首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Leaf and whole plant gas exchange rates of Lycopersicon esculentumMill, were studied during several days of continuous exposureto ethylene. Steady-state photosynthesis and transpiration ratesof control and ethylene-treated individual leaves were equivalent.However, the photosynthesis and transpiration rates of treatedleaves required at least five times longer to reach 50% of thesteady-state rate. This induction lag was attributed to ethylene—inducedleaf epinasty and temporary acclimation to lower incident lightlevels immediately prior to measurement of gas exchange. Thewhole plant net carbon exchange rate (NCER) of a representativetreated plant was also reduced by 51% after 24 h exposure toethylene relative to both its pre-treatment rate and that ofthe control. Ethylene exposure reduced the growth rate of thetreated plant by 50% when expressed as carbon (C) gain. Theinhibition of NCER and growth rate associated with epinastywas completely reversed when the epinastic leaves were returnedto their original positions and light interception was re-established.The results demonstrate that the inhibition of whole plant CO2assimilation is indirect and due to reduced light interceptionby epinastic leaves. Morphological changes caused by environmentalethylene are thus shown to reduce plant C accumulation withoutinhibiting leaf photosynthesis processes per se. Key words: Ethylene, carbon assimilation, growth  相似文献   

2.
The extended period of ethylene release from ethephon (2-chloroethylphosphonicacid) after application to intact tomato plants has provideda model system in which the effects of ethylene on photosyntheticmetabolism and carbon partitioning has been studied. Ethylenerelease from leaf tissue after ethephon treatment was 10 timesgreater than that from untreated control leaves. The specificactivity of 14C2H4 released from [14C] ethephon remained constantover several days demonstrating that the ethylene was derivedfrom the applied ethephon. The ethephon-treated plants exhibitedextreme epinasty of the leaves and 24 h after application theflower buds in the first visible cluster had abscised, leafexpansion at the apex had ceased and developing adventitiousroots were visible on the lower stem. Rates of steady-state photosynthesis, respiration, photorespirationand transpiration were the same in treated and control leaves24 h after ethephon application. Both treated and control leavespartitioned similar proportions of newly-fixed 14C from 14CO2into neutral (46.4%), acidic (14.0%), basic (5.0%) and insoluble(34.0%) leaf fractions under steady-state conditions. The speedof 11C-assimilate movement in the stems of control plants (3.62±0.42cm min-1 towards the apex and 4.03±0.15 cm min-1 towardsthe roots) was more rapid than in the ethephon-treated plants(2.90±0.31 cm min-1 upwards and 2.59±0.22 cm min-1downwards). Furthermore, in the control plants 20.0±5.4%of the 14C exported to the plant from the source leaf was transportedtowards the developing flower cluster and young leaves. Twenty-fourhours after ethephon application only 6.5 ±1.7% of theexported 14C was translocated towards the shoot. Contrary tosome reports ethylene did not affect steady-state gas exchangeprocesses while carbon partitioning was significantly alteredindicating that ethylene effects on photosynthetic carbon metabolismare indirect and not due to direct effects on photosyntheticprocesses per se. Key words: Ethylene, photosynthesis, partitioning  相似文献   

