首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 139 surface water samples from seven lakes and 15 rivers in southwestern Finland were analyzed during five consecutive seasons from autumn 2000 to autumn 2001 for the presence of various enteropathogens (Campylobacter spp., Giardia spp., Cryptosporidium spp., and noroviruses) and fecal indicators (thermotolerant coliforms, Escherichia coli, Clostridium perfringens, and F-RNA bacteriophages) and for physicochemical parameters (turbidity and temperature); this was the first such systematic study. Altogether, 41.0% (57 of 139) of the samples were positive for at least one of the pathogens; 17.3% were positive for Campylobacter spp. (45.8% of the positive samples contained Campylobacter jejuni, 25.0% contained Campylobacter lari, 4.2% contained Campylobacter coli, and 25.0% contained Campylobacter isolates that were not identified), 13.7% were positive for Giardia spp., 10.1% were positive for Cryptosporidium spp., and 9.4% were positive for noroviruses (23.0% of the positive samples contained genogroup I and 77.0% contained genogroup II). The samples were positive for enteropathogens significantly (P < 0.05) less frequently during the winter season than during the other sampling seasons. No significant differences in the prevalence of enteropathogens were found when rivers and lakes were compared. The presence of thermotolerant coliforms, E. coli, and C. perfringens had significant bivariate nonparametric Spearman's rank order correlation coefficients (P < 0.001) with samples that were positive for one or more of the pathogens analyzed. The absence of these indicators in a logistic regression model was found to have significant predictive value (odds ratios, 1.15 x 10(8), 7.57, and 2.74, respectively; P < 0.05) for a sample that was negative for the pathogens analyzed. There were no significant correlations between counts or count levels for thermotolerant coliforms or E. coli or the presence of F-RNA phages and pathogens in the samples analyzed.  相似文献   

2.
Bermuda residents collect rainwater from rooftops to fulfil their freshwater needs. The objective of this study was to assess the microbiological quality of drinking water in household tanks throughout Bermuda. The tanks surveyed were selected randomly from the electoral register. Governmental officers visited the selected household (n = 102) to collect water samples and administer a short questionnaire about the tank characteristics, the residents' habits in terms of water use, and general information on the water collecting system and its maintenance. At the same time, water samples were collected for analysis and total coliforms and Escherichia coli were determined by 2 methods (membrane filtration and culture on chromogenic media, Colilert kit). Results from the 2 methods were highly correlated and showed that approximately 90% of the samples analysed were contaminated with total coliforms in concentrations exceeding 10 CFU/100 mL, and approximately 66% of samples showed contamination with E. coli. Tank cleaning in the year prior to sampling seems to protect against water contamination. If rainwater collection from roofs is the most efficient mean for providing freshwater to Bermudians, it must not be considered a source of high quality drinking water because of the high levels of microbial contamination.  相似文献   

3.
In this study, the microbiological quality of roof-harvested rainwater was assessed by monitoring the concentrations of Escherichia coli, enterococci, Clostridium perfringens, and Bacteroides spp. in rainwater obtained from tanks in Southeast Queensland, Australia. Samples were also tested using real-time PCR (with SYBR Green I dye) for the presence of potential pathogenic microorganisms. Of the 27 rainwater samples tested, 17 (63%), 21 (78%), 13 (48%), and 24 (89%) were positive for E. coli, enterococci, C. perfringens, and Bacteroides spp., respectively. Of the 27 samples, 11 (41%), 7 (26%), 4 (15%), 3 (11%), and 1 (4%) were PCR positive for the Campylobacter coli ceuE gene, the Legionella pneumophila mip gene, the Aeromonas hydrophila lip gene, the Salmonella invA gene, and the Campylobacter jejuni mapA gene. Of the 21 samples tested, 4 (19%) were positive for the Giardia lamblia β-giardin gene. The binary logistic regression model indicated a positive correlation (P < 0.02) between the presence/absence of enterococci and A. hydrophila. In contrast, the presence/absence of the remaining potential pathogens did not correlate with traditional fecal indicators. The poor correlation between fecal indicators and potential pathogens suggested that fecal indicators may not be adequate to assess the microbiological quality of rainwater and consequent health risk.  相似文献   

