首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Intra-specific variation in susceptibility of Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) in Australia to the Cry1Ac and Cry2Ab delta-endotoxins from Bacillus thuringiensis (Berliner) (Bt) was determined to establish a baseline for monitoring changes that might occur with the use of Bt cotton. Strains of H. armigera and H. punctigera were established from populations collected primarily from commercial farms throughout the Australian cotton belts. Strains were evaluated for susceptibility using two bioassay methods (surface treatment and diet incorporation) by measuring the dose response for mortality (LC50) and growth inhibition (IC50). The variation in LC50 among H. armigera (n=17 strains) and H. punctigera (n=12 strains) in response to Cry1Ac was 4.6- and 3.2-fold, respectively. The variation in LC50 among H. armigera (n=19 strains) and H. punctigera (n=12 strains) to Cry2Ab was 6.6- and 3.5-fold, respectively. The range of Cry1Ac induced growth inhibition from the 3rd to 4th instar in H. armigera (n=15 strains) was 3.6-fold and in H. punctigera (n=13 strains) was 2.6-fold, while the range of Cry2Ab induced growth inhibition from neonate to 3rd instar in H. armigera (n=13 strains) was 4.3-fold and in H. punctigera (n=12 strains) was 6.1-fold. Variation in susceptibility was also evaluated for two age classes (neonates and 3rd instars) in laboratory strains of H. armigera and H. punctigera. Neonates of H. punctigera had the same or higher sensitivity to Bt than 3rd instars. Neonates of H. armigera were more sensitive to Cry2Ab than 3rd instars, while being less sensitive to Cry1Ac than 3rd instars. Differences in the two methods of bioassay used affected relative sensitivity of species to Bt toxins, highlighting the need to standardize bioassay protocols.  相似文献   

2.
【目的】Cry1A和Cry2A类Bt蛋白通过特异性地与昆虫中肠上的受体蛋白结合而发挥杀虫作用,现已广泛应用于转基因抗虫作物。本研究旨在进一步明确Cry2A类蛋白的作用机制和Cry1A受体蛋白在Cry2A发挥毒力中的作用。【方法】本研究首先提取了棉铃虫Helicoverpa armigera的BBMV,制备了钙粘蛋白(CAD)、氨肽酶N(APN)和碱性磷酸酯酶(ALP)3种受体蛋白的抗体和抗血清;然后,利用Western blot检测BBMV上这3种受体蛋白后,利用抗体封闭技术比较了敏感棉铃虫和Cry1Ac抗性棉铃虫(BtR)中3种受体蛋白的抗血清对Cry1Ac和Cry2Aa毒力的影响。【结果】对敏感品系棉铃虫,这3种已知的Cry1Ac受体蛋白抗血清显著地降低了Cry1Ac和Cry2Aa的毒力。其中APN抗血清对Cry1Ac毒力的影响最大,棉铃虫幼虫的死亡率降低了84.44%;ALP抗血清对Cry2Aa的毒力影响最大,棉铃虫幼虫死亡率比对照降低了71.04%。Cry1Ac对Cry1Ac抗性棉铃虫(BtR)的毒力显著降低,Cry2Aa的毒性也减弱。在Cry1Ac抗性棉铃虫(BtR)中,3种受体抗血清对Cry1Ac的影响比在敏感棉铃虫中的影响小,尤其是CAD和APN抗血清对Cry1Ac毒力的抑制率显著低于在敏感棉铃虫中的抑制作用;CAD和ALP抗血清对Cry2Aa毒力的影响与在敏感棉铃虫中的影响差异不显著,但APN抗血清可以显著降低Cry2Aa对Cry1Ac抗性棉铃虫(BtR)的毒力。【结论】棉铃虫CAD,APN和ALP不仅参与了Cry1Ac的杀虫过程,也对Cry2Aa毒力有一定的影响,而且这3种蛋白可能与棉铃虫对Cry1Ac和Cry2Aa产生抗性及交互抗性相关。  相似文献   

