首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Hudspeth  X Nie  W Chen  R Lewis 《Biomacromolecules》2012,13(8):2240-2246
Spider silks have been shown to have impressive mechanical properties. In order to assess the effect of extension rate, both quasi-static and high-rate tensile properties were determined for single fibers of major (MA) and minor (MI) ampullate single silk from the orb weaving spider Nephila clavipes . Low rate tests have been performed using a DMA Q800 at 10(-3) s(-1), while high rate analysis was done at 1700 s(-1) utilizing a miniature Kolsky bar apparatus. Rate effects exhibited by both respective silk types are addressed, and direct comparison of the tensile response between the two fibers is made. The fibers showed major increases in toughness at the high extension rate. Mechanical properties of these organic silks are contrasted to currently employed ballistic fibers and examination of fiber fracture mechanisms are probed via scanning electron microscope, revealing a globular rupture surface topography for both rate extremums.  相似文献   

2.
The internal mechanics of the intervertebral disc under cyclic loading   总被引:3,自引:0,他引:3  
The mechanics of the intervertebral disc (IVD) under cyclic loading are investigated via a one-dimensional poroelastic model and experiment. The poroelastic model, based on that of Biot (J. Appl. Phys. 12 (1941) 155; J. Appl. Mech. 23 (1956) 91), includes a power-law relation between porosity and permeability, and a linear relation between the osmotic potential and solidity. The model was fitted to experimental data of the unconfined IVD undergoing 5 cyclic loads of 20 min compression by an applied stress of 1MPa, followed by 40 min expansion. To obtain a good agreement between experiment and theory, the initial elastic deformation of the IVD, possibly associated with the bulging of the IVD into the vertebral bodies or laterally, was removed from the experimental data. Many combinations of the permeability-porosity relationship with the initial osmotic potential (pi(i)) were investigated, and the best-fit parameters for the aggregate modulus (H(A)) and initial permeability (k(i)) were determined. The values of H(A) and k(i) were compared to literature values, and agreed well especially in the context of the adopted high-stress testing regime, and the strain related permeability in the model.  相似文献   

3.
The aim of this paper was to develop a structural mechanics (SM) model for the microtubules (MTs) in cells. The technique enables one to study the configuration effect on the mechanical properties of MTs and enjoys greatly improved computational efficiency as compared with molecular dynamics simulations. The SM model shows that the Young’s modulus has nearly a constant value around 0.83 GPa, whereas the shear modulus, two orders of magnitude lower, varies considerably with the protofilament number \(N\) and helix-start number \(S\) . The dependence of the bending stiffness and persistence length on the MT length and protofilament number \(N\) is also examined and explained based on the continuum mechanics theories. Specifically, the SM model is found to be in good agreement with available simulation and experiment results, showing its robustness in studying the static deformation of MTs and the potential for characterizing the buckling and vibration of MTs as well as the mechanical behaviour of intermediate and actin filaments.  相似文献   

4.
Most soft tissues that are treated clinically via heating experience multiaxial states of stress and strain in vivo and are subject to complex constraints during treatment. Remarkably, however, there are no prior data on changes in the multiaxial mechanical behavior of a collagenous tissue subjected to isometric constraints during heating. This paper presents the first biaxial stress-stretch data on a collagenous membrane (epicardium) before and after heating while subjected to various biaxial isometric constraints. It was found that isometric heating does not allow the increase in stiffness at low strains that occurs following isotonic heating. Moreover increasing the degree of stretch prior to heating increased the thermal stability of the tissue consistent with the concept that mechanical loading primarily affects the activation entropy, not the activation energy.  相似文献   

