首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The metabolism of acetone was investigated in the actinomycete Rhodococcus rhodochrous (formerly Nocardia corallina) B276. Suspensions of acetone- and isopropanol-grown R. rhodochrous readily metabolized acetone. In contrast, R. rhodochrous cells cultured with glucose as the carbon source lacked the ability to metabolize acetone at the onset of the assay but gained the ability to do so in a time-dependent fashion. Chloramphenicol and rifampin prevented the time-dependent increase in this activity. Acetone metabolism by R. rhodochrous was CO2 dependent, and 14CO2 fixation occurred concomitant with this process. A nucleotide-dependent acetone carboxylase was partially purified from cell extracts of acetone-grown R. rhodochrous by DEAE-Sepharose chromatography. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggested that the acetone carboxylase was composed of three subunits with apparent molecular masses of 85, 74, and 16 kDa. Acetone metabolism by the partially purified enzyme was dependent on the presence of a divalent metal and a nucleoside triphosphate. GTP and ITP supported the highest rates of acetone carboxylation, while CTP, UTP, and XTP supported carboxylation at 10 to 50% of these rates. ATP did not support acetone carboxylation. Acetoacetate was determined to be the stoichiometric product of acetone carboxylation. The longer-chain ketones butanone, 2-pentanone, 3-pentanone, and 2-hexanone were substrates. This work has identified an acetone carboxylase with a novel nucleotide usage and broader substrate specificity compared to other such enzymes studied to date. These results strengthen the proposal that carboxylation is a common strategy used for acetone catabolism in aerobic acetone-oxidizing bacteria.  相似文献   

2.
Short-chain aliphatic epoxides and ketones are two classes of toxic organic compounds formed biogenically and anthropogenically. In spite of their toxicity, these compounds are utilized as primary carbon and energy sources or are generated as intermediate metabolites in the metabolism of other compounds (e.g., alkenes, alkanes, and secondary alcohols) by a number of diverse bacteria. One bacterium capable of using both classes of compounds is the gram-negative aerobe Xanthobacter strain Py2. Studies of epoxide and ketone (acetone) metabolism by Xanthobacter strain Py2 have revealed a central role for CO2 in these processes. Both classes of compounds are metabolized by carboxylation reactions that produce β-keto acids as products. The epoxide- and ketone-converting enzymes are distinct carboxylases with molecular properties and cofactor requirements unprecedented for other carboxylases. Epoxide carboxylase is a four-component multienzyme complex that requires NADPH and NAD+ as cofactors. In the course of epoxide carboxylation, a transhydrogenation reaction occurs wherein NADPH undergoes oxidation and NAD+ undergoes reduction. Acetone carboxylase is a multimeric (three-subunit) ATP-dependent enzyme that forms AMP and inorganic phosphate as ATP hydrolysis products in the course of acetone carboxylation. Recent studies have demonstrated that acetone metabolism in diverse anaerobic bacteria (sulfate reducers, denitrifiers, phototrophs, and fermenters) also proceeds by carboxylation reactions. ATP-dependent acetone carboxylase activity has been demonstrated in cell-free extracts of the anaerobic acetone-utilizers Rhodobacter capsulatus, Rhodomicrobium vannielii, and Thiosphaera pantotropha. These studies have identified new roles for CO2 as a cosubstrate in the metabolism of two classes of important xenobiotic compounds. In addition, two new classes of carboxylases have been identified, the investigation of which promises to reveal new insights into biological strategies for the fixation of CO2 to organic substrates. Received: 13 August 1997 / Accepted: 6 October 1997  相似文献   