3.
Glasshouse and laboratory experiments were conducted to evaluate the relative fitness of Cry1A-susceptible and laboratory-selected resistant strains of Helicoverpa armigera (Hübner). Life history parameters of H. armigera larvae feeding on young cotton plants showed a significant developmental delay of up to 7 d for the resistant strain compared with the susceptible strain on non-Bacillus thuringiensis (Bt) cotton. This fitness cost was not evident on artificial diet. There was no developmental delay in the F1 hybrid progeny from the reciprocal backcross of the resistant and susceptible strains, indicating that the fitness cost is recessive. In two cohorts tested, survival to pupation of resistant larvae on Bt cotton expressing Cry1Ac was 54 and 51% lower than on non-Bt cotton, whereas all susceptible and F1 larvae tested on Cry1Ac cotton were killed. Mortality of susceptible larvae occurred in the first or second instar, whereas the F1 larvae were able to develop to later instars before dying, demonstrating that resistance is incompletely recessive. The intrinsic rate of increase was reduced by >50% in the resistant strain on Cry1Ac cotton compared with the susceptible strain on non-Bt cotton. There was a significant reduction in the survival of postdiapausal adults from the resistant strain and the F1 strains, indicating that there is a nonrecessive overwintering cost associated with Cry1A resistance in H. armigera.  相似文献   

4.
【目的】小分子热激蛋白(small heat shock protein, sHSP)在昆虫抵御外界环境压力中至关重要。本研究旨在探究小分子热激蛋白sHSP19.8基因在棉铃虫Helicoverpa armigera生长发育、抵御高温胁迫和对Cry1Ac杀虫蛋白抗性机制中的作用,为更深入探析该基因作用机理及棉铃虫的防治奠定基础。【方法】通过PCR结合RACE克隆棉铃虫sHSP19.8基因序列,利用生物信息学软件对该基因序列进行分析;通过qRT-PCR测定Cry1Ac敏感棉铃虫5龄幼虫在40℃高温下处理1 h和2 h及饲喂含30 μg/mL Cry1Ac的人工饲料1 h和2 h后该基因的表达量,并测定抗感Cry1Ac棉铃虫不同发育阶段(1-5龄幼虫、蛹及成虫)和5龄幼虫不同组织(前肠、中肠、后肠、马氏管及表皮)中该基因的表达模式。【结果】获得了棉铃虫sHSP19.8基因的全长cDNA序列,命名为HaHSP19.8(GenBank登录号: XP_021195228.1),长608 bp,开放阅读框长528 bp,编码175个氨基酸残基,具有小分子热激蛋白的典型α-晶体结构域(α-crystallin domain, ACD)。该基因受40℃高温和30 μg/mL Cry1Ac杀虫蛋白诱导时在Cry1Ac敏感棉铃虫5龄幼虫中均过量表达;在Cry1Ac敏感棉铃虫整个发育阶段和5龄幼虫各组织中均表达,其中在成虫和5龄幼虫以及5龄幼虫表皮、马氏管和中肠内表达量较高;但是该基因在Cry1Ac抗性品系各个发育阶段和5龄幼虫各组织中表达量相比敏感品系都显著较低。【结论】结果说明HaHSP19.8参与棉铃虫生长发育和生理生化的过程,帮助昆虫抵御外界环境压力,并可能参与到棉铃虫对Cry1Ac的抗性机制中。  相似文献   

5.
The susceptibilities of the major pests of cotton in Australia, Helicoverpa armigera and Helicoverpa punctigera, to some insecticidal proteins from Bacillus thuringiensis were tested by bioassay. A commercial formulation, DiPel, and individual purified insecticidal proteins were tested. H. armigera was consistently more tolerant to B. thuringiensis insecticidal proteins than was H. punctigera, although both were susceptible to only a limited range of these proteins. Only Cry1Ab, Cry1Ac, Cry2Aa, Cry2Ab, and Vip3A killed H. armigera at dosages that could be considered acceptable. There was no significant difference in the toxicities of Cry1Fa and Cry1Ac for H. punctigera but Cry1Fa had little toxicity for H. armigera. The five instars of H. armigera did not differ significantly in their susceptibility to DiPel on the basis of LC(50). However, there were significant differences in the susceptibility to Cry1Ac and Cry2Aa of three strains of H. armigera. Bioassays conducted with Cry1Ac and Cry2Aa showed that there was a small but significant negative interaction between these delta-endotoxins.  相似文献   

