首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Park KH  Kim MJ  Lee HS  Han NS  Kim D  Robyt JF 《Carbohydrate research》1998,313(3-4):235-246
It was observed that Bacillus stearothermophilus maltogenic amylase cleaved the first glycosidic bond of acarbose to produce glucose and a pseudotrisaccharide (PTS) that was transferred to C-6 of the glucose to give an alpha-(1-->6) glycosidic linkage and the formation of isoacarbose. The addition of a number of different carbohydrates to the digest gave transfer products in which PTS was primarily attached alpha-(1-->6) to D-glucose, D-mannose, D-galactose, and methyl alpha-D-glucopyranoside. With D-fructopyranose and D-xylopyranose, PTS was linked alpha-(1-->5) and alpha-(1-->4), respectively. PTS was primarily transferred to C-6 of the nonreducing residue of maltose, cellobiose, lactose, and gentiobiose. Lesser amounts of alpha-(1-->3) and/or alpha-(1-->4) transfer products were also observed for these carbohydrate acceptors. The major transfer product to sucrose gave PTS linked alpha-(1-->4) to the glucose residue. alpha,alpha-Trehalose gave two major products with PTS linked alpha-(1-->6) and alpha-(1-->4). Maltitol gave two major products with PTS linked alpha-(1-->6) and alpha-(1-->4) to the glucopyranose residue. Raffinose gave two major products with PTS linked alpha-(1-->6) and alpha-(1-->4) to the D-galactopyranose residue. Maltotriose gave two major products with PTS linked alpha-(1-->6) and alpha-(1-->4) to the nonreducing end glucopyranose residue. Xylitol gave PTS linked alpha-(1-->5) as the major product and D-glucitol gave PTS linked alpha-(1-->6) as the only product. The structures of the transfer products were determined using thin-layer chromatography, high-performance ion chromatography, enzyme hydrolysis, methylation analysis and 13C NMR spectroscopy. The best acceptor was gentiobiose, followed closely by maltose and cellobiose, and the weakest acceptor was D-glucitol.  相似文献   

2.
Reactions of dextransucrase and sucrose in the presence of sugars (acceptors) of low molecular weight have been observed to give a dextran of low molecular weight and a series of oligosaccharides. The acceptor reaction of dextransucrase was examined in the absence and presence of sucrose by using d-[14C]glucose, d-[14C]fructose, and 14C-reducing-end labeled maltose as acceptors. A purified dextransucrase was pre-incubated with sucrose, and the resulting d-fructose and unreacted sucrose were removed from the enzyme by chromatography on columns of Bio-Gel P-6. The enzyme, which migrated at the void volume, was collected and referred to as “charged enzyme”. The charged enzyme was incubated with 14C-acceptor in the absence of sucrose. Each of the three acceptors gave two fractions of labeled products, a high molecular weight product, identified as dextran, and a product of low molecular weight that was an oligosaccharide. It was found that all three of the acceptors were incorporated into the products at the reducing end. Similar results were obtained when the reactions were performed in the presence of sucrose, but higher yields of labeled products were obtained and a series of homologous oligosaccharides was produced when d-glucose or maltose was the acceptor. We propose that the acceptor reaction proceeds by nucleophilic displacement of glucosyl and dextranosyl groups from a covalent enzyme-complex by a specific, acceptor hydroxyl group, and that this reaction effects a glycosidic linkage between the d-glucosyl and dextranosyl groups and the acceptor. We conclude that the acceptor reactions serve to terminate polymerization of dextran by displacing the growing dextran chain from the active site of the enzyme; the acceptors, thus, do not initiate dextran polymerization by acting as primers.  相似文献   