5.
The oscillatory behavior of the center of mass (CoM) and the corresponding ground reaction force (GRF) of human gait for various gait speeds can be accurately described in terms of resonance using a spring–mass bipedal model. Resonance is a mechanical phenomenon that reflects the maximum responsiveness and energetic efficiency of a system. To use resonance to describe human gait, we need to investigate whether resonant mechanics is a common property under multiple walking conditions. Body mass and leg stiffness are determinants of resonance; thus, in this study, we investigated the following questions: (1) whether the estimated leg stiffness increased with inertia, (2) whether a resonance-based CoM oscillation could be sustained during a change in the stiffness, and (3) whether these relationships were consistently observed for different walking speeds. Seven healthy young subjects participated in over-ground walking trials at three different gait speeds with and without a 25-kg backpack. We measured the GRFs and the joint kinematics using three force platforms and a motion capture system. The leg stiffness was incorporated using a stiffness parameter in a compliant bipedal model that best fitted the empirical GRF data. The results showed that the leg stiffness increased with the load such that the resonance-based oscillatory behavior of the CoM was maintained for a given gait speed. The results imply that the resonance-based oscillation of the CoM is a consistent gait property and that resonant mechanics may be useful for modeling human gait.  相似文献   

6.
Spider silks are an intriguing family of fibrous proteins due to their highly repetitive primary sequence, their solution properties and their assembly and processing into fibers with remarkable mechanical properties. Current research efforts aimed at understanding and manipulating genes encoding these proteins are helping to gain insight into the relationships between protein sequence, protein assembly and macromolecular properties.  相似文献   

7.
Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR.  相似文献   

8.
9.
It is difficult to study the breakdown of disc tissue over several years of exposure to bending and lifting by experimental methods. There is also no finite element model that elucidates the failure mechanism due to repetitive loading of the lumbar motion segment. The aim of this study was to refine an already validated poro-elastic finite element model of lumbar motion segment to investigate the initiation and progression of mechanical damage in the disc under simple and complex cyclic loading conditions. Continuum damage mechanics methodology was incorporated into the finite element model to track the damage accumulation in the annulus in response to the repetitive loading. The analyses showed that the damage initiated at the posterior inner annulus adjacent to the endplates and propagated outwards towards its periphery under all loading conditions simulated. The damage accumulated preferentially in the posterior region of the annulus. The analyses also showed that the disc failure is unlikely to happen with repetitive bending in the absence of compressive load. Compressive cyclic loading with low peak load magnitude also did not create the failure of the disc. The finite element model results were consistent with the experimental and clinical observations in terms of the region of failure, magnitude of applied loads and the number of load cycles survived.  相似文献   

10.
The effectiveness of helmets in extenuating the primary shock waves generated by the explosions of improvised explosive devices is not clearly understood. In this work, the role of helmet on the overpressurisation and impulse experienced by the head were examined. The shock wave–head interactions were studied under three different cases: (i) unprotected head, (ii) head with helmet but with varying head–helmet gaps and (iii) head covered with helmet and tightly fitting foam pads. The intensification effect was discussed by examining the shock wave flow pattern and verified with experiments. A helmet with a better protection against shock wave is suggested.  相似文献   

11.
Molecular and material properties of major ampullate silk were studied for the cobweb-building black widow spider Latrodectus hesperus. Material properties were measured by stretching the silk to breaking. The strength was 1.0 +/- 0.2 GPa, and the extensibility was 34 +/- 8%. The secondary structure of the major ampullate silk protein was studied using carbon-13 NMR spectroscopy. Alanine undergoes a transition from a coiled structure in pre-spun silk to a beta sheet structure in post-spun silk. We have also isolated two distinct cDNAs (both about 500 bp) which encode proteins similar to major ampullate spidroin 1 and 2 (MaSp1 and MaSp2). The MaSp1-like silk contains polyalanine runs of 5-10 residues as well as GA and GGX motifs. The MaSp2-like silk contains polyalanine runs of varying length as well as GPG(X)(n) motifs. L. hesperus major ampullate silk is more like major ampullate silk from other species than other L. hesperus silks.  相似文献   

12.
The effectiveness of helmets in extenuating the primary shock waves generated by the explosions of improvised explosive devices is not clearly understood. In this work, the role of helmet on the overpressurisation and impulse experienced by the head were examined. The shock wave-head interactions were studied under three different cases: (i) unprotected head, (ii) head with helmet but with varying head-helmet gaps and (iii) head covered with helmet and tightly fitting foam pads. The intensification effect was discussed by examining the shock wave flow pattern and verified with experiments. A helmet with a better protection against shock wave is suggested.  相似文献   