3.
The response of foliar gas exchange to exogenously applied ethylene   总被引:3,自引:1,他引:2       下载免费PDF全文
The responsiveness to ethylene of net photosynthesis and stomatal conductance to water vapor in intact plants was investigated in 13 herbaceous species representing seven plant families. Exposures were conducted in an open, whole-plant exposure system providing controlled levels of irradiance, air temperature, CO2, relative humidity, and ethylene concentration. Net photosynthesis and stomatal conductance to water vapor in units of moles per square meter per second were measured on recently expanded leaves in control and ethylene-treated plants using a remotely operated single-leaf cuvette. The ethylene concentration was either 0 or 210 micromoles per cubic meter and was maintained for 4 hours. Species varied substantially in the response of their foliar gas exchange to ethylene. In 7 of the 13 species, net photosynthesis was inhibited statistically by 4 hours of ethylene exposure. As a function of the rate in control plants, the responses were most pronounced and statistically significant in Arachis hypogaea (−51.1%), Gossypium hirsutum (−31.7%), Glycine max (−24.8%), Cucurbita pepo (−20.4%), Phaseolus vulgaris (−18.4%), Setaria viridis (−17.5%), and Raphanus sativus (−4.4%). Whereas the responsiveness of net photosynthesis to ethylene among the 13 species showed no specific taxonomic associations, the responsiveness was positively correlated with the intrinsic rate of net photosynthesis. Stomatal conductance to water vapor after 4 hours of ethylene exposure declined statistically in 6 of the 13 species. As a function of control rates, the most marked and statistically significant responses of stomatal conductance were in Glycine max (−53.6%), Gossypium hirsutum (−51.2%), Arachis hypogaea (−42.7%), Phaseolus vulgaris (−38.6%), Raphanus sativus (−26.8%), and Solanum tuberosum (−23.4%). Although ethylene-induced changes in net photosynthesis and stomatal conductance were positively correlated, there were species-specific exceptions in which net photosynthesis declined after 4 hours of exposure without a concurrent change in stomatal conductance, stomatal conductance declined without a change in net photosynthesis, and the decline in stomatal conductance substantially exceeded the corresponding decline in net photosynthesis. Thus, the responsiveness to ethylene of net photosynthesis and stomatal conductance to water vapor were not consistently synchronous or equivalent among the 13 species. It is concluded that foliar gas exchange is responsive to exogenously applied ethylene in many plant species. The sensitivity of foliar gas exchange to ethylene may play a role in general plant response to environmental stress in which one of the physiological sites of action for endogenously produced stress ethylene in the leaf is the plant's photosynthetic capacity and/or stomatal conductance to water vapor.  相似文献   

4.
We assessed the contribution of leaf movements to PSII photoprotection against high light and temperature in Robinia pseudoacacia. Gas exchange and chlorophyll a fluorescence measurements were performed during the day at 10:00, 12:00, 15:00 and 18:00 hours on leaves where paraheliotropic movements were restrained (restrained leaves, RL) and on control unrestrained leaves (UL). RL showed a strong decrease of net photosynthesis (A(n)), stomatal conductance (g(sH2O)), quantum yield of electron transport (PhiPSII), percentage of photosynthesis inhibited by O2 (IPO) and photochemical quenching (q(P)) in the course of the day, whereas, a significant increase in C(i)/C(a) and NPQ was observed. Contrary to RL, UL had higher photosynthetic performance that was maintained at elevated levels throughout the day. In the late afternoon, A(n), g(sH2O), PhiPSII and q(P) of RL showed a tendency to recovery, as compared to 15:00 hours, even if the values remained lower than those measured at 10:00 hours and in UL. In addition, contrary to UL, no recovery was found in F(v)/F(m) at the end of the study period in RL. Data presented suggest that in R. pseudoacacia, leaf movements, by reducing light interception, represent an efficient, fast and reversible strategy to overcome environmental stresses such as high light and temperature. Moreover, paraheliotropism was able to protect photosystems, avoiding photoinhibitory damage, leading to a carbon gain for the plant.  相似文献   