6.
The use of genetically modified (Bt) crops expressing lepidopteran-specific Cry proteins derived from the soil bacterium Bacillus thuringiensis is an effective method to control the polyphagous pest Helicoverpa armigera. As H. armigera potentially develops resistance to Cry proteins, Bt crops should be regarded as one tool in integrated pest management. Therefore, they should be compatible with biological control. Bioassays were conducted to understand the interactions between a Cry2Aa-expressing chickpea line, either a susceptible or a Cry2A-resistant H. armigera strain, and the entomopathogenic fungus Metarhizium anisopliae. In a first concentration-response assay, Cry2A-resistant larvae were more tolerant of M. anisopliae than susceptible larvae, while in a second bioassay, the fungus caused similar mortalities in the two strains fed control chickpea leaves. Thus, resistance to Cry2A did not cause any fitness costs that became visible as increased susceptibility to the fungus. On Bt chickpea leaves, susceptible H. armigera larvae were more sensitive to M. anisopliae than on control leaves. It appeared that sublethal damage induced by the B. thuringiensis toxin enhanced the effectiveness of M. anisopliae. For Cry2A-resistant larvae, the mortalities caused by the fungus were similar when they were fed either food source. To examine which strain would be more likely to be exposed to the fungus, their movements on control and Bt chickpea plants were compared. Movement did not appear to differ among larvae on Bt or conventional chickpeas, as indicated by the number of leaflets damaged per leaf. The findings suggest that Bt chickpeas and M. anisopliae are compatible to control H. armigera.  相似文献   

7.
Toxicity and larval growth inhibition of 11 insecticidal proteins of Bacillus thuringiensis were evaluated against neonate larvae of Helicoverpa armigera, a major pest of important crops in Spain and other countries, by a whole-diet contamination method. The most active toxins were Cry1Ac4 and Cry2Aa1, with LC50 values of 3.5 and 6.3 microg/ml, respectively. At the concentrations tested, Cry1Ac4, Cry2Aa1, Cry9Ca, Cry1Fa1, Cry1Ab3, Cry2Ab2, Cry1Da, and Cry1Ja1, produced a significant growth inhibition, whereas Cry1Aa3, Cry1Ca2, and Cry1Ea had no effect.  相似文献   

8.
竹提取物对棉铃虫幼虫及菜青虫的拒食活性   总被引:8,自引:1,他引:8  
研究结果表明 ,质量浓度为 1 0g L的 1 0种供试竹提取物对棉Helicoverpaarmigera铃虫均具有较强的拒食作用 ,1 2h拒食率最高达 95 . 0 3 % ,最低为 74. 0 7% ,其中毛金竹 (Phyllostachysnigravar.henonis)、白纹短穗竹 (Brachystachyumalbostriatum)提取物对棉铃虫 3龄幼虫的AFC50 (拒食中浓度 )分别为 2 . 0g L、2. 7g L ,但 2 4h、48h拒食率均明显下降。对菜青虫 3龄pierisrapae幼虫的拒食效果以凤凰竹 (Bambusamultiplex)提取物最好 ,2 4h拒食率为 71. 69% ;对 4龄菜青虫的拒食效果以毛金竹提取物最好 ,拒食率为71 . 45 % ,其中毛金竹、白纹短穗竹 2种竹提取物对菜青虫 3龄幼虫的AFC50 分别为 2 .68g L和 3 . 3 7g L。研究结果对于开发环境友好农药以及充分利用竹类资源均具有重要意义。  相似文献   