4.
In this study, 200 Escherichia coli isolates from 22 rainwater tank samples in Southeast Queensland, Australia, were tested for the presence of 20 virulence genes (VGs) associated with intestinal and extraintestinal pathotypes. In addition, E. coli isolates were also classified into phylogenetic groups based on the detection of the chuA, yjaA, and TSPE4.C2 genes. Of the 22 rainwater tanks, 8 (36%) and 5 (23%) were positive for the eaeA (belonging to enteropathogenic E. coli [EPEC] and Shiga-toxigenic E. coli [STEC]) and ST1 (belonging to enterotoxigenic E. coli [ETEC]) genes, respectively. VGs (cdtB, cvaC, ibeA, kpsMT allele III, PAI, papAH, and traT) belonging to extraintestinal pathogenic E. coli (ExPEC) were detected in 15 (68%) of the 22 rainwater tanks. Of the 22 samples, 17 (77%) and 11 (50%) contained E. coli belonging to phylogenetic groups A and B1, respectively. Similarly, 10 (45%) and 16 (72%) contained E. coli belonging to phylogenetic groups B2 and D, respectively. Of the 96 of the 200 strains from 22 tanks that were VG positive, 40 (42%) were carrying a single VG, 36 (37.5%) were carrying two VGs, 17 (18%) were carrying three VGs, and 3 (3%) had four or more VGs. This study reports the presence of multiple VGs in E. coli strains belonging to the STEC, EPEC, ETEC, and ExPEC pathotypes in rainwater tanks. The public health risks associated with potentially clinically significant E. coli in rainwater tanks should be assessed, as the water is used for drinking and other, nonpotable purposes. It is recommended that rainwater be disinfected using effective treatment procedures such as filtration, UV disinfection, or simply boiling prior to drinking.  相似文献   

5.
Water samples were taken systematically from a 100-km2 area of mainly dairy farmland in northwestern England and examined for Campylobacter spp. Pulsed-field gel electrophoresis-restriction fragment length polymorphism (PFGE-RFLP) and flaA strain typing of Campylobacter jejuni and Campylobacter coli isolates were done. Data on the water source and the adjacent environment were recorded and examined as explanatory variables. Campylobacter spp. were isolated from 40.5% (n = 119) of the water samples tested. C. jejuni was isolated from 14.3%, C. coli was isolated from 18.5%, and Campylobacter lari was isolated from 4.2% of the samples. Campylobacter hyointestinalis was not isolated from any water source. The difference in prevalence between water types (trough, running, and standing) was significant (P = 0.001). C. jejuni was the species most commonly isolated from trough-water and running-water sources, while C. coli was the most frequently isolated from standing water (P < 0.001). No association was found between the presence of Escherichia coli and that of Campylobacter spp. The final multivariable logistic regression model for Campylobacter spp. included the following variables: water source, soil type, aspect, and amount of cattle fecal material in the environment (fecal pat count). Strain typing demonstrated a diverse population of C. jejuni and the presence of a common C. coli flaA type that was widely distributed throughout the area. Most of the isolates within the common flaA type were discriminated by PFGE-RFLP. These findings suggest a possible role for environmental water in the epidemiology of Campylobacter spp. in a farming environment.  相似文献   