5.
Inhibition of photosynthesis by ethylene-a stomatal effect   总被引:3,自引:2,他引:1       下载免费PDF全文
Ethylene at hormonally significant levels inhibited net photosynthesis of the cultivated peanut (Arachis hypogaea L.) as measured by gas analysis. Upon the removal of ethylene, the inhibition was naturally overcome at the concentration-exposure duration combinations tested. Increased length of exposure of 1 microliter of ethylene per liter of air up to 6 hours increased the degree of net photosynthesis inhibition (68% reduction after 6-hour exposure). Significantly greater inhibition of photosynthesis by ethylene was detected on peanut genotypes having higher photosynthetic efficiency. In contrast to peanut, hormonal concentrations of ethylene only moderately inhibited sweet potato, Jerusalem artichoke, and sunflower photosynthesis and was without effect on beans, peas, Irish potato, Mimosa pudica, and white clover. No inhibition could be found by ethylene on ribulose 1,5-biphosphate carboxylase activity in vitro. Photosynthesis was lowered at all CO2 concentrations below ambient at an O2 concentration of 1.5%, indicating that the action of ethylene was not affected by low O2; concomitantly, an increase in the CO2 compensation point occurred. Diffusion resistance measurements of leaf water vapor loss made on ethylene-treated peanut leaves showed a measurable decrease in leaf conductance which correlated with net photosynthesis decrease. Ethylene influenced the conductance of abaxial stomata more so than adaxial.  相似文献   

6.
Although crown wetting events can increase plant water status, leaf wetting is thought to negatively affect plant carbon balance by depressing photosynthesis and growth. We investigated the influence of crown fog interception on the water and carbon relations of juvenile and mature Sequoia sempervirens trees. Field observations of mature trees indicated that fog interception increased leaf water potential above that of leaves sheltered from fog. Furthermore, observed increases in leaf water potential exceeded the maximum water potential predicted if soil water was the only available water source. Because field observations were limited to two mature trees, we conducted a greenhouse experiment to investigate how fog interception influences plant water status and photosynthesis. Pre-dawn and midday branchlet water potential, leaf gas exchange and chlorophyll fluorescence were measured on S. sempervirens saplings exposed to increasing soil water deficit, with and without overnight canopy fog interception. Sapling fog interception increased leaf water potential and photosynthesis above the control and soil water deficit treatments despite similar dark-acclimated leaf chlorophyll fluorescence. The field observations and greenhouse experiment show that fog interception represents an overlooked flux into the soil–plant–atmosphere continuum that temporarily, but significantly, decouples leaf-level water and carbon relations from soil water availability.  相似文献   

7.
Previous evidence has demonstrated that vertical leaves of Styrax camporum, a woody shrub from the Brazilian savanna, have a higher net photosynthetic rate (P N) compared with horizontal leaves, and that it is detected only if gas exchange is measured with light interception by both leaf surfaces. In the present study, leaf temperature (T leaf), gas exchange and chlorophyll (Chl) a fluorescence with light interception on adaxial and also on abaxial surfaces of vertical and horizontal mature fully-expanded leaves subjected to water deficit (WD) were measured. Similar gas-exchange and fluorescence values were found when the leaves were measured with light interception on the respective surfaces of horizontal and vertical leaves. WD reduced P N values measured with light interception on leaf surfaces of both leaf types, but the effective quantum yield of PSII (ΦPSII) and the apparent electron transport rate (ETR) were reduced only when the leaves were measured with light interception on the adaxial surface. WD did not decrease the maximum quantum yield of PSII (Fv/Fm) or increase T leaf, even at the peak of WD stress. Vertical leaf orientation in S. camporum is not related to leaf heat avoidance. In addition, the similar P N values and the lack of higher values of ΦPSII and ETR in vertical compared with horizontal leaves measured with light interception by each of the leaf surfaces suggests that the vertical leaf position is not related to photoprotection in this species, even when subjected to drought conditions. The exclusion of this photoprotective role could raise the alternative hypothesis that diverse leaf angles sustain whole plant light interception efficiency increased in this species.  相似文献   