9.
AIMS: To investigate the interaction between two crystal proteins, Cry1Aa and Cry1C, for future development of biopesticides based on Bacillus thuringiensis, toxicities of the two individual proteins and in combinations have been determined against Spodoptera exigua and Helicoverpa armigera larvae, and synergism between the proteins has been evaluated using synergistic factor. METHODS AND RESULTS: SDS-PAGE showed that Cry1Aa and Cry1C proteins could be expressed in acrystalliferous B. thuringiensis 4Q7 strain, with molecular weights of 135 and 130 kDa respectively. The bioassay results indicated a synergistic activity between Cry1Aa and Cry1C against S. exigua and H. armigera, and the highest toxicities could be observed in the combination of Cry1Aa and Cry1C at a ratio of 1 : 1. CONCLUSION: The two toxins, Cry1Aa and Cry1C, interact synergistically to exhibit higher toxicity against S. exigua and H. armigera. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the investigation on the synergistic activity between two B. thuringiensis Cry1 toxins. It can be applied to the rational design of new generations of B. thuringiensis biopesticides and to strategies for management of resistant insects.  相似文献   

10.
The changes of inheritance mode and fitness of resistance in Helicoverpa armigera (Hübner) along with its resistance evolution to Cry1Ac toxin were evaluated in the laboratory. The resistance levels reached 170.0-, 209.6- and 2893.3-fold, on selection of the field population in the 16th (BtR-F(16)), 34th (BtR-F(34)) and 87th (BtR-F(87)) generation with artificial diet containing Cry1Ac toxin, respectively. As the resistance levels increased, more larvae feeding on the Bt cotton expressing Cry1Ac toxin survived. Most larvae of BtR-F(87) could develop to the 5th instar and about 3% individuals reached the adult stage. The inheritance of Cry1Ac resistance trait at three resistant levels was autosomal and incompletely recessive, but the degree of dominance decreased as the resistance increased. The resistance was primarily monogenic in BtR-F(16) strain, but polygenic as resistance increased. The relative fitness of H. armigera, measured as a ratio of R(0) (the net replacement rate) of resistant strain divided by R(0) of the susceptible strain, decreased with an increase of the resistance levels, with ratios of 0.79, 0.64 and 0.59 in their respective BtR-F(16), BtR-F(34) and BtR-F(87) strains.  相似文献   

11.
Cry1Ac protoxin (the active insecticidal toxin in both Bollgard and Bollgard II cotton [Gossypium hirsutum L.]), and Cry2Ab2 toxin (the second insecticidal toxin in Bollgard II cotton) were bioassayed against five of the primary lepidopteran pests of cotton by using diet incorporation. Cry1Ac was the most toxic to Heliothis virescens (F.) and Pectinophora gossypiella (Saunders), demonstrated good activity against Helicoverpa zea (Boddie), and had negligible toxicity against Spodoptera exigua (Hübner) and Spodoptera frugiperda (J. E. Smith). Cry2Ab2 was the most toxic to P. gossypiella and least toxic to S. frugiperda. Cry2Ab2 was more toxic to S. exigua and S. frugiperda than Cry1Ac. Of the three insect species most sensitive to both Bacillus thuringiensis (Bt) proteins (including H. zea), P. gossypiella was only three-fold less sensitive to Cry2Ab2 than Cry1Ac, whereas H. virescens was 40-fold less sensitive to Cry2Ab2 compared with CrylAc. Cotton plants expressing Cry1Ac only and both Cry1Ac and Cry2Ab2 proteins were characterized for toxicity against H. zea and S.frugiperda larvae in the laboratory and H. zea larvae in an environmental chamber. In no-choice assays on excised squares from plants of different ages, second instar H. zea larvae were controlled by Cry1Ac/Cry2Ab2 cotton with mortality levels of 90% and greater at 5 d compared with 30-80% mortality for Cry1Ac-only cotton, depending on plant age. Similarly, feeding on leaf discs from Cry1Ac/Cry2Ab2 cotton resulted in mortality of second instars of S.frugiperda ranging from 69 to 93%, whereas exposure to Cry1Ac-only cotton yielded 20-69% mortality, depending on plant age. When cotton blooms were infested in situ in an environmental chamber with neonate H. zea larvae previously fed on synthetic diet for 0, 24, or 48 h, 7-d flower abortion levels for Cry1Ac-only cotton were 15, 41, and 63%, respectively, whereas for Cry1Ac/Cry2Ab2 cotton, flower abortion levels were 0, 0, and 5%, respectively. Cry1Ac and Cry2Ab2 concentrations were measured within various cotton tissues of Cry1Ac-only and Cry1Ac/Cry2Ab2 plants, respectively, by using enzyme-linked immunosorbent assay. Terminal leaves significantly expressed the highest, and large leaves, calyx, and bracts expressed significantly the lowest concentrations of Cry1Ac, respectively. Ovules expressed significantly the highest, and terminal leaves, large leaves, bracts, and calyx expressed significantly (P < 0.05) the lowest concentrations of Cry2Ab2. These results help explain the observed differences between Bollgard and Bollgard II mortality against the primary lepidopteran cotton pests, and they may lead to improved scouting and resistance management practices, and to more effective control of these pests with Bt transgenic crops in the future.  相似文献   

