首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Phosphofructokinase activity remains relatively constant during the preimplantation period in the mouse, with a low point at day 4 (approximately 3.0×1–11 moles of substrate converted per embryo per hour).  相似文献   

2.
Malic dehydrogenase activity in the preimplantation mouse embryo   总被引:2,自引:0,他引:2  
  相似文献   

3.
1. The activity of glucose 6-phosphate dehydrogenase was determined in mouse embryos during the first 5 days of development from the time of ovulation up to implantation. 2. The activity decreased from 1.39 to 0.19mmumoles of NADP reduced/hr./embryo from ovulation to implantation. 3. The specific activity of the embryo on the first day was higher than specific activities reported for most other tissues.  相似文献   

4.
5.
6.
7.
The preimplantation mouse embryo expresses two polypeptides, Mr 240,000 and Mr 235,000, that are immunologically cross-reactive with antibody to the alpha and beta subunits of mouse brain spectrin. We investigated the synthesis of the spectrin subunits in the Triton-soluble and Triton-insoluble fractions of fertilized eggs, two-cell embryos, compacted morulae, and blastocysts labeled with L-[35S]methionine. Synthesis of embryonic spectrin began in the Triton-soluble fraction with significant levels of alpha-spectrin synthesis first detected in the morula stage and significant levels of beta-spectrin synthesis detected in the blastocyst stage. Incorporation of newly synthesized alpha- and beta-spectrin into the cytoskeletal fraction took place in the blastocyst when equal amounts of both subunits were assembled. Previous studies have shown Triton-insoluble spectrin to be concentrated in regions of cell-cell contact in the embryo (J. S. Sobel and M. A. Alliegro, 1985, J. Cell Biol. 100, 333-336). The temporal and spatial correlation between the assembly of newly synthesized spectrin and its concentration in regions of cell apposition is consistent with the hypothesis that cell contact may influence the assembly of embryonic spectrin.  相似文献   

8.
Mitochondrial DNA in the mouse preimplantation embryo   总被引:2,自引:0,他引:2  
Total DNA was extracted from mouse embryos that were collected from CD-1 random-bred females on Day 1 of pregnancy and cultured for up to 4 days in vitro, or from the reproductive tracts of pregnant females on Days 1, 3, 4 and 5 of pregnancy. Southern blot analyses with a cloned mouse mitochondrial DNA probe were performed to determine the relative levels of mitochondrial DNA in the zygote, morula, blastocyst and early egg cylinder stage embryos. The results indicated that the total amount of mitochondrial DNA does not change during development of the mouse embryo up to the egg cylinder stage and is not altered during in-vitro culture of the fertilized one-cell embryo to the blastocyst stage.  相似文献   

9.
Morpholino antisense oligonucleotides act by blocking translation of their target gene products and are effective tools for down-regulating gene expression. The current study was conducted to define treatment conditions for the use of morpholino oligonucleotides (MOs) in mammalian preimplantation embryos, and to employ MOs to target genes and study gene function in the early embryo. For the first time, ethoxylated polyethylenimine (EPEI), Lipofectin or Lysolecithin delivery agents were employed in combination with a fluorescent control MO and an alpha-catenin specific MO, to down-regulate gene expression during murine preimplantation development. Experiments applied to both two- and eight-cell stage murine preimplantation embryos contrasted the efficacy of MO concentrations of 1, 2, 5, 10, and 20 microM and treatment delivery times of 3, 6, 24, and 48 hr. Continuous treatment of two-cell embryos with Lipofectin and 20 microM alpha-catenin MO for 48 hr resulted in a significant (P < 0.05) reduction in development to the blastocyst stage and was accompanied by a marked reduction in alpha-catenin protein. These results indicate that morpholino antisense oligonucleotides are effective tools for down-regulating gene expression during mammalian preimplantation development.  相似文献   

10.
11.
12.
An SEM analysis of the effects of tunicamycin, cytochalasin B, and colcemid has yielded insights into the process of compaction in the early mouse embryo. All three reagents block or reverse compaction and decrease the number of microvilli (MV), although some MV polarization is permitted. In addition, tunicamycin is shown to lessen cell adhesion even in compacted embryos. Cytochalasin B causes the formation of MV clumps some of which are preferentially localized to the apex or lateral ring region. Colcemid reverses compaction and, coupled with Pronase treatment, completely blocks compaction of uncompacted 8-cell embryos. Observations also suggest that MV polarization can occur only once but compaction (the close adherance and flattening of blastomeres) can be reversed and reinduced. Evidence is consistent with a three-step compaction process involving (1) cell surface recognition and attachment of a ring of lateral microvilli to adjacent blastomeres, (2) subsequent microfilament shortening in these lateral MV, and (3) maintenance of the compacted and polarized state by microtubules.  相似文献   