3.
Bacterial acetone carboxylase catalyzes the ATP-dependent carboxylation of acetone to acetoacetate with the concomitant production of AMP and two inorganic phosphates. The importance of manganese in Rhodobacter capsulatus acetone carboxylase has been established through a combination of physiological, biochemical, and spectroscopic studies. Depletion of manganese from the R. capsulatus growth medium resulted in inhibition of acetone-dependent but not malate-dependent cell growth. Under normal growth conditions (0.5 microm Mn2+ in medium), growth with acetone as the carbon source resulted in a 4-fold increase in intracellular protein-bound manganese over malate-grown cells and the appearance of a Mn2+ EPR signal centered at g = 2 that was absent in malate-grown cells. Acetone carboxylase purified from cells grown with 50 microm Mn2+ had a 1.6-fold higher specific activity and 1.9-fold higher manganese content than cells grown with 0.5 microm Mn2+, consistently yielding a stoichiometry of 1.9 manganese/alpha2beta2gamma2 multimer, or 0.95 manganese/alphabetagamma protomer. Manganese in acetone carboxylase was tightly bound and not removed upon dialysis against various metal ion chelators. The addition of acetone to malate-grown cells grown in medium depleted of manganese resulted in the high level synthesis of acetone carboxylase (15-20% soluble protein), which, upon purification, exhibited 7% of the activity and 6% of the manganese content of the enzyme purified from acetone-grown cells. EPR analysis of purified acetone carboxylase indicates the presence of a mononuclear Mn2+ center, with possible spin coupling of two mononuclear sites. The addition of Mg.ATP or Mg.AMP resulted in EPR spectral changes, whereas the addition of acetone, CO2, inorganic phosphate, and acetoacetate did not perturb the EPR. These studies demonstrate that manganese is essential for acetone carboxylation and suggest a role for manganese in nucleotide binding and activation.  相似文献   

4.
Boyd JM  Ensign SA 《Biochemistry》2005,44(23):8543-8553
Acetone carboxylase catalyzes the carboxylation of acetone to acetoacetate with concomitant hydrolysis of ATP to AMP and two inorganic phosphates. The biochemical, molecular, and genetic properties of acetone carboxylase suggest it represents a fundamentally new class of carboxylase. As the initial step in catalysis, an alpha-proton from an inherently basic (pK(a) = 20) methyl group is abstracted to generate the requisite carbanion for attack on CO(2). In the present study alpha-proton abstraction from acetone has been investigated by using gas chromatography/mass spectrometry to follow proton-deuteron exchange between D(6)-acetone and water. Acetone carboxylase-catalyzed proton-deuteron exchange was dependent upon the presence of ATP, Mg(2+), and a monovalent cation (K(+), Rb(+), NH(4)(+)), and produced mixtures of isotopomers, ranging from singly exchanged H(1)D(5)- to fully exchanged H(6)-acetone. The initial rate of isotopic exchange was higher than k(cat) for acetone carboxylation. The time course of isotopic exchange showed that multiple exchange events occur for each acetone-binding event, and there was a 1:1 stoichiometric relationship between molecules of ATP hydrolyzed and the sum of new acetone isotopomers formed. ADP rather than AMP was formed as the predominant product of ATP hydrolysis during isotopic exchange. The stimulation of H(+)(-)D(+) exchange and ATP hydrolysis by K(+) followed saturation kinetics, with apparent K(m) values of 13.6 and 14.2 mM for the two activities, respectively. The rate of H(+) exchange into D(6)-acetone was greater than the rate of D(+) exchange into H(6)-acetone. There was an observable solvent (H(2)O vs D(2)O) isotope effect (1.7) for acetone carboxylation but no discernible substrate (H(6)- vs D(6)-acetone) isotope effect. It is proposed that alpha-proton abstraction from acetone occurs in concert with transfer of the gamma-phosphoryl group of ATP to the carbonyl oxygen, generating phosphoenol acetone as the activated nucleophile for attack on CO(2).  相似文献   