12.
【背景】在我国,由于Bt棉的种植,棉铃虫和红铃虫等靶标害虫得到了控制,但棉田其他鳞翅目害虫如甜菜夜蛾和斜纹夜蛾的危害仍较严重。美国商业化种植的双价棉BollgardⅡ所表达的Cry2Ab蛋白不仅对棉铃虫有较好的控制效果,而且对甜菜夜蛾和草地贪夜蛾有较好的控制作用。因此,该双价棉在我国被环境释放前,有必要研究其对棉田其他鳞翅目害虫的影响。【方法】在人工饲料中分别添加质量浓度为1.25、2.5、5.0、10.0和20.0μg·g^-1的Cry2Ab蛋白,采用生物测定的方法,在室内研究了其对甜菜夜蛾和斜纹夜蛾低龄幼虫存活率和体质量抑制率的影响。【结果】随着Cry2Ab蛋白浓度的增大,甜菜夜蛾初孵幼虫和1龄幼虫的存活率逐渐降低,2龄幼虫和3龄幼虫以及斜纹夜蛾各龄期幼虫的存活率在不同浓度处理下与对照差异均不显著。但与对照相比,高浓度处理对这2种害虫各龄期幼虫的体质量均有显著影响。【结论与意义】高浓度Cry2Ab蛋白(10.0和20.0μg·g^-1)对甜菜夜蛾低龄幼虫有较好的控制作用,但对斜纹夜蛾低龄幼虫的控制效果不太理想。这为该双价基因棉花在我国的推广提供了依据。  相似文献   

13.
Abstract The effect of transgenic double genes, Cry1A + CpTI cotton and Cry1Ac toxin on the parasitoid, Campoketis chlorideae Uchida of cotton bollworm, Helicoverpa armigera (Hübner), was investigated in the laboratory. Helicoverpa armigera larvae when in the first, second and third instar could not survive if fed on transgenic cotton leaves. Consequently, C. chlorideae larvae could not complete their development if parasitizing on such hosts. After H. armigera larvae were reared on transgenic or traditional cotton leaves for 12J48 hours, they were parasitized by C. chlorideae females. Parasitized larvae continued to feed on transgenic or traditional cotton for 12–48 h. The present results showed that the body weight of larvae of the parasitoids were significantly reduced when parasitized hosts fed on transgenic cotton leaves compared to those fed on traditional cotton. Duration of egg and larvae stage were significantly prolonged, pupal and adult weight of C. chloridae was decreased when the host larvae fed on transgenic cotton leaves longer than 48 h. The development duration of C. chlorideae pupae on the hosts fed on transgenic cotton leaves in each treatment was not significantly different from those of controls. The longevity of parasitoid females and males fed with a solution containing Cry1Ac toxin was not significantly different with that of the control.  相似文献   

14.
The effect of Cry proteins of Bacillus thuringiensis on the green lacewing (Chrysoperla carnea) was studied by using a holistic approach which consisted of independent, complementary experimental strategies. Tritrophic experiments were performed, in which lacewing larvae were fed Helicoverpa armigera larvae reared on Cry1Ac, Cry1Ab, or Cry2Ab toxins. In complementary experiments, a predetermined amount of purified Cry1Ac was directly fed to lacewing larvae. In both experiments no effects on prey utilization or fitness parameters were found. Since binding to the midgut is an indispensable step for toxicity of Cry proteins to known target insects, we hypothesized that specific binding of the Cry1A proteins should be found if the proteins were toxic to the green lacewing. In control experiments, Cry1Ac was detected bound to the midgut epithelium of intoxicated H. armigera larvae, and cell damage was observed. However, no binding or histopathological effects of the toxin were found in tissue sections of lacewing larvae. Similarly, Cry1Ab or Cry1Ac bound in a specific manner to brush border membrane vesicles from Spodoptera exigua but not to similar fractions from green lacewing larvae. The in vivo and in vitro binding results strongly suggest that the lacewing larval midgut lacks specific receptors for Cry1Ab or Cry1Ac. These results agree with those obtained in bioassays, and we concluded that the Cry toxins tested, even at concentrations higher than those expected in real-life situations, do not have a detrimental effect on the green lacewing when they are ingested either directly or through the prey.  相似文献   