13.
14.
Cytokeratin filament assembly in the preimplantation mouse embryo   总被引:8,自引:0,他引:8  
The timing, spatial distribution and control of cytokeratin assembly during mouse early development has been studied using a monoclonal antibody, TROMA-1, which recognizes a 55,000 Mr trophectodermal cytokeratin (ENDO A). This protein was first detected in immunoblots at the 4-cell stage, and became more abundant at the 16-cell stage and later. Immunofluorescence analysis revealed assembled cytokeratin filaments in some 8-cell blastomeres, but not at earlier stages. At the 16-cell stage, filaments were found in both polarized (presumptive trophectoderm; TE) and apolar (presumptive inner cell mass; ICM) cells in similar proportions, although polarized cells possessed more filaments than apolar cells. By the late 32-cell, early blastocyst, stage, all polarized (TE) cells contained extensive filament networks whereas cells positioned inside the embryo tended to have lost their filaments. The presence of filaments in inside cells at the 16-cell stage and in ICM cells was confirmed by immunoelectron microscopy. Lineage tracing techniques demonstrated that those cells in the ICM of early blastocysts which did possess filaments were almost exclusively the progeny of polar 16-cell blastomeres, suggesting that these filaments were directly inherited from outside cells at the 16- to 32-cell transition. Inhibitor studies revealed that proximate protein synthesis but not mRNA synthesis is required for filament assembly at the 8-cell stage. These results demonstrate that there are quantitative rather than qualitative differences in the expression of cytokeratin filaments in the inner cell mass and trophectoderm cells of the mouse embryo.  相似文献   

15.
Uterine implantation is a critical element of mammalian reproduction and is a tightly and highly coordinated event. An intricate and reciprocal uterine-embryo dialog exists to synchronize uterine receptivity with the concomitant activation of the blastocyst, maximizing implantation success. While a number of pathways involved in regulating uterine receptivity have been identified in the mouse, less is understood about blastocyst activation, the process by which the trophectoderm (TE) receives extrinsic cues that initiate new characteristics essential for implantation. Amino acids (AA) have been found to regulate blastocyst activation and TE motility in vitro. In particular, we find that arginine and leucine alone are necessary and sufficient to induce TE motility. Both arginine and leucine act individually and additively to propagate signals that are dependent on the activity of the mammalian target of rapamycin complex 1 (mTORC1). The activities of the well-established downstream targets of mTORC1, p70S6K and 4EBP, do not correlate with trophoblast motility, suggesting that an independent-rapamycin-sensitive pathway operates to induce trophoblast motility, or that other, parallel amino acid-dependent pathways are also involved. We find that endogenous uterine factors act to induce mTORC1 activation and trophoblast motility at a specific time during pregnancy, and that this uterine signal is later than the previously defined signal that induces the attachment reaction. In vivo matured blastocysts exhibit competence to respond to an 8-hour AA stimulus by activating mTOR and subsequently undergoing trophoblast outgrowth by the morning of day 4.5 of pregnancy, but not on day 3.5. By the late afternoon of day 4.5, the embryos no longer require any exposure to AA to undergo trophoblast outgrowth in vitro, demonstrating the existence and timing of an equivalent in vivo signal. These results suggest that there are two separate uterine signals regulating implantation, one that primes the embryo for the attachment reaction and another that activates mTOR and initiates invasive behavior.  相似文献   

16.
17.
18.
Gap junctional communication in the preimplantation mouse embryo.   总被引:15,自引:0,他引:15  
C W Lo  N B Gilula 《Cell》1979,18(2):399-409
In this study, we examined cell-to-cell communication via gap junctional channels between the cells of the early mouse embryo from the 2-cell stage to the preimplantation blastocyst stage. The extent of communication was examined by monitoring for the presence of ionic coupling, the transfer of injected fluorescein (molecular weight 330) and the transfer of injected horseradish peroxidase (molecular weight 40,000). In the 2-cell, 4-cell and precompaction 8-cell embryos, cytoplasmic bridges between sister blastomeres were responsible for ionic coupling and the transfer of injected fluorescein as well as the transfer of injected horseradish peroxidase.In contrast, no communication was observed between blastomeres from different sister pairs. Junction-mediated intercellular communication was unequivocably detected for the first time in the embryo at the early compaction stage (late 8-cell embryo). At that stage, ionic coupling was present and fluorescein injected into one cell spread to all eight cells of the embryo. Injected horseradish peroxidase was passed to only one other cell, however, again indicating the presence of cytoplasmic bridges between sister blastomeres. Junctional communication with respect to both ionic coupling and dye transfer was retained between all the cells throughout compaction. At the blastocyst stage, trophoblast cells of the blastocyst were linked by junctional channels to other trophoblast cells as well as to cells of the inner cell mass, as indicated by the spread of injected fluorescein. In addition, the extent of communication between the cells of the inner cell mass was examined in inner cell masses isolated by immunosurgery; both ionic coupling and the complete spread of injected fluorescein were observed.  相似文献   