5.
We have previously demonstrated that the reductive carboxylation of 2-oxoglutarate in Hydrogenobacter thermophilus TK-6 is not simply a reversal of the oxidative decarboxylation catalysed by isocitrate dehydrogenase (ICDH). The reaction involves a novel biotin protein (carboxylating factor for ICDH-CFI) and ATP. In this study, we have analysed the ICDH/CFI system responsible for the carboxylation reaction. Sequence analysis revealed a close relationship between CFI and pyruvate carboxylase. Rather unexpectedly, the rate of ATP hydrolysis was greater than that of isocitrate formation or NADH oxidation. Furthermore, ATP hydrolysis catalysed by CFI was dependent on 2-oxoglutarate but not on ICDH, suggesting that a carboxylated product is formed in the absence of ICDH. The product, which was detectable only at low temperatures, was identified as oxalosuccinate. Thus, CFI was confirmed to be a novel enzyme that catalyses the carboxylation of 2-oxoglutarate to form oxalosuccinate, which corresponds to the first step of the reductive carboxylation from 2-oxoglutarate to isocitrate. The CFI-ICDH system may also be present in mammals, where it could play a significant role in modulating central metabolism.  相似文献   

6.
Acetone carboxylase (Acx) is a key enzyme involved in the biodegradation of acetone by bacteria. Except for the Helicobacteraceae family, genome analyses revealed that bacteria that possess an Acx, such as Cupriavidus metallidurans strain CH34, are associated with soil. The Acx of CH34 forms the heterohexameric complex α(2)β(2)γ(2) and can carboxylate only acetone and 2-butanone in an ATP-dependent reaction to acetoacetate and 3-keto-2-methylbutyrate, respectively.  相似文献   

7.
The metabolism of acetone by the aerobic bacterium Xanthobacter strain Py2 was investigated. Cell suspensions of Xanthobacter strain Py2 grown with propylene or glucose as carbon sources were unable to metabolize acetone. The addition of acetone to cultures grown with propylene or glucose resulted in a time-dependent increase in acetone-degrading activity. The degradation of acetone by these cultures was prevented by the addition of rifampin and chloramphenicol, demonstrating that new protein synthesis was required for the induction of acetone-degrading activity. In vivo and in vitro studies of acetone-grown Xanthobacter strain Py2 revealed a CO2-dependent pathway of acetone metabolism for this bacterium. The depletion of CO2 from cultures grown with acetone, but not glucose or n-propanol, prevented bacterial growth. The degradation of acetone by whole-cell suspensions of acetone-grown cells was stimulated by the addition of CO2 and was prevented by the depletion of CO2. The degradation of acetone by acetone-grown cell suspensions supported the fixation of 14CO2 into acid-stable products, while the degradation of glucose or beta-hydroxybutyrate did not. Cultures grown with acetone in a nitrogen-deficient medium supplemented with NaH13CO3 specifically incorporated 13C-label into the C-1 (major labeled position) and C-3 (minor labeled position) carbon atoms of the endogenous storage compound poly-beta-hydroxybutyrate. Cell extracts prepared from acetone-grown cells catalyzed the CO2- and ATP-dependent carboxylation of acetone to form acetoacetate as a stoichiometric product. ADP or AMP were incapable of supporting acetone carboxylation in cell extracts. The sustained carboxylation of acetone in cell extracts required the addition of an ATP-regenerating system consisting of phosphocreatine and creatine kinase, suggesting that the carboxylation of acetone is coupled to ATP hydrolysis. Together, these studies provide the first demonstration of a CO2-dependent pathway of acetone metabolism for a strictly aerobic bacterium and provide direct evidence for the involvement of an ATP-dependent carboxylase in bacterial acetone metabolism.  相似文献   