6.
The U.S. Environmental Protection Agency has developed method 1623 for simultaneous detection of Cryptosporidium oocysts and Giardia cysts in water. Method 1623 includes four major steps: filtration, immunomagnetic separation (IMS), fluorescent antibody (FA) staining and microscopic examination. It was noted that the recovery levels following IMS-FA and FA staining were high, averaging more than 92.0% and 89.0% for C. parvum oocysts and G. lamblia cysts, respectively. In contrast, when the filtration step was incorporated, the recovery level of C. parvum oocysts declined significantly to 18.1% in seeded tap water, while a relatively high recovery level of 77.2% for G. lamblia cysts could still be achieved. Further study indicated that the recovery level of C. parvum oocysts could be enhanced significantly when an appropriate amount of silica particles was added to a water sample. The recovery level of C. parvum oocysts was affected by particle size and concentration. The optimal silica particle size was determined to be within the range of 5-40 microm, and the corresponding optimal silica concentration was 1.42 g for 10-l tap water. When both G. lamblia cysts and C. parvum oocysts were spiked into the tap water sample containing the optimum amount of silica particles, the average recovery levels of oocysts and cysts were 82.7% and 75.4%, respectively. The results obtained clearly suggested that addition of an appropriate amount of silica particles could improve the recovery level of C. parvum oocysts significantly and yet there was no noticeable deleterious effect on the recovery level of G. lamblia cysts. Further study indicated that the rotation time in the IMS procedure using the Dynal GC-Combo IMS kit (which was recommended in method 1623) was important for G. lamblia cyst detection. In contrast, the recovery level of C. parvum oocysts was not affected by the rotation time. Furthermore, it was found that the recovery levels of C. parvum oocysts using methods 1622 and 1623 were quite close although different IMS kits were used in the two methods.  相似文献   

7.
This pilot study was aimed at documenting the presence of fecal indicators and enteric pathogens in blue mussels (Mytilus edulis) from 6 communities in Nunavik, Quebec. One to four 2?kg samples of mussels were collected at low tide in each community. Samples were investigated by enumeration methods for the fecal indicators enterococci, Escherichia coli, F-specific coliphages, Clostridium perfringens, and by molecular identification for the pathogens norovirus, Salmonella spp., Campylobacter jejuni, Campylobacter coli, and Campylobacter lari, verocytotoxin-producing E.?coli (particularly serovar O157:H7), Shigella spp., and Yersinia enterocolitica. In 5 communities, the presence of Giardia duodenalis and Cryptosporidium spp. was also tested by microscopy and molecular methods and that of Toxoplasma gondii was tested by molecular methods. Apart from small quantities of Clostridium perfringens in 2 samples, no bacterial or viral pathogens were detected in the mussels. Toxoplasma gondii was also not detected. However, G.?duodenalis and Cryptosporidium spp. were present in 18% and 73% of the samples investigated for these pathogens, respectively. When considering the indicators and the viral and bacterial pathogens investigated, the mussels examined were of good microbiological quality, but considering the presence of potentially zoonotic protozoa, it should be recommended that consumers cook the molluscs well before eating them.  相似文献   

8.
The survival of enteric bacteria in 10 freshly collected sheep fecal samples on pastures was measured in each of four seasons. Ten freshly collected feces were placed on pasture, and concentrations of Escherichia coli, enterococci, and Campylobacter spp. were monitored until exhaustion of the fecal samples. In all four seasons, there was an increase in enterococcal concentrations by up to 3 orders of magnitude, with peak concentrations recorded between 11 and 28 days after deposition. E. coli concentrations increased in three out of four seasons by up to 1.5 orders of magnitude, with peak concentrations recorded between 8 and 14 days after deposition. The apparent growth of E. coli and enterococci was strongly influenced by the initial water content of the feces and the moisture gained during periods of rehydration following rainfalls. Conversely, the results suggested that dehydration promoted inactivation. Campylobacter spp. did not grow and were rapidly inactivated at a rate that tended to be faster at higher temperatures. Pulsed-field gel electrophoresis (PFGE) of a selection of Campylobacter spp. suggested that these survival data are applicable to a range of Campylobacter spp., including the most frequently isolated PFGE genotype from sheep in New Zealand, and to genotypes previously observed to cause disease in humans. The results of this study are currently being incorporated into a fecal microbe reservoir model that is designed to assist water managers' abilities to estimate microbial loads on pastures grazed by sheep, including the influence of factors such as rainfall and temperature.  相似文献   