19.

Background

Studies of gene function in the mouse have relied mainly on gene targeting via homologous recombination. However, this approach is difficult to apply in specific windows of time, and to simultaneously knock-down multiple genes. Here we report an efficient method for dsRNA-mediated gene silencing in late cleavage-stage mouse embryos that permits examination of phenotypes at post-implantation stages.

Results

We show that introduction of Bmp4 dsRNA into intact blastocysts by electroporation recapitulates the genetic Bmp4 null phenotype at gastrulation. It also reveals a novel role for Bmp4 in the regulation the anterior visceral endoderm specific gene expression and its positioning. We also show that RNAi can be used to simultaneously target several genes. When applied to the three murine isoforms of Dishevelled, it leads to earlier defects than previously observed in double knock-outs. These include severe delays in post-implantation development and defects in the anterior midline and neural folds at headfold stages.

Conclusion

Our results indicate that the BMP4 signalling pathway contributes to the development of the anterior visceral endoderm, and reveal an early functional redundancy between the products of the murine Dishevelled genes. The proposed approach constitutes a powerful tool to screen the functions of genes that govern the development of the mouse embryo.  相似文献   

20.
Mouse preimplantation embryos consume pyruvate preferentially during the early developmental stages, before glucose becomes the predominant energy substrate in the blastocyst. To investigate the importance of the switch to glucose utilization at the later developmental stages, mouse embryos from F1 hybrid mice (CBA/Ca × C57BL/6) were cultured from the one-and two-cell stages (22 and 46 h post hCG, respectively) for 5 days in a modified medium, M16, containing 0.33 mM pyruvate and 5 or 23 mM D+L-lactate, in the presence and absence of 1 mM glucose (M16+G and M16-G, respectively). Nutrient uptakes were also determined over this time. Some embryos cultured in M16-G were transferred to M16+G at 94 or 118 h post hCG. Embryos cultured from the two-cell stage in M16+G exhibited the characteristic fall in pyruvate consumption between the morula and the blastocyst stage; those cultured from the two-cell stage in M16-G compensated for the lack of glucose by consuming increasing amounts of pyruvate, from 2.78 pmol/embryo/h at 58 h post hCG to 5.21 pmol/embryo/h at 154 h post hCG. However, the percentage of embryos developing to the blastocyst stage, the hatching rate, and blastocyst cell numbers (50.6 ± 2.5 [28] vs. 105 ± 3.8 [37]) were all lower in this group. When exposed to glucose at 94 or 118 h post hCG, embryos cultured from the two-cell stage in M16-G readily consumed glucose in preference to pyruvate, although the characteristic fall in pyruvate consumption was not observed. One-cell embryos cultured continuously in M16-G were only able to develop to the morula stage, after which time they degenerated. In these embryos pyruvate was readily consumed between 22 and 94 h post hCG, before falling from 2.77 pmol/embryo/h at 83 h post hCG to 0.045 pmol/embryo/h at 130 h post hCG. Transfer of these embryos to M16+G at 94 and 118 h post hCG did not support development to the hatching blastocyst stage. The results show that mouse preimplantation embryos from F1 hybrid mice (CBA/Ca × C57BL/6) need only be exposed to glucose for less than 24 h between 22 and 94 h post hCG in order to develop from the morula to the blastocyst stage in vitro. However, the exposure time needs to be increased to between 24 and 72 h in order that blastocyst cell numbers reach control levels. The importance of glucose before the morula stage may relate to the need to synthesize glycogen for later use. If the obligatory requirement for glucose is fulfilled, embryos are able to utilize pyruvate in the absence of glucose at the later stages of development. These results show that the mouse preimplantation embryo can, to some extent, adapt metabolically to changes in its external environment. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号