8.
A novel acetone-degrading, nitrate-reducing bacterium, strain KN Bun08, was isolated from an enrichment culture with butanone and nitrate as the sole sources of carbon and energy. The cells were motile short rods, 0.5 to 1 by 1 to 2 μm in size, which gave Gram-positive staining results in the exponential growth phase and Gram-negative staining results in the stationary-growth phase. Based on 16S rRNA gene sequence analysis, the isolate was assigned to the genus Alicycliphilus. Besides butanone and acetone, the strain used numerous fatty acids as substrates. An ATP-dependent acetone-carboxylating enzyme was enriched from cell extracts of this bacterium and of Alicycliphilus denitrificans K601(T) by two subsequent DEAE Sepharose column procedures. For comparison, acetone carboxylases were enriched from two additional nitrate-reducing bacterial species, Paracoccus denitrificans and P. pantotrophus. The products of the carboxylase reaction were acetoacetate and AMP rather than ADP. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of cell extracts and of the various enzyme preparations revealed bands corresponding to molecular masses of 85, 78, and 20 kDa, suggesting similarities to the acetone carboxylase enzymes described in detail for the aerobic bacterium Xanthobacter autotrophicus strain Py2 (85.3, 78.3, and 19.6 kDa) and the phototrophic bacterium Rhodobacter capsulatus. Protein bands were excised and compared by mass spectrometry with those of acetone carboxylases of aerobic bacteria. The results document the finding that the nitrate-reducing bacteria studied here use acetone-carboxylating enzymes similar to those of aerobic and phototrophic bacteria.  相似文献   

9.
Evidence is presented that the enzymes catalyzing the three reactions involved in urea cleavage in Candida utilis, biotin carboxylation, urea carboxylation, and allophanate hydrolysis occur as a complex of enzymes. The allophanate-hydrolyzing activity could not be separated from the urea-cleaving activity using common methods of protein purification. Further, urea cleavage and allophanate hydrolysis activities are induced coordinately in cells grown on various nitrogen sources. The reactions involved in urea cleavage can be distinguished from one another on the basis of their sensitivities to (a) heat, (b) pH, and (c) chemical inhibitors. Evidence is presented for the product of the first reaction in urea cleavage, biotin carboxylation. Production of carboxylated enzyme is ATP dependent and avidin sensitive. Carboxylated enzyme is not observed in the presence of 1 mM urea.  相似文献   

10.
Vitamin K dependent in vitro production of prothrombin   总被引:3,自引:0,他引:3  
J C Swanson  J W Suttie 《Biochemistry》1982,21(23):6011-6018
During prothrombin biosynthesis, glutamyl residues in prothrombin precursor proteins are carboxylated to gamma-carboxyglutamyl residues by a vitamin K dependent carboxylase. Calcium-dependent and calcium-independent rat prothrombin antibody subpopulations have been produced and utilized to study the liver microsomal precursors of prothrombin that accumulate when vitamin K action is blocked. A substantial portion of the precursor pool accumulating in the vitamin K deficient or warfarin-treated rat will react with a Ca2+-dependent antibody at high calcium concentration and appears to be partially carboxylated. During in vitro incubation in the presence of vitamin K, the fraction of the precursor pool which is tightly bound to the microsomal membrane appears to be the preferred substrate for the vitamin K dependent carboxylation. A small amount of completely carboxylated rather than a large amount of partially carboxylated products are produced during these incubations. Treatment with a Sepharose-bound prothrombin antibody demonstrated that about 20-25% of the total carboxylated microsomal protein precursor pool consists of prothrombin precursors. This treatment removes an equal amount of total carboxylase activity, and the enzyme is active in this carboxylase precursor-antibody complex.  相似文献   