9.
Many administrative agencies in Japan are encouraging installation of household rainwater‐storage tanks for more effective use of natural rainwater. Water samples were collected periodically from 43 rainwater tanks from 40 households and tested for the presence of Legionella species and the extent of heterotrophic bacteria in Azumino city, Nagano prefecture, Japan. PCR assays indicated the presence of Legionella spp. in 12 (30%) of the 43 tank water samples. Attempts were made to identify correlations between PCR positive samples, topography, pH, chemical oxygen demand (COD), atmospheric temperature and the numbers of heterotrophic bacteria. Between June and October, 2012, the numbers of heterotrophic bacteria in rainwater tanks and the values of COD positively correlated with the presence of Legionella species. In most of the Legionella‐positive cases, heterotrophic bacterial cell counts were >104 CFU/mL. Moreover, Legionella species were less frequently detected when the COD value was >5 mg KMnO4/L. Therefore, at least in Azumino, Japan between June and October 2012, both heterotrophic bacterial counts and COD values may be considered index parameters for the presence of Legionella cells in rainwater tanks. Much more accumulation of such data is needed to verify the accuracy of these findings.  相似文献   

10.
This report documents the presence of fecal indicators and bacterial pathogens in sand at 53 California marine beaches using both culture-dependent and -independent (PCR and quantitative PCR [QPCR]) methods. Fecal indicator bacteria were widespread in California beach sand, with Escherichia coli and enterococci detected at 68% and 94% of the beaches surveyed, respectively. Somatic coliphages and a Bacteroidales human-specific fecal marker were detected at 43% and 13% of the beaches, respectively. Dry sand samples from almost 30% of the beaches contained at least one of the following pathogens: Salmonella spp., Campylobacter spp., Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA), which were detected at 15%, 13%, 14%, and 3% of tested beaches, respectively. Fecal indicators and pathogens were poorly correlated to one another and to land cover. Sands were dry at the time of collection, and those with relatively high moisture tended to have higher concentrations or a more frequent occurrence of both indicators and pathogens. Using culture-dependent assays, fecal indicators decayed faster than pathogens in microcosm experiments using unaltered beach sand seeded with sewage and assessed by culture-dependent assays. The following order of persistence was observed (listed from most to least persistent): Campylobacter > Salmonella > somatic coliphages > enterococci > E. coli > F(+) phages. In contrast, pathogens decayed faster than fecal indicators in culture-independent assays: enterococci > Bacteroidales human-specific marker > Salmonella > Campylobacter. Microcosm experiments demonstrated that both indicators and pathogens were mobilized by wetting with seawater. Decay rates measured by QPCR were lower than those measured with culture-dependent methods. Enterococcal persistence and possible growth were observed for wetted microcosms relative to unwetted controls.  相似文献   

11.
The harvesting of rainwater is gaining acceptance among many governmental authorities in countries such as Australia, Germany, and South Africa, among others. However, conflicting reports on the microbial quality of harvested rainwater have been published. To monitor the presence of potential pathogenic bacteria during high-rainfall periods, rainwater from 29 rainwater tanks was sampled on four occasions (during June and August 2012) in a sustainable housing project in Kleinmond, South Africa. This resulted in the collection of 116 harvested rainwater samples in total throughout the sampling period. The identities of the dominant, indigenous, presumptive pathogenic isolates obtained from the rainwater samples throughout the sampling period were confirmed through universal 16S rRNA PCR, and the results revealed that Pseudomonas (19% of samples) was the dominant genus isolated, followed by Aeromonas (16%), Klebsiella (11%), and Enterobacter (9%). PCR assays employing genus-specific primers also confirmed the presence of Aeromonas spp. (16%), Klebsiella spp. (47%), Legionella spp. (73%), Pseudomonas spp. (13%), Salmonella spp. (6%), Shigella spp. (27%), and Yersinia spp. (28%) in the harvested rainwater samples. In addition, on one sampling occasion, Giardia spp. were detected in 25% of the eight tank water samples analyzed. This study highlights the diverse array of pathogenic bacteria that persist in harvested rainwater during high-rainfall periods. The consumption of untreated harvested rainwater could thus pose a potential significant health threat to consumers, especially children and immunocompromised individuals, and it is recommended that harvested rainwater be treated for safe usage as an alternative water source.  相似文献   