3.
Two mechanisms are recognized for polysaccharide chain elongation: (a) the nonreducing-end, primer-dependent mechanism and (b) the reducing-end, two-site insertion mechanism. We recently demonstrated the latter mechanism for starch biosynthesis by pulsing starch granules with ADP-[14C]Glc and chasing with ADPGlc for eight varieties of starch granules. Others have reported the addition of glucose from ADPGlc to the nonreducing ends of maltose, maltotriose, and maltopentaose and a branched maltopentasaccharide. It was concluded that starch chains are biosynthesized by the addition of glucose to the nonreducing ends of maltodextrin primers. In this study, we reinvestigated the maltodextrin reactions by reacting three kinds of starch granules from maize, wheat, and rice with ADP-[14C]Glc in the absence and presence of maltose (G2), maltotriose (G3), and maltodextrin (d.p.12) and found that they inhibited starch biosynthesis rather than stimulating it, as would be expected for primers. The major product in the presence of G2 was G3 with decreasing amounts of G4-G9 and the major products in the presence of G3 was G4 and G5, with decreasing amounts of G6-G9. It was concluded that maltodextrins are acceptors rather than primers. This was confirmed by pulsing the starch granules with ADP-[14C]Glc and chasing with G2, G3, and G6, which gave release of 14C-label from the pulsed granules in the absence of ADPGlc, further demonstrating that maltodextrins are acceptors that inhibit starch biosynthesis by releasing glucose from starch synthase, rather than acting as primers and stimulating biosynthesis.  相似文献   

4.
Nigerose and nigerooligosaccharides served as acceptors for a glucosyltransferase GTF-I from cariogenic Streptococcus sobrinus to give a series of homologous acceptor products. The soluble oligosaccharides (dp 5-9) strongly activated the acceptor reaction, resulting in the accumulation of water-insoluble (1-->3)-alpha-D-glucan. The enzyme transferred the labeled glucosyl residue from D-[U-13C]sucrose to the 3-hydroxyl group at the non-reducing end of the (1-->3)-alpha-D-oligosaccharides, as unequivocally shown by NMR 13C-13C coupling patterns. The values of the 13C-13C one-bond coupling constant (1J) are also presented for the C-1-C-6 of the 13C-labeled alpha-(1-->3)-linked glucosyl residue and of the non-reducing-end residue.  相似文献   

5.
Lin TP  Preiss J 《Plant physiology》1988,86(1):260-265
Two major forms of d-enzyme (4-α-glucanotransferase, EC 2.4.1.25) were successfully separated from most of the amylase activity using FPLC-Mono Q column chromatography. Transfer of a maltosyl group was observed upon the incubation of d-enzyme with maltotriose and d-[U-14 C]glucose. About 4.5% of the radioactivity was transferred to maltotriose in 2 hours. End product analysis showed the accumulation of glucose and maltopentaose from maltotriose within the first 10 minutes of the reaction. Several other maltodextrins were also observed with longer incubation times, although maltose was never produced. A quantitative measurement of maltodextrin production from the reaction of [14 C]maltotriose with d-enzyme showed that the quantity of maltotriose decreased from 100% to 31% after 3 hours incubation, while glucose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, maltooctaose, and higher maltodextrins increased in amount. Glucose is the major product throughout the course of the reaction of d-enzyme with maltotriose. Maltotriose, in addition to glucose, are the major products in the reaction of d-enzyme with maltodextrins with a chain length greater than maltotriose. This study confirms the existence of a transglycosylase that disproportionates maltotriose and higher maltodextrins by transferring maltosyl or maltodextrinyl groups between maltodextrins resulting in the production of glucose and different maltodextrins, but not maltose, in leaf tissue with enzymic properties very similar to the previously reported d-enzyme in potato.  相似文献   

