observed H2 thresholds occur when the available Gibbs free energy is minimal (ΔG ≈ 0) for a specific respiratory reaction. Others suggest that microbial kinetics also may play a role in controlling the thresholds. Here, we comprehensively evaluate H2 thresholds in light of microbial thermodynamic and kinetic principles. We show that a thermodynamic H2 threshold for Methanobacterium bryantii M.o.H. is not controlled by ΔG for methane production from H2 + HCO3. We repeatedly attain a H2 threshold near 0.4 nM, with a range of 0.2–1 nM, and ΔG for methanogenesis from H2 + HCO3 is positive, +5 to +7 kJ/mol-H2, at the threshold in most cases. We postulate that the H2 threshold is controlled by a separate reaction other than methane production. The electrons from H2 oxidation are transferred to an electron sink that is a solid-phase component of the cells. We also show that a kinetic threshold (S min) occurs at a theoretically computed H2 concentration of about 2400 nM at which biomass growth shifts from positive to negative.  相似文献   

17.
Superfusion of heart cells with hyperosmotic solution causes cell shrinkage and inhibition of membrane ionic currents, including delayed-rectifer K+ currents. To determine whether osmotic shrinkage also inhibits inwardly-rectifying K+ current (IK1), guinea-pig ventricular myocytes in the perforated-patch or ruptured-patch configuration were superfused with a Tyrodes solution whose osmolarity (T) relative to isosmotic (1T) solution was increased to 1.3–2.2T by addition of sucrose. Hyperosmotic superfusate caused a rapid shrinkage that was accompanied by a negative shift in the reversal potential of Ba2+-sensitive IK1, an increase in the amplitude of outward IK1, and a steepening of the slope of the inward IK1-voltage (V) relation. The magnitude of these effects increased with external osmolarity. To evaluate the underlying changes in chord conductance (GK1) and rectification, GK1-V data were fitted with Boltzmann functions to determine maximal GK1 (GK1max) and voltage at one-half GK1max (V0.5). Superfusion with hyperosmotic sucrose solutions led to significant increases in GK1max (e.g., 28±2% with 1.8T), and significant negative shifts in V0.5 (e.g., –6.7±0.6 mV with 1.8T). Data from myocytes investigated under hyperosmotic conditions that do not induce shrinkage indicate that GK1max and V0.5 were insensitive to hyperosmotic stress per se but sensitive to elevation of intracellular K+. We conclude that the effects of hyperosmotic sucrose solutions on IK1 are related to shrinkage-induced concentrating of intracellular K+.  相似文献   

18.
The relationship between nuclear 1 C DNA content and cell cycle progression throughout successive stages of antheridial filaments were studied among five taxa ofChara: two dioecious species (n = 14):C. aspera (7.2 pg DNA),C. tomentosa (7.4 pg DNA), and three monoecious species (n = 28):C. vulgaris (13.5 pg DNA),C. fragilis (19.3 pg DNA), andC. contraria (19.6 pg DNA). With the use of double3H-thymidine labelling and morphometry a number of characteristics common to all of the investigated species were determined within the proliferative periods preceding spermiogenesis. These include: (1) simplified type of the cell cycle (S + G2 + M), due to complete lack of G1 intervals, (2) constant duration of S phase, (3) progressive shortening of G2 + M periods, and (4) gradual reduction of cell lengths at successive mitotic divisions. Nucleotypic dependence was found between genome size and several time parameters estimated for consecutive stages of antheridial filaments: the higher the DNA C-value, the longer the cell cycles, their component phases, the total duration of the proliferative period, as well as the lower the rate of growth of interphase cells. Differential Giemsa staining of late G2 phase nuclei revealed that the higher content of C-heterochromatin is connected with prolonged cell cycle durations in species with similar DNA C-values.  相似文献   

19.
Summary An EM algorithm procedure is presented for the maximum-likelihood joint estimation of immigration and mating system parameters of mixed-mating system models for gymnosperms. In addition to accommodating multiallelic and multilocus data in mature populations and pollen pools, the EM estimates are insensitive to allelic frequency changes in foreign population and may approach closer to global maximum-likelihood estimates with each iteration, regardless of initial starting values. Estimates of rates of selfing (), outcrossing (Ô), and immigration (Î) derived from the model are bounded strictly within the natural biological range (i.e., 0 Ô + Î 1; + Ô + Î = 1).  相似文献   

20.
A bacterial strain, designated Iso4T, was isolated from the East Sea of Korea and was subjected to a poly-phasic taxonomy study including phenotypic and chemotaxonomic characteristics as well as 16S rRNA gene sequence analysis. Cells of the strain were Gram-negative, motile, non-budding, non-stalked, and strictly aerobic. Strain Iso4T grew optimally at 20°C in the presence of 1∼2% (w/v) NaCl and at pH 6.9∼7.6. The major respiratory quinone was Q-10 and the major cellular fatty acids were C18:1 ω7c (53.5%), C17:1 ω5c (11.7%), C17:1 ω6c (8.1%), C16:0 (7.8%), C17:0 (4.8%), C15:0 (2.9%), and C16:1 ω5c (2.2%). The DNA G+C content of strain Iso4T was 56.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Iso4T formed a monophyletic clade in the family Hyphomonadaceae, supported by high bootstrap value and was most closely related to the genus Hyphomonas (92∼94%), a member of marine bacteria in the family. The phenotypic, genotypic, and chemotaxonomic evidences also suggest strain Iso4T represents a novel genus and species in the family Hyphomonadaceae, for which the name Henriciella gen. nov., sp. nov. is proposed. The type strain is Iso4T (=KCTC 12513T =DSM 19595T =JCM 15116T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号