首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An assay is described to measure methylation of biotinylated oligonucleotide substrates by DNA methyltransferases using [methyl-3H]-AdoMet. After the methylation reaction the oligonucleotides are immobilized on an avidin-coated microplate. The incorporation of [3H] into the DNA is quenched by addition of unlabeled AdoMet to the binding buffer. Unreacted AdoMet and enzyme are removed by washing. To release the radioactivity incorporated into the DNA, the wells are incubated with a non-specific endonuclease and the radioactivity determined by liquid scintillation counting. As an example, we have studied methylation of DNA by the EcoRV DNA methyltransferase. The reaction progress curves measured with this assay are linear with respect to time. Methylation rates linearly increase with enzyme concentration. The rates are comparable to results obtained with the same enzyme using a different assay. The biotin-avidin assay is inexpensive, convenient, quantitative, fast and well suited to process many samples in parallel. The accuracy of the assay is high, allowing to reproduce results within +/- 10%. The assay is very sensitive as demonstrated by the detection of incorporation of 0.8 fmol methyl groups into the DNA. Under the experimental conditions, this corresponds to methylation of only 0.03% of all target sites of the substrate. Using this assay, the DNA methylation activity of some M.EcoRV variants could be detected that was not visible by other in vitro methylation assays.  相似文献   

2.
We have investigated the ATPase activity of the type IC restriction-modification (R – M) systemEcoR124II. As with all type I R – M systemsEcoR 124II requires ATP hydrolysis to cut DNA. We determined theKMfor ATP to be 10−5to 10−4M. By measuring ATP hydrolysis under different conditions and by simultaneously monitoring DNA restriction, methylation and ATP hydrolysis we propose that the order of events during restriction is: (1) binding ofEcoR124II to a non-methylated recognition sequence, (2) start of DNA-dependent ATP hydrolysis which continues even after restriction is complete, (3) restriction of DNA, (4) methylation of the product. Non-cleavable DNA substrates, such as recognition site containing oligonucleotides, also support ATP hydrolysis. Methylation can also occur prior to ATP hydrolysis and prevent DNA degradation.  相似文献   

3.
DNA methylation analysis by MethyLight technology   总被引:1,自引:0,他引:1  
MethyLight is a sensitive, fluorescence-based real-time PCR technique that is capable of quantitating DNA methylation at a particular locus by using DNA oligonucleotides that anneal differentially to bisulfite-converted DNA according to the methylation status in the original genomic DNA. The use of three oligonucleotides (forward and reverse primers, and interpositioned probe) in MethyLight, any one or more of which can be used for methylation discrimination, allows for a high degree of specificity, sensitivity, and flexibility in methylation detection.  相似文献   

4.
On growing the cells of Bacillus brevis S methionine-auxotroph mutant in the presence of (methyl-3H)-methionine practically the total radioactivity included into DNA is found to exist in 5-methylcytosine (MC) and 6N-methyladenine (MA). The analysis of pyrimidine isopliths isolated from DNA shows that radioactivity only exists in mono- and dinucleotides and the content of MC in Pur-MC-Pur and Pur-MC-T-Pur oligonucleotides is equal. The analysis of dinucleotides isolated from DNA by means of pancreatic DNAase hydrolysis allows the nature of purine residues neighbouring with MC to be revealed and shows that MC localizes in G-MC-A and G-MC-T-Pu fragments. Bac. brevis S DNA-methylase modifying cytosine residues recognizes the GCAT GC degenerative nucleotide sequence which is a part of the following complementary structure with rotational symmetry: (5') ... N'--G--MC--T--G--C--N ... (3') (3') ... N--C--G--A--MC--G--N' ... (5') Cytosine modifying DNA-methylase activity is isolated from Bac. brevis cells; it is capable of methylating in vitro homologous and heterologous DNA. Hence, DNA in bacterial cells can be partially undermethylated. This enzyme methylates cytosine residues in native and deneaturated DNA in the same nucleotide sequences. As compared to the native DNA, the denaturated DNA is indicative of a decrease in the level of methylation of adenine, rather than cytosine residues. Specificity of methylation of cytosine residues in vitro and in vivo does not depend on the nature of substrate DNA (calf thymus, Pseudomonas aeruginosa etc.). DNA-methylases of different variants of Bac. brevis (R, S, P+, P-) methylate cytosine residues in the same nucleotide sequences. It means that specificity of methylation of DNA cytosine residues in the cells of different variants of Bac. brevis is the same.  相似文献   