6.
Previous studies have indicated that α-d-1-fluoroglucose is a glycosyl donor for glucosyl transferases (5, 6) including dextransucrases formed by Leuconostoc and Streptococcus mutans. The present report confirms these observations with dextransucrase isolated from S. sanguis and conclusively establishes the details of this reaction as well as proving that mechanism of fluoroglucose transfer is comparable to that glucosyl transfer from sucrose. A new procedure for monitoring the reaction is reported, and is based on the measurement of proton formation using the pH indicator, bromcresol purple. Production of F? was found to be stoichiometric with proton production. Rate studies with the substrate indicate that α-1-fluoroglucose undergoes spontaneous hydrolysis, which is greatly increased in the presence of nucleophilic buffers. When [14C]maltose and α-1-fluoroglucose or [14C]α-1-fluoroglucose and maltose were incubated with dextransucrase, a series of oligosaccharide products was observed. The results indicate that the glucosyl moiety of α-1-fluoroglucose transferred to the acceptor. The nature of formation of the products are consistent with a series of precursor-product reactions. Product analysis of the saccharides by borohydride reduction analysis demonstrated that the glucosyl unit was added to the nonreducing end of maltose. When either [14C]fructose or [14C]-α-1-fluoroglucose were incubated with enzyme, a reaction was observed which was analogous to the isotopic-exchange reaction catalyzed by the enzyme in the presence of [14C]fructose and sucrose.  相似文献   

7.
Yoon SH  Robyt JF 《Carbohydrate research》2002,337(21-23):2245-2254
It was found that Bacillus macerans cyclomaltodextrin glucanotransferase (CGTase) reacts with cyclomaltohexaose (alpha-cyclodextrin, alpha-CD) to give a series of cyclomaltooligosaccharides (cyclomaltodextrins, CDs), having seven to more than 20 D-glucose residues and maltooligosaccharides (maltodextrins, MDs) from G5 to G12+. When D-glucose (Glc) was added to the alpha-CD at very low molar ratios (1:100) of Glc to alpha-CD, the predominant products (95%) were CDs, some of which were macrocyclic MDs with 20-60 D-glucose residues, along with MDs that also had high molecular weights, containing 10-75 D-glucose residues and gave a blue iodine-iodide color. As the molar ratio of Glc to alpha-CD was increased, the amount of CDs progressively decreased and MDs proportionately increased in the range of G2-G12. At 25 mM alpha-CD and Glc to alpha-CD molar ratio of 1:1, a 75% yield of MDs, G1-G12, each in approximately equal amounts, was obtained; and at 20 mM and a 5:1 ratio, a 97% yield of MDs, G2-G9, was obtained but in unequal amounts. At higher ratios (10:1), the CDs completely disappeared, and at very high ratios (50:1 to 100:1) only low-molecular-weight MDs, G2-G4, were formed.  相似文献   

8.
Alternansucrase (EC 2.4.1.140) is a d-glucansucrase that synthesizes an alternating alpha-(1-->3), (1-->6)-linked d-glucan from sucrose. It also synthesizes oligosaccharides via d-glucopyranosyl transfer to various acceptor sugars. Two of the more efficient monosaccharide acceptors are D-tagatose and L-glucose. In the presence of d-tagatose, alternansucrase produced the disaccharide alpha-d-glucopyranosyl-(1-->1)-beta-D-tagatopyranose via glucosyl transfer. This disaccharide is analogous to trehalulose. We were unable to isolate a disaccharide product from L-glucose, but the trisaccharide alpha-D-glucopyranosyl-(1-->6)-alpha-d-glucopyranosyl-(1-->4)-l-glucose was isolated and identified. This is analogous to panose, one of the structural units of pullulan, in which the reducing-end D-glucose residue has been replaced by its L-enantiomer. The putative L-glucose disaccharide product, produced by glucoamylase hydrolysis of the trisaccharide, was found to be an acceptor for alternansucrase. The disaccharide, alpha-D-glucopyranosyl-(1-->4)-L-glucose, was a better acceptor than maltose, previously the best known acceptor for alternansucrase. A structure comparison of alpha-D-glucopyranosyl-(1-->4)-L-glucose and maltose was performed through computer modeling to identify common features, which may be important in acceptor affinity by alternansucrase.  相似文献   