8.
Poplars (Populus spp.) have a particular petiole morphology that enhances leaf flutter even in light winds. Previous studies have shown that this trait enhances whole canopy carbon gain through changes in the temporal dynamics and spatial distribution of light in the lower canopy. However, less is known about the effects of flutter for leaves at the top of the canopy ("sun leaves"). A computer simulation model was developed that uses latitude, time of day, day of year, azimuth and a slope component, which was varied at a 3 Hz frequency over an arc of rotation to create the flutter motion, and generate data on light interception for both surfaces of a fixed or fluttering leaf. The light files generated (10 Hz) were input into a dynamic model of photosynthesis to estimate the carbon gain for both fluttering and fixed leaves. As compared to leaves fixed at various angles and azimuths, fluttering leaves had a more uniform light interception. Depending on their angle and azimuth, fixed leaves may not always be intercepting high photon flux density (PFD) even when exposed to full sun. Leaf flutter continuously randomizes leaf angles creating uniform PFD inputs for photosynthetic reactions regardless of variation in leaf orientation and solar position. These effects on light interception could have positive impacts on carbon gain for leaves at the top of the canopy.  相似文献   

9.
Summary A physiologically based steady-state model of whole leaf photosynthesis (WHOLEPHOT) is used to analyze observed net photosynthesis daily time courses of soybean, Glycine max (L.) Merr., leaves. Observations during two time periods of the 1978 growing season are analyzed and compared. After adjustment of the model for soybean, net photosynthesis rates are calculated with the model in response to measured incident light intensity, leaf temperature, air carbon dioxide concentration, and leaf diffusion resistance. The steady-state calculations closely approximate observed net photosynthesis. Results of the comparison reveal a decrease in photosynthetic capacity in leaves sampled during the second time period, which is associated with decreasing ability of leaves to respond to light intensity and internal air space carbon dioxide concentration, increasing mesophyll resistance, and increasing stomatal resistance.  相似文献   

10.
Light gradients within tree canopies play a major role in the distribution of plant resources that define the photosynthetic capacity of sun and shade leaves. However, the biochemical and diffusional constraints on gas exchange in sun and shade leaves in response to light remain poorly quantified, but critical for predicting canopy carbon and water exchange. To investigate the CO2 diffusion pathway of sun and shade leaves, leaf gas exchange was coupled with concurrent measurements of carbon isotope discrimination to measure net leaf photosynthesis (An), stomatal conductance (gs) and mesophyll conductance (gm) in Eucalyptus tereticornis trees grown in climate controlled whole‐tree chambers. Compared to sun leaves, shade leaves had lower An, gm, leaf nitrogen and photosynthetic capacity (Amax) but gs was similar. When light intensity was temporarily increased for shade leaves to match that of sun leaves, both gs and gm increased, and An increased to values greater than sun leaves. We show that dynamic physiological responses of shade leaves to altered light environments have implications for up‐scaling leaf level measurements and predicting whole canopy carbon gain. Despite exhibiting reduced photosynthetic capacity, the rapid up‐regulation of gm with increased light enables shade leaves to respond quickly to sunflecks.  相似文献   

11.
A method for measuring whole plant photosynthesis in Arabidopsis thaliana   总被引:5,自引:0,他引:5  
Measurement of photosynthesis of intact leaves of Arabidopsis thaliana has been prohibitive due to the small leaf size and prostrate growth habit. Because of the widespread use of Arabidopsis for plant science research it is important to have a procedure for accurate, nondestructive measurement of its photosynthesis. We developed and tested a method for analysis of photosynthesis in whole plants of Arabidopsis. Net carbon assimilation and stomatal conductance were measured with an open gas exchange system and photosynthetic oxygen evolution was determined from chlorophyll fluorescence parameters. Individual plants were grown in 50 cubic centimeter tubes that were attached with an air tight seal to an enclosed gas exchange chamber for measurement of carbon dioxide and water exchange by the whole plant. Chlorophyll fluorescence from intact leaves was simultaneously measured with a pulse modulated fluorometer. Photosynthetic CO2 assimilation and stomatal conductance rates were calculated with established gas exchange procedures and O2 evolution was determined from chlorophyll fluorescence measurement of Photosystem II yield. Carbon assimilation and oxygen evolution in response to light intensity and ambient CO2 concentration was measured and is presented here to demonstrate the potential use of this method for investigation of photosynthesis of Arabidopsis plants in controlled environment conditions.  相似文献   