5.
Aberrant DNA methylation in human sperms has been proposed to be a possible mechanism associated with male infertility. We developed an ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method for rapid, sensitive, and specific detection of global DNA methylation level in human sperms. Multiple-reaction monitoring (MRM) mode was used in MS/MS detection for accurate quantification of DNA methylation. The intra-day and inter-day precision values of this method were within 1.50-5.70%. By using 2-deoxyguanosine as an internal standard, UPLC-MS/MS method was applied for the detection of global DNA methylation levels in three cultured cell lines. DNA methyltransferases inhibitor 5-aza-2'-deoxycytidine can significantly reduce global DNA methylation levels in treated cell lines, showing the reliability of our method. We further examined global DNA methylation levels in human sperms, and found that global methylation values varied from 3.79% to 4.65%. The average global DNA methylation level of sperm samples washed only by PBS (4.03%) was relatively lower than that of sperm samples in which abnormal and dead sperm cells were removed by density gradient centrifugation (4.25%), indicating the possible aberrant DNA methylation level in abnormal sperm cells. Clinical application of UPLC-MS/MS method in global DNA methylation detection of human sperms will be useful in human sperm quality evaluation and the study of epigenetic mechanisms responsible for male infertility.  相似文献   

6.
应用PCR-SSCP技术并结合Southern印迹杂交从基因水平对正常和 ̄3H-TdR恶性转化小鼠胚胎成纤维细胞NC3H10和TC3H10中neu基因进行研究。Southern印迹杂交结果表明恶性转化的TC3H10细胞neu基因出现重排和扩增,SSCP分析未发现TC3H10细胞neu基因跨膜区突变。上述结果说明TC3H10细胞neu基因结构异常可能在跨膜区外,neu基因异常在 ̄3H-TdR诱导的细胞恶性转化过程中可能有重要的作用,EGF可促进neu基因表达增高,研究发现在EGF持续作用下,NC3H10细胞neu基因甲基化水平无显著变化,说明EGF可能是通过其它途径调控neu基因表达增高的,排除了EGF通过改变neu基因甲基化水平而调控neu基因表达的可能性。  相似文献   

7.
Rand KN  Molloy PL 《BioTechniques》2010,49(4):xiii-xvii
We describe a new method that is well-suited for the determination of the methylation level of repetitive sequences such as human Alu elements. We have applied the method to the analysis of cell and tissue DNAs and expect it to have wide utility in studies of DNA methylation in cancer and other disease states, in monitoring response to epigenetic cancer therapies and in epidemiological studies. Only 1 ng DNA is needed for a duplex, one-tube real-time PCR in which methylation level and the amount of input DNA are concurrently measured. The relative cutting by the methylation-sensitive enzyme BstUI is compared with that of the methylation-insensitive enzyme DraI to give a measure of DNA methylation. The method depends upon the use of 5'-tailed, 3'-blocked oligonucleotides called facilitator oligonucleotides (Foligos). Only cut DNAs with specific matching sequences at their 3' ends can copy the tails of the Foligos and thus become tagged and available for subsequent PCR. Both the tagging and PCR are carried out by the same enzyme, Taq DNA polymerase. Because amplification only occurs if suitable ends have been generated in the target DNA, we have called this method end-specific PCR (ESPCR). ESPCR avoids the bisulfite treatment step that is usually required to measure methylation.  相似文献   