12.
Humans are exposed to Campylobacter spp. in a range of sources via both food and environmental pathways. For this study, we explored the frequency and distribution of thermophilic Campylobacter spp. in a 10- by 10-km square rural area of Cheshire, United Kingdom. The area contains approximately 70, mainly dairy, farms and is used extensively for outdoor recreational activities. Campylobacter spp. were isolated from a range of environmental samples by use of a systematic sampling grid. Livestock (mainly cattle) and wildlife feces and environmental water and soil samples were cultured, and isolates were presumptively identified by standard techniques. These isolates were further characterized by PCR. Campylobacter jejuni was the most prevalent species in all animal samples, ranging from 11% in samples from nonavian wildlife to 36% in cattle feces, and was isolated from 15% of water samples. Campylobacter coli was commonly found in water (17%) and sheep (21%) samples, but rarely in other samples. Campylobacter lari was recovered from all sample types, with the exception of sheep feces, and was found in moderate numbers in birds (7%) and water (5%). Campylobacter hyointestinalis was only recovered from cattle (7%) and birds (1%). The spatial distribution and determinants of C. jejuni in cattle feces were examined by the use of model-based spatial statistics. The distribution was consistent with very localized within-farm or within-field transmission and showed little evidence of any larger-scale spatial dependence. We concluded that there is a potentially high risk of human exposure to Campylobacter spp., particularly C. jejuni, in the environment of our study area. The prevalence and likely risk posed by C. jejuni-positive cattle feces in the environment diminished as the fecal material aged. After we took into account the age of the fecal material, the absence or presence of rain, and the presence of bird feces, there was evidence of significant variation in the prevalence of C. jejuni-positive cattle feces between grazing fields but no evidence of spatial clustering beyond this resolution. The spatial pattern of C. jejuni is therefore consistent with that for an organism that is ubiquitous in areas contaminated with cattle feces, with a short-scale variation in infection intensity that cannot be explained solely by variations in the age of the fecal material. The observed pattern is not consistent with large-scale transmission attributable to watercourses, wildlife territories, or other geographical features that transcend field and farm boundaries.  相似文献   

13.
AIM: To measure the decline rates of zoonotic agents introduced into liquid livestock wastes in on-farm storage tanks. METHODS AND RESULTS: Salmonella spp., Escherichia coli O157, Campylobacter jejuni, Listeria monocytogenes and Cryptosporidium parvum, propagated in laboratory-controlled conditions, were inoculated into 35,000-l volumes of fresh livestock wastes (pig slurries, cattle slurries and dirty waters). D-values for bacteria were six to 44 days, and for C. parvum were 133 to 345 days. Campylobacter jejuni declined significantly more rapidly than the other bacterial pathogens, while E. coli O157 declined significantly more slowly. On average, bacterial declines were not affected by the season of waste deposition and storage or by the dry matter content of the wastes, but were more rapid in dirty waters than in pig slurries. The physiciochemical composition of wastes in each category varied significantly. CONCLUSIONS: Zoonotic agents can survive for several months during storage of liquid livestock wastes. Livestock wastes should be batch-stored and not subjected to continuous additions. SIGNIFICANCE AND IMPACT OF THE STUDY: This study indicates that batches of liquid livestock waste, if contaminated with bacterial pathogens, should be stored for 6 months to reduce contamination levels. Alternative strategies for reducing C. parvum levels in liquid livestock wastes should be explored.  相似文献   

14.
Since cattle are a major source of food and the cattle industry engages people from farms to processing plants and meat markets, it is conceivable that beef-products contaminated with Campylobacter spp. would pose a significant public health concern. To better understand the epidemiology of cattle-associated Campylobacter spp. in the USA, we characterized the prevalence, genotypic and phenotypic properties of these pathogens. Campylobacter were detected in 181 (19.2%) out of 944 fecal samples. Specifically, 71 C. jejuni, 132 C. coli, and 10 other Campylobacter spp. were identified. The prevalence of Campylobacter varied regionally and was significantly (P<0.05) higher in fecal samples collected from the South (32.8%) as compared to those from the North (14.8%), Midwest (15.83%), and East (12%). Pulsed Field Gel Electrophoresis (PFGE) analysis showed that C. jejuni and C. coli isolates were genotypically diverse and certain genotypes were shared across two or more of the geographic locations. In addition, 13 new C. jejuni and two C. coli sequence types (STs) were detected by Multi Locus Sequence Typing (MLST). C. jejuni associated with clinically human health important sequence type, ST-61 which was not previously reported in the USA, was identified in the present study. Most frequently observed clonal complexes (CC) were CC ST-21, CC ST-42, and CC ST-61, which are also common in humans. Further, the cattle associated C. jejuni strains showed varying invasion and intracellular survival capacity; however, C. coli strains showed a lower invasion and intracellular survival potential compared to C. jejuni strains. Furthermore, many cattle associated Campylobacter isolates showed resistance to several antimicrobials including ciprofloxacin, erythromycin, and gentamicin. Taken together, our results highlight the importance of cattle as a potential reservoir for clinically important Campylobacter.  相似文献   