13.
Molecular biology of spider silk.   总被引:9,自引:0,他引:9  
Spider silks are an intriguing family of fibrous proteins due to their highly repetitive primary sequence, their solution properties and their assembly and processing into fibers with remarkable mechanical properties. Current research efforts aimed at understanding and manipulating genes encoding these proteins are helping to gain insight into the relationships between protein sequence, protein assembly and macromolecular properties.  相似文献   

14.
15.
16.
Although variability in connective tissue parameters is widely reported and recognized, systematic examination of the effect of such parametric uncertainties on predictions derived from a full anatomical joint model is lacking. As such, a sensitivity analysis was performed to consider the behavior of a three-dimensional, non-linear, finite element knee model with connective tissue material parameters that varied within a given interval. The model included the coupled mechanics of the tibio-femoral and patello-femoral degrees of freedom. Seven primary connective tissues modeled as non-linear continua, articular cartilages described by a linear elastic model, and menisci modeled as transverse isotropic elastic materials were included. In this study, a multi-factorial global sensitivity analysis is proposed, which can detect the contribution of influential material parameters while maintaining the potential effect of parametric interactions. To illustrate the effect of material uncertainties on model predictions, exemplar loading conditions reported in a number of isolated experimental paradigms were used. Our findings illustrated that the inclusion of material uncertainties in a coupled tibio-femoral and patello-femoral model reveals biomechanical interactions that otherwise would remain unknown. For example, our analysis revealed that the effect of anterior cruciate ligament parameter variations on the patello-femoral kinematic and kinetic response sensitivities was significantly larger, over a range of flexion angles, when compared to variations associated with material parameters of tissues intrinsic to the patello-femoral joint. We argue that the systematic sensitivity framework presented herein will help identify key material uncertainties that merit further research and provide insight on those uncertainties that may not be as relative to a given response.  相似文献   

17.
18.
Molecular mechanical simulations have been carried out on dermorphin. Presence of D-Ala2 at the N-terminus and L-Pro6 residue at the C-terminus indicated the probability of beta-turns. From the stereochemical considerations, three types- II', III' and V' - for the beta-turn at the N-terminus of the peptide and two types-I and III- for the C-terminus side of the peptide are possible. In our molecular mechanics calculations, we considered six folded and one extended conformations for dermorphin to asses the relative stabilities. Three of the six folded conformations are lower in energy and have the following general feature-similar in energy, three hydrogen bonds, semirigid beta-sheet segment and favorable Tyr1-Tyr5 interaction. The presence of beta-sheet structure might play a role in mu-receptor selective interaction of dermorphin.  相似文献   

19.
Detailed understanding of cardiac mechanics depends upon accurate and complete characterization of the three-dimensional properties of both normal and diseased myocardial tissue. This, however, can only be obtained by performing multiaxial tests on cardiac tissue. In this study we subjected thin sheets of passive canine left ventricular myocardium to various combinations of simultaneous biaxial stretching. During each stretch the ratio of the orthogonal strains was kept constant and the corresponding stresses remained proportional. We fitted the biaxial stress-strain data both with exponential strain-energy functions with quadratic powers of strains as well as with an alternative function with nonintegral powers of strains. We used our recently developed nonparametric method to assess the reliability of the coefficients for each of these functions. The quadratic strain-energy functions resulted in wide intra- and interspecimen variability in the coefficients. Moreover, both their absolute and relative values demonstrated marked load history dependence such that interpretation of the direction of anisotropy was difficult. Fitting the data with the alternative nonintegral strain-energy function seemed to alleviate these problems. This alternative strain-energy function may provide more self-consistent results than the more commonly used quadratic strain-energy functions.  相似文献   

20.
Molecular dynamics simulations were performed to gain fundamental insights into the mechanisms for the primary detonation process of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) under shock wave loading using self-consistent charge density-functional tight binding(SCC-DFTB) calculations combined with the multiscale shock technique (MSST). The primary process starts with shock loading and ends with the formation of dynamically stable heterocyclic clusters, which could inhibit the reactivity of TATB. The results show that the initial step of shocked TATB decomposition is the N–O bond cleavage; then carbon rings aggregate and connect by N atoms to form clusters; after the carbon rings open, heterocyclic clusters with nitrogen are formed, and persist throughout the simulation. This is a new mechanism for the primary processes of shocked TATB and this initiation mechanism is independent of the initial shock speeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号