8.
 以 S-腺苷酰 - L-甲硫氨酸 (SAM)为诱导物 ,在 1 0 μmol/L最佳浓度下造成 1 6%的 HL- 60细胞分化 .HPLC检测结果表明 ,细胞基因组 DNA甲基化水平升高 .通过3H甲基同位素参入法研究细胞 DNA甲基化酶活力 ,则发现在细胞分化过程中酶活力未见升高 .说明细胞基因组甲基化水平升高并不是胞内 DNA甲基化酶催化能力改变的结果 ,而是由于 SAM进入细胞提供过量甲基造成的 .  相似文献   

9.
10.
Using a previously described capillary electrophoretic method with laser-induced fluorescence detection the genomic methylation level can be determined exactly. We present a sample preparation that eliminates the surplus of fluorescence marker used for coupling resulting in an increase of sample throughput from 75 to 250 analyses per week. The sensitivity of the method was also increased, which allows the determination of methylation levels under 1%. With these changes in sample preparation a methylation level of 1.64+/-0.03% in hepatopancreas DNA of the recently discovered marbled crayfish could be determined.  相似文献   

11.

Background

Differential expression of perforin (PRF1), a gene with a pivotal role in immune surveillance, can be attributed to differential methylation of CpG sites in its promoter region. A reproducible method for quantitative and CpG site-specific determination of perforin methylation is required for molecular epidemiologic studies of chronic diseases with immune dysfunction.

Findings

We developed a pyrosequencing based method to quantify site-specific methylation levels in 32 out of 34 CpG sites in the PRF1 promoter, and also compared methylation pattern in DNAs extracted from whole blood drawn into PAXgene blood DNA tubes (whole blood DNA) or DNA extracted from peripheral blood mononuclear cells (PBMC DNA) from the same normal subjects. Sodium bisulfite treatment of DNA and touchdown PCR were highly reproducible (coefficient of variation 1.63 to 2.18%) to preserve methylation information. Application of optimized pyrosequencing protocol to whole blood DNA revealed that methylation level varied along the promoter in normal subjects with extremely high methylation (mean 86%; range 82–92%) in the distal enhancer region (CpG sites 1–10), a variable methylation (range 49%–83%) in the methylation sensitive region (CpG sites 11–17), and a progressively declining methylation level (range 12%–80%) in the proximal promoter region (CpG sites 18–32) of PRF1. This pattern of methylation remained the same between whole blood and PBMC DNAs, but the absolute values of methylation in 30 out of 32 CpG sites differed significantly, with higher values for all CpG sites in the whole blood DNA.

Conclusion

This reproducible, site-specific and quantitative method for methylation determination of PRF1 based on pyrosequencing without cloning is well suited for large-scale molecular epidemiologic studies of diseases with immune dysfunction. PBMC DNA may be better suited than whole blood DNA for examining methylation levels in genes associated with immune function.  相似文献   

12.
The DNA 5-methylcytosine content has been analyzed in the human melanoma cell line M21 at several time points after induction of differentiation by a variety of inducers. 5-Aza-2'-deoxycytidine reduces DNA methylation to about 50% of the control level and this demethylation occurs prior to the establishment of the differentiated phenotype. The DNA synthesis inhibitors cytosine arabinoside, aphidicolin, and hydroxyurea exert different effects on DNA methylation in these cells. Cytosine arabinoside induces an early DNA hypermethylation, which is however reversible and drops to the original level after 24 h. Hydroxyurea induces DNA hypermethylation after a lag period of more than 48 h and the DNA polymerase alpha inhibitor aphidicolin has no effect on the DNA methylation level. Treatment of cells with phorbol 12-myristate 13-acetate, another potent inducer of melanoma cell differentiation, does not result in a change of total DNA methylation over a period of 96 h. These results indicate that differentiation of human melanoma cells can be accompanied by variable changes of the DNA methylation pattern. These changes can be neither generally related to the differentiation process itself nor related to the effects of DNA synthesis inhibition on DNA methylation, but may more likely reflect a direct or indirect particular effect of the inducer on the DNA methylation process.  相似文献   