9.
Côté GL  Sheng S 《Carbohydrate research》2006,341(12):2066-2072
In the presence of suitable acceptor molecules, dextransucrase makes a homologous series of oligosaccharides in which the isomers differ by a single glucosyl unit, whereas alternansucrase synthesizes one trisaccharide, two tetrasaccharides, etc. For the example of maltose as the acceptor, if one considers only the linear, unbranched possibilities for alternansucrase, the hypothetical number of potential products increases exponentially as a function of the degree of polymerization (DP). Experimental evidence indicates that far fewer products are actually formed. We show that only certain isomers of DP >4 are formed from maltose in measurable amounts, and that these oligosaccharides belong to the oligoalternan series rather than the oligodextran series. When the oligosaccharide acceptor products from maltose were separated by size-exclusion chromatography and HPLC, only one pentasaccharide was isolated. Its structure was alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->4)-D-Glc. Two hexasaccharides were formed in approximately equal quantities: alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->4)-D-Glc and alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->4)-D-Glc. Just one heptasaccharide was isolated from the reaction mixture, alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->4)-D-Glc. We conclude that the enzyme is incapable of forming two consecutive alpha-(1-->3) linkages, and does not form products with more than two consecutive alpha-(1-->6) linkages. The distribution of products may be kinetically determined.  相似文献   

10.
1. A transglucosylase has been separated from cell extracts of Streptococcus mitis, and has been partially purified by chromatography on DEAE-cellulose. 2. The transglucosylase was present in the six strains of Streptococcus mitis that were examined, and the activity of the enzyme was the same whether the cells had grown on glucose or on maltose. Four of the strains could store intracellular iodophilic polysaccharide when grown on high concentrations of glucose or maltose (1%), but none of the strains stored polysaccharide during growth on 0·1% glucose. The activity of transglucosylase in cell extracts was the same whether or not the cells had stored polysaccharide. 3. The transglucosylase degrades amylose in the presence of a suitable acceptor, transferring one or more glucosyl residues from the non-reducing end of the donor to the non-reducing end of the acceptor. With [14C]glucose as acceptor the maltodextrins produced were labelled in the reducing glucose unit only. 4. The enzyme can synthesize higher maltodextrins from maltose and maltotriose. Maltotetraose is disproportionated to give products of sufficient chain length to give a stain with iodine. 5. The action pattern of S. mitis during the degradation of synthetic amylose was shown to be intermediate between the single-chain and multi-chain mechanism.  相似文献   

11.
The specificity of the aglycone-binding site of Escherichia coli alpha-xylosidase (YicI), which belongs to glycoside hydrolase family 31, was characterized by examining the enzyme's transxylosylation-catalyzing property. Acceptor specificity and regioselectivity were investigated using various sugars as acceptor substrates and alpha-xylosyl fluoride as the donor substrate. Comparison of the rate of formation of the glycosyl-enzyme intermediate and the transfer product yield using various acceptor substrates showed that glucose is the best complementary acceptor at the aglycone-binding site. YicI preferred aldopyranosyl sugars with an equatorial 4-OH as the acceptor substrate, such as glucose, mannose, and allose, resulting in transfer products. This observation suggests that 4-OH in the acceptor sugar ring made an essential contribution to transxylosylation catalysis. Fructose was also acceptable in the aglycone-binding site, producing two regioisomer transfer products. The percentage yields of transxylosylation products from glucose, mannose, fructose, and allose were 57, 44, 27, and 21%, respectively. The disaccharide transfer products formed by YicI, alpha-D-Xylp-(1-->6)-D-Manp, alpha-D-Xylp-(1-->6)-D-Fruf, and alpha-d-Xylp-(1-->3)-D-Frup, are novel oligosaccharides that have not been reported previously. In the transxylosylation to cello-oligosaccharides, YicI transferred a xylosyl moiety exclusively to a nonreducing terminal glucose residue by alpha-1,6-xylosidic linkages. Of the transxylosylation products, alpha-d-Xylp-(1-->6)-D-Manp and alpha-d-Xylp-(1-->6)-D-Fruf inhibited intestinal alpha-glucosidases.  相似文献   