12.
This study addresses the question of how size-related changes in leaf morphology and physiology influence light absorption and carbon gain of the epiphytic bromeliad Vriesea sanguinolenta. A geometrically based computer model, Y-plant, was used for the three-dimensional reconstruction of entire plants and for calculation of whole plant light interception and carbon gain. Plants of different sizes were reconstructed, and morphological and physiological attributes of young and old leaves, and small and large plants were combined to examine the individual effects of each factor on light absorption and carbon gain of the plant. The influence of phyllotaxis on light absorption was also explored. Departure of measured divergence angles between successive leaves from the ideal 137.5 degrees slightly decreased light absorption. The only morphological parameter that consistently changed with plant size was leaf shape: larger plants produced more slender foliage, which substantially reduced self-shading. Nevertheless, self-shading increased with plant size. While the maximum rate of net CO(2) uptake of leaves increased linearly with plant size by a factor of two from the smallest to the largest individual, the potential plant carbon gain (based on total foliage area) showed a curvilinear relationship, but with similar numerical variation. We conclude that leaf physiology has a greater impact on plant carbon gain than leaf and plant morphology in this epiphytic bromeliad.  相似文献   

13.
《Acta Oecologica》2001,22(2):129-138
The functional variability in leaf angle distribution within the canopy was analysed with respect to regulation of light interception and photoprotection. Leaf orientation strongly determined the maximum photochemical efficiency of PSII (Fv/Fm) during summer: horizontal leaves were highly photoinhibited whereas vertical leaf orientation protected the leaves from severe photoinhibition. The importance of leaf orientation within the canopy was analysed in two Mediterranean macchia species with distinct strategies for drought and photoinhibition avoidance during summer. The semi-deciduous species (Cistus monspeliensis) exhibited strong seasonal but minimal spatial variability in leaf orientation. Reversible structural regulation of light interception by vertical leaf orientation during summer protected the leaves from severe photoinhibition. The evergreen sclerophyll (Quercus coccifera) exhibited high spatial variability in leaf angle distribution throughout the year and was less susceptible to photoinhibition. The importance of both strategies for plant primary production was analysed with a three-dimensional canopy photoinhibition model (CANO-PI). Simulations indicated that high variability in leaf angle orientation in Q. coccifera resulted in whole-plant carbon gain during the summer, which was 94 % of the maximum rate achieved by theoretical homogeneous leaf orientations. The high spatial variability in leaf angle orientation may be an effective compromise between efficient light harvesting and avoidance of excessive radiation in evergreen plants and may optimize annual primary production. Whole plant photosynthesis was strongly reduced by water stress and photoinhibition in C. monspeliensis; however, the simulations indicated that growth-related structural regulation of light interception served as an important protection against photoinhibitory reduction in whole-plant carbon gain.  相似文献   

14.
Yeo, A. R., Caporn, S. J. M.and Flowers, T. J. 1985. The effectof salinity upon photosynthesis in rice (Oryza sativa L.): Gasexchange by individual leaves in relation to their salt content.—J.exp. Bot. 36: 1240–1248. The effect of salinity upon net photosynthesis and transpirationby individual leaves of rice has been investigated by gas exchangemeasurements in seedlings at the five to six leaf stage. Salinitydid not, initially, reduce net photosynthesis in the whole plantbut only in the older leaves in which sodium accumulated. Analysisof the course of events in leaf four following salinizationof the medium showed that net photosynthesis was inversely correlatedwith the sodium concentration in the leaf tissue. There wasno evidence of a threshold effect; net photosynthesis declinedlinearly with increasing leaf sodium concentration and was reducedby 50% at only 05 mmol sodium per gram dry weight. The relationshipbetween transpiration rate and leaf sodium concentration closelyparalleled that for photosynthesis; there was no effect of leafsodium concentration on the carbon dioxide concentration inthe intercellular spaces, showing that sodium accumulation inthe leaf affected stomatal aperture and carbon dioxide fixationsimultaneously. Photosynthesis was reduced by half at a sodiumconcentration in the leaf which did not reduce the concentrationof chlorophyll. The nature of the effect of salinity upon leafgas exchange is discussed. Key words: Salinity, rice, Oryza sativa L., photosynthesis, apoplastic salt load  相似文献   