15.
The susceptibility of larvae of the Diamondback moth (DBM), Plutella xylostella to infection by three baculoviruses was evaluated in the laboratory using a microdroplet feeding assay. The viruses tested were a granulovirus (GV), originally isolated in Taiwan from P. xylostella larvae (Px GV-Taiwan); the nucleopolyhedrovirus (NPV) from Galleria mellonella (Gm NPV), and the NPV from Autographa californica (Ac NPV). Neonate P. xylostella larvae were susceptible to infection by all three viruses. In an extensive series of bioassays carried out over a 21-month period, LD 50S for neonate DBM larvae ranged from 1.0-8.9 viral occlusion bodies (OB) for Px GV-Taiwan, and 9.5-30.2 OB for Gm NPV and Ac NPV. LT 50S for the three viruses ranged from 3.8-6.0 days at 27 C, with Gm NPV having a significantly shorter LT 50 than the other two viruses. Second and third instar larvae of P. xylostella were significantly less susceptible to infection by Px GV-Taiwan (LD 50 s ranging from 18-57 OB/larva) than were neonate larvae. Gm NPV also initiated infection in several other lepidopterous pest species that colonize brassica crops. In particular, neonate Crocidolomia binotalis larvae proved highly susceptible to Gm NPV, with mean LD 50 s ranging from 2.1 to 9.3 OB/larva and a mean LT 50 of 4.8 days at a dose of 8.08 OB. Heliothis virescens neonate larvae were also highly susceptible to Gm NPV (LD 50 , 7.1 OB), but Mamestra brassicae larvae were less so (LD 50 , 80-270 OB). The results of the bioassays suggest that Px GV-Taiwan is highly infective and could be developed as a selective microbial pesticide for DBM. While Gm NPV has a higher LD 50 in DBM larvae, its wider host range may be of considerable value in situations where DBM occurs on cruciferous crops together with a complex of other lepidopterous pests.  相似文献   

16.
为了科学施药, 合理保护和利用天敌对棉铃虫Helicoverpa armigera进行综合防治, 本研究在室内测定和比较了复配杀虫剂BtA和7种常用杀虫剂(阿维菌素、 Bt、 β-氯氰菊酯、辛硫磷、定虫隆、氰戊菊酯和丁硫克百威)对棉铃虫的杀虫效果及对其天敌中红侧沟茧蜂Microplitis mediator蛹和雌成虫的触杀毒性。采用浸叶法测定杀虫剂在室内72 h内对棉铃虫3龄幼虫的杀虫效果, 结果表明: 与其他杀虫剂相比, BtA对棉铃虫幼虫具有更高的毒性和致死效应 (LC50=0.7364 mg/mL)。将棉铃虫3龄幼虫接到用浓度4 mg/mL上述杀虫剂分别处理过的大白菜上24, 48和72 h, 发现其死亡率之间存在显著差异(P≤0.05)。但在72 h后, BtA和其他杀虫剂对棉铃虫幼虫的杀虫效果之间并无显著差异(P>0.05)。BtA施药后, 随着时间的延长, 棉铃虫幼虫的死亡率也在增加。另外, 通过杀虫剂对寄生蜂中红侧沟茧蜂蛹和雌成虫的触杀毒性的生物测定发现: 与β-氯氰菊酯、 氰戊菊酯和丁硫克百威相比, BtA对中红侧沟茧蜂蛹和雌成虫的毒性较低, 对其蛹和雌成虫致死率分别仅为13.82%和7.33%。本研究证明BtA对鳞翅目害虫具有中等毒性, 而对寄生蜂中红侧沟茧蜂则具有较低毒性。  相似文献   