13.
The effect of 5-azadeoxycytidine on cell growth and DNA methylation   总被引:2,自引:0,他引:2  
By growing cells in the presence of 3 mM thymidine and 5-azadeoxycytidine up to 20% of DNA cytosines have been substituted with azacytosine. No substitution was obtained on incubating with 5-methyldeoxycytidine. Azacytosine-substituted DNA has a very low level of 5-methylcytosine and cells, which survive azadeoxycytidine treatments maintain this low level of methylation in the absence of the drug. The DNA of such cells is undermethylated fairly evenly in all classes of DNA e.g., satellite and unique DNA. Incubation of cells in azadeoxycytidine leads to high cell mortality which is not related to the lack of DNA methylation but may be linked to the altered interactions of proteins with the substituted DNA. This effect, rather than reduced DNA methylation, may be the cause of differentiative changes observed on treatment of cells with 5-azacytidine.  相似文献   

14.
细胞凋亡过程中bcl-2基因的甲基化   总被引:6,自引:0,他引:6  
为探讨凋亡过程中,bcl-2基因下调与该基因甲基化状态的关系,用5-氟尿嘧啶(5-Fu)诱导小鼠成纤维细胞NC3H10,TC3H10及人乳腺癌细胞MCF-7的凋亡,分别检测了这三种细胞凋亡过程中bcl-2的表达变化,与其调控区及编码区的甲基化状况.我们曾观察到5-Fu作用24~48h出现细胞存活率下降,DNA梯状断裂及细胞周期凋亡峰显现等典型凋亡现象.Northern杂交显示,在5-Fu作用12h时bcl-2mRNA水平已明显降低.由此,我们用小鼠bcl-2(mbcl-2)及人bcl-2(hbcl-2)基因调控区PCR扩增片段及bcl-2编码区(cDNA)片段作为探针,与5-Fu作用12h的细胞DNA的MspⅠ/HpaⅡ酶切产物进行Southern杂交,以未作用的细胞DNA同样酶切杂交为对照.通过杂交带谱的变化,分析bcl-2基因的甲基化状况.结果显示:mbcl-2及hbcl-2在5-Fu作用12h后调控区甲基化水平增高,但其编码区甲基化状态皆未出现可检出的变化.上述结果提示:bcl-2基因调控区甲基化水平升高可能与该基因下调有关  相似文献   

15.
A cell line (T17) was derived from C3H 10T1/2 C18 cells after 17 treatments with increasing concentrations of 5-aza-2'-deoxycytidine. The T17 cell line was very resistant to the cytotoxic effects of 5-aza-2'-deoxycytidine, and the 50% lethal dose for 5-aza-2'-deoxycytidine was ca. 3 microM, which was 30-fold greater than that of the parental C3H 10T1/2 C18 cells. Increased drug resistance was not due to a failure of the T17 cell line to incorporate 5-aza-2'-deoxycytidine into DNA. The cells were also slightly cross-resistant to 5-azacytidine. The percentage of cytosines modified to 5-methylcytosine in T17 cells was 0.7%, a 78% decrease from the level of 3.22% in C3H 10T1/2 C18 cells. The DNA cytosine methylation levels in several clones isolated from the treated lines were on the order of 0.7%, and clones with methylation levels lower than 0.45% were not obtained even after further drug treatments. These highly decreased methylation levels appeared to be unstable, and DNA modification increased as the cells divided in the absence of further drug treatment. The results suggest that it may not be possible to derive mouse cells with vanishingly low levels of 5-methylcytosine and that considerable de novo methylation can occur in cultured lines.  相似文献   

16.
A specific class of DNA sequences, the inverted repetitive sequences, forms a double-stranded structure within a single linear polynucleotide chain in denatured DNA. The reassociation process is unimolecular and occurs very fast. Quantitative analyses have shown that in mouse P815 cells these sequences comprise about 4% of the nuclear DNA and are interspersed within sequences of other degrees of repetitiveness. After labeling the cells with L-[Me-3H]methionine and [14C]deoxycytidine, relative rates of enzymic DNA methylation were computed on the basis of radioactivities found in pyrimidine residues of the nuclear DNA. The results indicate that in P815 cells, DNA of inverted repetitive sequences is methylated to a level about 50% higher than the normal repetitive DNA sequences and to about 300% higher than the unique and intermediary intermediatry sequences. The biological function of the inverted repetitive sequences, as well as of the role of enzymic methylation of DNA remains unknown.  相似文献   