15.
The effect of light on ethylene and ethane production in damaged leaf tissues was investigated. When whole leaves of tobacco cv. Samsun NN were damaged with liquid nitrogen, the ethylene formation was the highest, if 100?% of leaves were injured and were kept in the light, the lowest when leaves after 100?% injury were kept in darkness. Ethane production (lipid peroxidation) could be detected only in damaged, but not in control leaves, and was much higher in light than in darkness. In addition, there was a strong degradation of chlorophyll of damaged leaves kept in light. In light aminoethoxy-vinylglycine (AVG) inhibited ethylene formation in control, non-damaged whole leaves effectively, but in leaves with 100?% damage the inhibitory effect was much weaker and similar to the effect of propyl gallate (PG), a free radical scavenger. Both AVG and PG treatments decreased ethylene formation by control leaf discs and discs with 100?% damage. Ethane production was significantly inhibited by PG and slightly by AVG in the case of 100?% damage. Tiron, another free radical scavenger gave similar results on leaf discs as PG did. Paraquat (methylviologen, Pq), as a photosynthesis inhibiting and reactive oxygen species (ROS) producing herbicide produced a large amount of ethylene and ethane in light but very small amount in darkness. In accordance, tobacco mosaic virus (TMV) infection on the necrotic host resulted in significantly larger amount of ethylene and ethane formation in light than in darkness. We conclude that ethylene and ethane production of damaged plant tissues is strongly induced by light and ROS that are involved in this induction.  相似文献   

16.
WOLEDGE  JANE 《Annals of botany》1972,36(3):551-561
The rate at which the net photosynthesis of grass leaves grownin bright light (119 W m–2) decreased as they aged wasincreased by severe shading (to 21 W m–2 or less). However,less severe shading (light intensities of 36 W m–2 ormore) had no effect. The decrease in photosynthesis was unaffectedby whether the whole plant was shaded or only the leaf whosephotosynthesis was measured. In both shaded and unshaded leaves, photosynthesis measuredin bright light fell faster as the leaf aged than did photosynthesisin dim light. Both mesophyll and stomatal diffusion resistancesrose as the leaf aged but the former rose faster. The chlorophyllcontent fell only towards the end of the life of the leaves.  相似文献   

17.
Ethylene Directly Inhibits Foliar Gas Exchange in Glycine max   总被引:2,自引:0,他引:2  
Gas exchange of individual attached leaves of soybean, Glycine max (L.) Merr cv Davis, was monitored during exposure to exogenous ethylene (C2H4) to test the hypothesis that the effects of C2H4 on net photosynthesis (PN) and stomatal conductance to H2O vapor (gs) are direct and not mediated by changes in leaf orientation to light. Leaflets were held perpendicular to incident light in a temperature-controlled cuvette throughout a 5.5 hour exposure to 10 microliters per liter C2H4. Declines in both PN and gs were evident within 2 hours and became more pronounced throughout the exposure period. In C2H4 treated plants, PN and gs decreased to 80 and 62%, respectively, of the rates in control plants. Because epinastic movement of the leaflets was prohibited by the cuvette, the observed declines in PN and gs were a direct effect of C2H4 rather than the result of reduced light interception caused by changing leaf angle.  相似文献   