17.
18.
Yu X  Liu T  Sun Z  Guan P  Zhu J  Wang S  Li S  Deng Q  Wang L  Zheng A  Li P 《Current microbiology》2012,64(4):326-331
Vegetative insecticidal protein (Vip3) from Bacillus thuringiensis shows high activity against lepidopteran insects. Cytolytic δ-endotoxin (Cyt) also has high toxicity to dipteran larvae and synergism with other crystal proteins (Cry), but synergism between Cyt and Vip3 proteins has not been tested. We analyzed for synergism between Cyt2Aa3 and Vip3Aa29. Both cyt2Aa3 and vip3Aa29 genes were co-expressed in Escherichia coli strain BL21 carried on vector pCOLADuet-1. Vip3Aa29 showed insecticidal activity against Chilo suppressalis and Spodoptera exigua, with 50% lethal concentration (LC(50)) at 24.0 and 36.6 μg ml(-1), respectively. It could also inhibit Helicoverpa armigera growth, with 50% inhibition concentration at 22.6 μg ml(-1). While Cyt2Aa3 was toxic to Culex quinquefasciatus (LC(50): 0.53 μg ml(-1)) and Chironomus tepperi (LC(50): 36 μg ml(-1)), it did not inhibit C. suppressalis, S. exigua, and H. armigera. However, the co-expression of Cyt2Aa3 and Vip3Aa29 showed synergistic effect on C. suppressalis and S. exigua, and the individual activities were strengthened 3.35- and 4.34-fold, respectively. The co-expression had no synergism against C. tepperi and H. armigera, but exerted some antagonistic effect on Cx. quinquefasciatus. The synergism between Cyt2Aa and Vip3Aa was thus discovered for the first time, which confirmed that Cyt toxin can enhance the toxicity of other toxins against some non-target insects. By synergism analysis, the effectiveness of microbial insecticides can be verified.  相似文献   

19.
Adoxophyes orana granulovirus (AdorGV) was isolated from overwintering larvae in an orchard in Kent, in the UK. The developmental time of each A. orana instar was determined by measuring the size of the head capsule. The susceptibility of the larvae to the English isolate of AdorGV was evaluated in laboratory bioassays using inoculation by microdroplet feeding and applied dose assays. A series of bioassays were performed to determine LD(50) and ST(50) values for first, fourth and fifth instar larvae. The median lethal doses ranged from 30 occlusion bodies in first instar to 1.36 x 10(6) in fifth instar. The median survival time decreased the later the larvae were infected and ranged from 37 days in first instar to 24 days in fifth instar. Approximately half of the infected larvae released a discharge rich in occlusion bodies from their posterior end prior to death. Approximately 85% of larvae attempted pupation and died as larva-pupa intermediates.  相似文献   

20.
Toxicity tests were performed to find among Cry1 and Cry2 Bacillus thuringiensis crystal proteins those with high activity against the cabbage looper. Tests were performed with neonate larvae on surface-contaminated artificial diet. The crystal proteins found to be toxic were, from higher to lower toxicity: Cry1Ac, Cry1Ab, Cry1C, Cry2Aa, Cry1J, and Cry1F (LC50 of 1.14.1, 3.4-4.4, 12, 34, 87, and 250 ng/cm2, respectively). Cry1B, Cry1D, and Cry1E can be considered nontoxic (LC50 higher than 2500 ng/cm2). Cry1Aa was moderately toxic to nontoxic, depending on the source (LC50 of 420 ng/cm2 from PGS and 8100 ng/cm2 from Ecogen). In vitro binding assays with trypsin-activated 125I-labeled Cry1Aa, Cry1Ab, and Cry1Ac crystal proteins and brush border membrane vesicles from midgut larvae showed a direct correlation between toxicity and binding affinity. Heterologous competition experiments indicated that Cry1Aa and Cry1F bind, though only at very high concentrations, to the Cry1Ab/Cry1Ac shared high-affinity binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号