15.
Infections with Campylobacter spp. pose a significant health burden worldwide. The significance of Campylobacter jejuni/Campylobacter coli infection is well appreciated but the contribution of non-C. jejuni/C. coli spp. to human gastroenteritis is largely unknown. In this study, we employed a two-tiered molecular study on 7194 patient faecal samples received by the Microbiology Department in Cork University Hospital during 2009. The first step, using EntericBio(?) (Serosep), a multiplex PCR system, detected Campylobacter to the genus level. The second step, utilizing Campylobacter species-specific PCR identified to the species level. A total of 340 samples were confirmed as Campylobacter genus positive, 329 of which were identified to species level with 33 samples containing mixed Campylobacter infections. Campylobacter jejuni, present in 72.4% of samples, was the most common species detected, however, 27.4% of patient samples contained non-C. jejuni/C. coli spp.; Campylobacter fetus (2.4%), Campylobacter upsaliensis (1.2%), Campylobacter hyointestinalis (1.5%), Campylobacter lari (0.6%) and an emerging species, Campylobacter ureolyticus (24.4%). We report a prominent seasonal distribution for campylobacteriosis (Spring), with C. ureolyticus (March) preceeding slightly C. jejuni/C. coli (April/May).  相似文献   

16.
The protozoan pathogens Giardia lamblia and Cryptosporidium parvum are major causes of waterborne enteric disease throughout the world. Improved detection methods that are very sensitive and rapid are urgently needed. This is especially the case for analysis of environmental water samples in which the densities of Giardia and Cryptosporidium are very low. Primers and TaqMan probes based on the beta-giardin gene of G. lamblia and the COWP gene of C. parvum were developed and used to detect DNA concentrations over a range of 7 orders of magnitude. It was possible to detect DNA to the equivalent of a single cyst of G. lamblia and one oocyst of C. parvum. A multiplex real-time PCR (qPCR) assay for simultaneous detection of G. lamblia and C. parvum resulted in comparable levels of detection. Comparison of DNA extraction methodologies to maximize DNA yield from cysts and oocysts determined that a combination of freeze-thaw, sonication, and purification using the DNeasy kit (Qiagen) provided a highly efficient method. Sampling of four environmental water bodies revealed variation in qPCR inhibitors in 2-liter concentrates. A methodology for dealing with qPCR inhibitors that involved the use of Chelex 100 and PVP 360 was developed. It was possible to detect and quantify G. lamblia in sewage using qPCR when applying the procedure for extraction of DNA from 1-liter sewage samples. Numbers obtained from the qPCR assay were comparable to those obtained with immunofluorescence microscopy. The qPCR analysis revealed both assemblage A and assemblage B genotypes of G. lamblia in the sewage. No Cryptosporidium was detected in these samples by either method.  相似文献   

17.
18.
AIM: To enumerate Campylobacter spp. on the external surface and internal portions of chicken livers, and to assess the cooking required to inactivate naturally present cells. METHODS AND RESULTS: Of 30 livers tested all yielded Campylobacter spp. on their surfaces and 90% were found to contain the organism in internal tissue. Four (13%) livers contained >10(4) MPN campylobacters, and an additional seven (23%) contained >10(3) MPN campylobacters per liver. The internal temperature of pan-fried livers under the conditions used reached a maximum of 70-80 degrees C, and maintaining this temperature for 2-3 min was necessary to inactivate naturally occurring Campylobacter spp. All isolates identified were either C. jejuni or C. coli. CONCLUSIONS: Chicken livers represent a potential source of human campylobacteriosis as they contained >10(4) MPN per liver in 13% of the samples tested. Pan-frying can produce an acceptable product that is safe to eat. SIGNIFICANCE AND IMPACT OF THIS STUDY: The data provided can be used in exposure assessments of Campylobacter in poultry products in terms of both quantitative data and assessing pan-frying and its ability to destroy campylobacters.  相似文献   