12.
Summary An -glucosidase fromAspergillus carbonarious CCRC 30414 was employed for investigating the enzymatic synthesis of isomaltooligosaccharides from maltose. The enzyme transferred a glucose unit from the nonreducing end of maltose and other -linked glucosyl oligosaccharides to glucose and other glucosyl oligosaccharides which function as accepting co-substrates. The transfer of a glucose unit occurs most frequently to the 6-OH position of the nonreducing end of acceptor, but transfer to 4-OH position also occurs. Treatment of 30 % (w/v) maltose with the enzyme under optimum conditions afforded more than 50% isomaltooligosaccharides.  相似文献   

13.
The specificity of acceptor binding to the active site of dextransucrase was studied by using alpha-methyl-D-glucopyranoside analogs modified at C-2, C-3, and C-4 positions by (a) inversion of the hydroxyl group and (b) replacement of the hydroxyl group with hydrogen. 2-Deoxy-alpha-methyl-D-glucopyranoside was synthesized from 2-deoxyglucose; 3- and 4-deoxy-alpha-methyl-D-glucopyranosides were synthesized from alpha-methyl-D-glucopyranoside; and alpha-methyl-D-allopyranoside was synthesized from D-glucose. The analogs were incubated with [14C]sucrose and dextransucrase, and the products were separated by thin-layer chromatography and quantitated by liquid scintillation spectrometry. Structures of the acceptor products were determined by methylation analyses and optical rotation. The relative effectiveness of the acceptor analogs in decreasing order were 2-deoxy, 2-inverted, 3-deoxy, 3-inverted, 4-inverted, and 4-deoxy. The enzyme transfers D-glucopyranose to the C-6 hydroxyl of analogs modified at C-2 and C-3, to the C-4 hydroxyl of 4-inverted, and to the C-3 hydroxyl of 4-deoxy analogs of alpha-methyl-D-glucopyranoside. The data indicate that the hydroxyl group at C-2 is not as important for acceptor binding as the hydroxyl groups at C-3 and C-4. The hydroxyl group at C-4 is particularly important as it determines the binding orientation of the alpha-methyl-D-glucopyranoside ring.  相似文献   

14.
15.
16.
The disproportionation activity (intermolecular transglycosylation) of cyclomaltodextrin glycosyltransferases (CGTases) from Thermoanaerobacter sp. and Bacillus circulans strain 251 was studied. Using soluble starch as donor, the CGTase from Thermoanaerobacter sp. showed the highest transglycosylation activity with all the malto-oligosaccharides tested as acceptors. At ratios of starch: D-glucose from 2:1 to 1:2 (w/w), the formation of cyclodextrins was completely inhibited, and a homologous series of malto-oligosaccharides (Gn) was produced. The conversion of starch into acceptor products was in the range of 63-79% in 48 h. The degree of polymerisation of malto-oligosaccharides formed could be modulated by the ratio of starch: D-glucose provided; at a ratio of 1:2 (w/w), the reaction was quite selective for the formation of G2-G3.  相似文献   

17.
The kinetic behavior of soluble and insoluble forms of dextransucrase from Leuconostoc mesenteroides NRRL B-1299 was investigated with sucrose as substrate and maltose as acceptor. To study the parameters involved, a kinetic model was applied that was previously developed for L. mesenteroides NRRL B-512F dextransucrase. There are significant correlations between the parameters of the soluble form of B-1299 dextransucrase and those calculated for the B-512F enzyme; that is, their properties are comparable and differ from those of the insoluble form of B-1299 dextransucrase. Whereas the calculated parameters for high maltose concentrations describe the kinetic behavior very well, the time curves for low maltose concentrations were not described correctly. Therefore, the parameters were calculated separately for the two ranges. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