18.
  • Phototropic leaf movement of plants is an effective mechanism for adapting to light conditions. Light is the major driver of plant photosynthesis. Leaf N is also an important limiting factor on leaf photosynthetic potential. Cotton (Gossypium hirsutum L.) exhibits diaheliotropic leaf movement. Here, we compared the long‐term photosynthetic acclimation of fixed leaves (restrained) and free leaves (allowed free movement) in cotton.
  • The fixed leaves and free leaves were used for determination of PAR, leaf chlorophyll concentration, leaf N content and leaf gas exchange. The measurements were conducted under clear sky conditions at 0, 7, 15 and 30 days after treatment (DAT).
  • The results showed that leaf N allocation and partitioning among different components of the photosynthetic apparatus were significantly affected by diaheliotropic leaf movement. Diaheliotropic leaf movement significantly increased light interception per unit leaf area, which in turn affected leaf mass per area (LMA), leaf N content (NA) and leaf N allocation to photosynthesis (NP). In addition, cotton leaves optimised leaf N allocation to the photosynthetic apparatus by adjusting leaf mass per area and NA in response to optimal light interception.
  • In the presence of diaheliotropic leaf movement, cotton leaves optimised their structural tissue and photosynthetic characteristics, such as LMA, NA and leaf N allocation to photosynthesis, so that leaf photosynthetic capacity was maximised to improve the photosynthetic use efficiency of light and N under high light conditions.
  相似文献   

19.
Sucrose synthesis rate in an exporting sugar beet (Beta vulgaris L.) leaf was calculated from simultaneous measurements of export and changes in leaf sucrose level. The amount of recently fixed carbon exported was determined from net carbon assimilated minus the tracer carbon accumulated in the leaf. The relative amount of 14C accumulated in the leaf supplied with 14CO2 throughout an entire light period was recorded continuously with a Geiger-Mueller detector. To produce a continuous time course for tracer carbon accumulated in the leaf during the light period, the latter curve was superimposed on values for tracer carbon accumulated in leaves sampled at hourly intervals. Validity of the method requires that nearly all of the carbon that is exported be sucrose and that nearly all of the sucrose that is synthesized be either exported or accumulated as sucrose in the exporting leaves. These conditions appeared to be fulfilled in the situations where the method was applied. The method was used to study the effect of increasing atmospheric CO2 concentration on the rate of sucrose synthesis. Further, the method can be used in conjunction with the gathering of other data such as gas exchange, metabolite levels, and enzyme activities in a set of leaves of a similar age on the same plant. This assemblage of data was found to be useful for understanding how rates of photosynthesis, sucrose synthesis, and translocation are regulated in relation to each other in an intact plant.  相似文献   

20.
An empirical model was developed to simulate photosynthetic responses of leaves to highly fluctuating light, with a special focus on the functional role of photosynthetic induction and capacity. Based on diurnal courses of light as input data, which were recorded at natural plant sites, we applied this model to simulate the corresponding course of net photosynthesis (output data) for leaves of two neotropical tree species. All six model input parameters (leaf-specific) were obtained via measurements of leaf gas exchange. The model was tested for leaves in their natural environments, characterized by frequent light-flecks. We compared measured carbon gains with computed ones, using a standard steady-state and our induction model. Simulation runs with the steady-state model can result in an immense overestimation of the true situation, by 13.4% at open sites [pioneer species Heliocarpus appendiculatus (Turczaninow)] and by 86.5% at low light environments of the understorey [mid to late successional species Billia colombiana (Planchon and Lindley)]. These significant overestimations, particularly in the understorey, are mainly the consequence of neglecting a dynamic photosynthetic induction under fluctuating light conditions. The model presented here resulted in clearly improved predictions; in open and understorey sites the true carbon gain of leaves was computed with a mean error of less than 7%. As most leaves at natural plant sites are exposed to light environments allowing for dynamic rather than steady-state CO2 assimilation, the significance of such induction models is evident and is discussed in relation to scaling-up from leaf to canopy and to the whole plant indicating a large potential for errors. Received: 3 May 1999 / Accepted: 9 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号