19.
A total of 139 surface water samples from seven lakes and 15 rivers in southwestern Finland were analyzed during five consecutive seasons from autumn 2000 to autumn 2001 for the presence of various enteropathogens (Campylobacter spp., Giardia spp., Cryptosporidium spp., and noroviruses) and fecal indicators (thermotolerant coliforms, Escherichia coli, Clostridium perfringens, and F-RNA bacteriophages) and for physicochemical parameters (turbidity and temperature); this was the first such systematic study. Altogether, 41.0% (57 of 139) of the samples were positive for at least one of the pathogens; 17.3% were positive for Campylobacter spp. (45.8% of the positive samples contained Campylobacter jejuni, 25.0% contained Campylobacter lari, 4.2% contained Campylobacter coli, and 25.0% contained Campylobacter isolates that were not identified), 13.7% were positive for Giardia spp., 10.1% were positive for Cryptosporidium spp., and 9.4% were positive for noroviruses (23.0% of the positive samples contained genogroup I and 77.0% contained genogroup II). The samples were positive for enteropathogens significantly (P < 0.05) less frequently during the winter season than during the other sampling seasons. No significant differences in the prevalence of enteropathogens were found when rivers and lakes were compared. The presence of thermotolerant coliforms, E. coli, and C. perfringens had significant bivariate nonparametric Spearman's rank order correlation coefficients (P < 0.001) with samples that were positive for one or more of the pathogens analyzed. The absence of these indicators in a logistic regression model was found to have significant predictive value (odds ratios, 1.15 × 108, 7.57, and 2.74, respectively; P < 0.05) for a sample that was negative for the pathogens analyzed. There were no significant correlations between counts or count levels for thermotolerant coliforms or E. coli or the presence of F-RNA phages and pathogens in the samples analyzed.  相似文献   