18.
The crystallographic three-dimensional structure of the Escherichia coli maa gene product, previously identified as a maltose O-acetyltransferase (MAT) [Brand, B., and Boos, W. (1991) J. Biol. Chem. 266, 14113-14118] has been determined to 2.15 A resolution by the single anomalous dispersion method using data from a crystal cocrystallized with trimethyllead acetate. It is shown here that MAT acetylates glucose exclusively at the C6 position and maltose at the C6 position of the nonreducing end glucosyl moiety. Furthermore, MAT shows higher affinity toward artificial substrates containing an alkyl or hydrophobic chain as well as a glucosyl unit. The presence of a long hydrophobic patch near the acceptor site provides the structural explanation for this preference. The three-dimensional structure reveals the expected trimeric left-handed parallel beta-helix structure found in all other known hexapeptide repeat enzymes. In particular, the structure shows similarities both overall and at the putative active site to the recently determined structure of galactoside acetyltransferase (GAT), the lacA gene product [Wang, X.-G., Olsen, L. R., and Roderick, S. L. (2002) Structure 10, 581-588]. The structure, together with the new biochemical data, suggests that GAT and MAT are more closely related than previously thought and might have similar cellular functions. However, while GAT is specific for acetylation of galactosyl units, MAT is specific for glucosyl units and is able to acetylate maltooligosaccharides, an important property for biotechnological applications. Structural differences at the acceptor site reflect the differences in substrate specificity.  相似文献   

19.
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 6 of N-acetylgalactosamine 4-sulfate (GalNAc(4SO4)). We previously identified human GalNAc4S-6ST cDNA and showed that the recombinant GalNAc4S-6ST could transfer sulfate efficiently to the nonreducing terminal GalNAc(4SO4) residues. We here present evidence that GalNAc4S-6ST should be involved in a unique nonreducing terminal modification of chondroitin sulfate A (CSA). From the nonreducing terminal of CS-A, a GlcA-containing oligosaccharide (Oligo I) that could serve as an acceptor for GalNAc4S-6ST was obtained after chondroitinase ACII digestion. Oligo I was found to be GalNAc(4SO4)-GlcA(2SO4)-GalNAc(6SO4) because GalNAc(4SO4) and deltaHexA(2SO4)-GalNAc(6SO4) were formed after chondroitinase ABC digestion. When Oligo I was used as the acceptor for GalNAc4S-6ST, sulfate was transferred to position 6 of GalNAc(4SO4) located at the nonreducing end of Oligo I. Oligo I was much better acceptor for GalNAc4S-6ST than GalNAc(4SO4)-GlcAGalNAc(6SO4). An oligosaccharide (Oligo II) whose structure is identical to that of the sulfated Oligo I was obtained from CS-A after chondroitinase ACII digestion, indicating that the terminal modification occurs under the physiological conditions. When CS-A was incubated with [35S]PAPS and GalNAc4S-6ST and the 35S-labeled product was digested with chondroitinase ACII, a 35S-labeled trisaccharide (Oligo III) containing [35S]GalNAc(4,6-SO4) residue at the nonreducing end was obtained. Oligo III behaved identically with the sulfated Oligos I and II. These results suggest that GalNAc4S-6ST may be involved in the terminal modification of CS-A, through which a highly sulfated nonreducing terminal sequence is generated.  相似文献   

20.
A gene encoding a dextransucrase (dsrBCB4) that synthesizes only alpha-1,6-linked dextran was cloned from Leuconostoc mesenteroides B-1299CB4. The coding region consisted of an open reading frame (ORF) of 4,395 bp that coded a 1,465-amino-acids protein with a molecular mass 163,581 Da. The expressed recombinant DSRBCB4 (rDSRBCB4) synthesized oligosaccharides in the presence maltose or isomaltose as an acceptor, plus the products included alpha-1,6-linked glucosyl residues in addition to the maltosyl or isomaltosyl residue. Alignments of the amino acid sequence of DSRBCB4 with glucansucrases from Streptococcus and Leuconostoc identified conserved amino acid residues in the catalytic core that are critical for enzyme activity. The mutants D530N, E568Q, and D641N displayed a 98- to 10,000-fold reduction of total enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号