17.
18.
Hou P  Ji M  Ge C  Shen J  Li S  He N  Lu Z 《Nucleic acids research》2003,31(16):e92
Aberrant DNA methylation of the CpG site is among the earliest and most frequent alterations in cancer. Detection of promoter hypermethylation of cancer-related genes may be useful for cancer diagnosis or the detection of recurrence. p16, an inhibitor of the cyclin D-dependent protein kinases, is a classical tumor suppressor gene, and its inactivation is closely associated with carcinogenesis. p16 hypermethylation could be detected in each stage, which is consistent with the finding that aberrant methylation of p16 is a very early event in carcinogenesis. We have developed an electrochemical procedure for detecting DNA methylation of the human p16(Ink4a) gene. The procedure is based on the coupling of DNA electrochemical sensors with linker-PCR- amplified DNA from human gastric tumor tissue and whole blood cells of healthy human. The synthesized oligonucleotide was immobilized on the modified gold electrode to fabricate a DNA biosensor. The hybridization reaction on the electrode surface was monitored by cyclic voltammogram (CV) and square wave voltammogram (SWV), using [Co(phen)(3)](ClO(4))(3) as a redox indicator. Methylation status of human p16(Ink4a) gene was detected and the results were validated by bisulfite DNA sequencing. A good reproducibility was observed in several parallel experiments. The coupling of DNA electrochemical sensors with PCR allowed quick detection and have the potential of the quantitative evaluation of the methylation status of the human p16(Ink4a) gene.  相似文献   

19.
We find that Type II DNA polymerases can catalyze pyrophosphorolysis, the reverse reaction of DNA polymerization. This property is applied utilizing pyrophosphorolysis-activated polymerization (PAP), a method of nucleic acid amplification using serial coupling of pyrophosphorolysis and polymerization. PAP can be used for ultrarare allele detection (detection of minimal residual disease and cancer risk assessment through measurement of mutation load) and for microarray-based scanning for unknown mutations. Herein, we show that Type II DNA polymerases efficiently catalyze template-dependent pyrophosphorolysis to activate oligonucleotides blocked at their 3' termini with acyclonucleotides in which a 2-hydroxyethoxymethyl group substitutes for the 2'-deoxyribofuranosyl sugar. Type II archeon DNA polymerases Vent (exo-) and Pfu (exo-) can be utilized for PAP or a bidirectional form of PAP with acyclonucleotide-blocked oligonucleotides, but not with dideoxynucleotide-blocked oligonucleotides. In contrast, a Type I DNA polymerase, TaqFS, can utilize either acyclonucleotide-blocked or dideoxynucleotide-blocked oligonucleotides. These findings expand the potential of nascent PAP technology.  相似文献   

20.
Methylation of deoxycytidine incorporated by DNA excision-repair was studied in human diploid fibroblasts following damage with ultraviolet radiation, N-methyl-N-nitrosourea, or N-acetoxy-2-acetylami-nofluorene. In confluent, nondividing cells, methylation in repair patches induced by all three agents is slow and incomplete. Whereas after DNA replication in logarithmic-phase cultures a steady state level of 3.4% 5-methylcytosine is reached in less than 2 hr after cells are labeled with 6-3H-deoxycytidine, following ultraviolet-stimulated repair synthesis in confluent cells it takes about 3 days to reach a level of ~2.0% 5-methylcytosine in the repair patch. In cells from cultures in logarithmic-phase growth, 5-methylcytosine formation in ultraviolet-induced repair patches occurs faster and to a greater extent, reaching a level of ~2.7% in 10–20 hr. Preexisting hypomethylated repair patches in confluent cells are methylated further when the cells are stimulated to divide; however, the repair patch may still not be fully methylated before cell division occurs. Thus DNA damage and repair may lead to heritable loss of methylation at some sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号