20.
A total of 214 rainwater samples from 82 tanks were collected in urban Southeast Queensland (SEQ) in Australia and analyzed for the presence and numbers of zoonotic bacterial and protozoal pathogens using binary PCR and quantitative PCR (qPCR). Quantitative microbial risk assessment (QMRA) analysis was used to quantify the risk of infection associated with the exposure to potential pathogens from roof-harvested rainwater used as potable or nonpotable water. Of the 214 samples tested, 10.7%, 9.8%, 5.6%, and 0.4% were positive for the Salmonella invA, Giardia lamblia β-giardin, Legionella pneumophila mip, and Campylobacter jejuni mapA genes, respectively. Cryptosporidium parvum oocyst wall protein (COWP) could not be detected. The estimated numbers of Salmonella, G. lamblia, and L. pneumophila organisms ranged from 6.5 × 101 to 3.8 × 102 cells, 0.6 × 10° to 3.6 × 10° cysts, and 6.0 × 101 to 1.7 × 102 cells per 1,000 ml of water, respectively. Six risk scenarios were considered for exposure to Salmonella spp., G. lamblia, and L. pneumophila. For Salmonella spp. and G. lamblia, these scenarios were (i) liquid ingestion due to drinking of rainwater on a daily basis, (ii) accidental liquid ingestion due to hosing twice a week, (iii) aerosol ingestion due to showering on a daily basis, and (iv) aerosol ingestion due to hosing twice a week. For L. pneumophila, these scenarios were (i) aerosol inhalation due to showering on a daily basis and (ii) aerosol inhalation due to hosing twice a week. The risk of infection from Salmonella spp., G. lamblia, and L. pneumophila associated with the use of rainwater for showering and garden hosing was calculated to be well below the threshold value of one extra infection per 10,000 persons per year in urban SEQ. However, the risk of infection from ingesting Salmonella spp. and G. lamblia via drinking exceeded this threshold value and indicated that if undisinfected rainwater is ingested by drinking, then the incidences of the gastrointestinal diseases salmonellosis and giardiasis are expected to range from 9.8 × 10° to 5.4 × 101 (with a mean of 1.2 × 101 from Monte Carlo analysis) and from 1.0 × 101 to 6.5 × 101 cases (with a mean of 1.6 × 101 from Monte Carlo analysis) per 10,000 persons per year, respectively, in urban SEQ. Since this health risk seems higher than that expected from the reported incidences of gastroenteritis, the assumptions used to estimate these infection risks are critically examined. Nonetheless, it would seem prudent to disinfect rainwater for use as potable water.Roof-harvested rainwater has received significant attention as a potential alternative source of potable and nonpotable water in regions where water is scarce (37). To encourage the use of roof-harvested rainwater, governmental bodies of many countries, such as Australia, Denmark, Germany, India, and New Zealand, are providing subsidies to residents to encourage the use of rainwater for domestic purposes. The use of rainwater is quite common in Australia, particularly in rural and remote areas, where reticulated mains or town water is not available. Recent water scarcity in several capital cities prompted the use of rainwater as an alternative source. For instance, the Queensland State Government initiated the “Home Water Wise Rebate Scheme,” which provides subsidies to Southeast Queensland (SEQ) residents who use rainwater as nonpotable water for domestic purposes (49). Over 260,000 householders were granted subsidies up to December 2008, when the scheme was concluded.There is a general community feeling that roof-harvested rainwater is safe to drink, and this is partially supported by limited epidemiological evidence (26). Some studies have reported that roof-harvested rainwater quality is generally acceptable for use as potable water (13, 29). In contrast, the presence of potential pathogens, such as Aeromonas spp. Campylobacter spp., Campylobacter jejuni, Salmonella spp., Legionella pneumophila, Giardia spp., Giardia lamblia, and Cryptosporidium spp., in roof-harvested rainwater samples has been reported (2, 9, 34, 45, 47, 48). Such pathogens can cause gastrointestinal illness in humans, with nausea, vomiting, and/or diarrhea occurring within 12 to 72 h (Salmonella enterica serovar Typhimurium) to 9 to 15 days (Giardia lamblia) after ingestion of contaminated water. L. pneumophila can cause the respiratory infection pneumonia, and the fatality rate can be 50% in immunocompromised patients (57).Direct routine monitoring of the microbiological quality of source water for all possible pathogens is not economically, technologically, or practically feasible. Consequently, traditional fecal indicators, such as fecal coliforms, Escherichia coli, and enterococci, have long been used to determine the presence of pathogens. Most studies assess the quality of roof-harvested rainwater based on the numbers of these fecal indicators (13, 30). However, the major limitation in using fecal bacteria as indicators is their poor correlation with the presence of pathogenic microorganisms in water (2, 30). An alternative is the measurement of pathogens using traditional culture-based methods. However, there are several limitations of such methods, including the underestimation of the bacterial number due to the presence of injured or stressed cells (10) and the fact that certain microorganisms in environmental waters can be viable but not culturable (39). Culture-based methods are also generally laborious and costly. Recent advances in molecular techniques such as PCR technology enable rapid, specific, and sensitive detection of many pathogens. Advances in PCR methodology also enable the quantification of potential pathogens in source water that are otherwise difficult and/or laborious to culture using traditional microbiological methods. In view of this, we used binary PCR (presence/absence)- and quantitative PCR (qPCR)-based assays to first detect and then quantify zoonotic pathogens in samples from roof-harvested rainwater in SEQ residential houses.The aims of the research study were 2-fold: (i) to quantify the number and frequency of occurrence of Salmonella, G. lamblia, and L. pneumophila organisms in a range of domestic water tanks in SEQ by using qPCR-based methods and (ii) to apply quantitative microbial risk assessment (QMRA) analysis in order to estimate the risk of infection from exposure to these pathogens found in roof-harvested rainwater. The uniqueness of this study stems from the fact that instead of measuring fecal indicators, the pathogens that are capable of causing illness were quantified and this information was combined with QMRA to assess the human health risk of using roof-harvested rainwater as potable or nonpotable water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号