11.
12.
The structure of the mixed, enzyme-cofactor disulfide intermediate of ketopropyl-coenzyme M oxidoreductase/carboxylase has been determined by X-ray diffraction methods. Ketopropyl-coenzyme M oxidoreductase/carboxylase belongs to a family of pyridine nucleotide-containing flavin-dependent disulfide oxidoreductases, which couple the transfer of hydride derived from the NADPH to the reduction of protein cysteine disulfide. Ketopropyl-coenzyme M oxidoreductase/carboxylase, a unique member of this enzyme class, catalyzes thioether bond cleavage of the substrate, 2-ketopropyl-coenzyme M, and carboxylation of what is thought to be an enzyme-stabilized enolacetone intermediate. The mixed disulfide of 2-ketopropyl-coenzyme M oxidoreductase/carboxylase was captured through crystallization of the enzyme with the physiological products of the reaction, acetoacetate, coenzyme M, and NADP, and reduction of the crystals with dithiothreitol just prior to data collection. Density in the active-site environment consistent with acetone, the product of reductive decarboxylation of acetoacetate, was revealed in this structure in addition to a well-defined hydrophobic pocket or channel that could be involved in the access for carbon dioxide. The analysis of this structure and that of a coenzyme-M-bound form provides insights into the stabilization of intermediates, substrate carboxylation, and product release.  相似文献   

13.
Addition of pyridine nucleotides to a microsomal system which is commonly used to study the vitamin K-dependent microsomal carboxylase promoted carboxylation of unknown endogenous compounds. Upon gel filtration, the carboxylated products were found to be of lower molecular weight (MW range 180–650) than the peptide substrate of the vitamin K-dependent carboxylase. Synthesis of these products was not inhibited by vitamin K antagonists nor did pyridine nucleotides stimulate carboxylation of the peptide substrate for vitamin K-dependent carboxylation in the absence of vitamin K. Thus the reaction appears to be mediated by a different enzyme. Dialysis of the microsomal system removed this pyridine nucleotide-stimulated carboxylation and activated the vitamin K-dependent carboxylation and epoxidation reactions. These data point out a possible artifact in the routine study of this enzyme and suggest that dialysis should be carried out prior to studying these two vitamin K-dependent reactions.  相似文献   

14.
Acetone degradation by cell suspensions of Desulfococcus biacutus was CO2 dependent, indicating initiation by a carboxylation reaction, while degradation of 3-hydroxybutyrate was not CO2 dependent. Growth on 3-hydroxybutyrate resulted in acetate accumulation in the medium at a ratio of 1 mol of acetate per mol of substrate degraded. In acetone-grown cultures no coenzyme A (CoA) transferase or CoA ligase appeared to be involved in acetone metabolism, and no acetate accumulated in the medium, suggesting that the carboxylation of acetone and activation to acetoacetyl-CoA may occur without the formation of a free intermediate. Catabolism of 3-hydroxybutyrate occurred after activation by CoA transfer from acetyl-CoA, followed by oxidation to acetoacetyl-CoA. In both acetone-grown cells and 3-hydroxybutyrate-grown cells, acetoacetyl-CoA was thioyltically cleaved to two acetyl-CoA residues and further metabolized through the carbon monoxide dehydrogenase pathway. Comparison of the growth yields on acetone and 3-hydroxybutyrate suggested an additional energy requirement in the catabolism of acetone. This is postulated to be the carboxylation reaction (delta G(o)' for the carboxylation of acetone to acetoacetate, +17.1 kJ.mol-1). At the intracellular acyl-CoA concentrations measured, the net free energy change of acetone carboxylation and catabolism to two acetyl-CoA residues would be close to 0 kJ.mol of acetone-1, if one mol of ATP was invested. In the absence of an energy-utilizing step in this catabolic pathway, the predicted intracellular acetoacetyl-CoA concentration would be 10(13) times lower than that measured. Thus, acetone catabolism to two acetyl-CoA residues must be accompanied by the utilization of teh energetic equivalent of (at lease) one ATP molecule. Measurement of enzyme activities suggested that assimilation of acetyl-CoA occurred through a modified citric acid cycle in which isocitrate was cleaved to succinate and glyoxylate. Malate synthase, condensing glyoxylate and acetyl-CoA, acted as an anaplerotic enzyme. Carboxylation of pyruvate of phosphoenolpyruvate could not be detected.  相似文献   

15.
Isocitrate dehydrogenase was purified from Hydrogenobacter thermophilus, and the corresponding gene was cloned and sequenced. The enzyme had similar structural properties to the isocitrate dehydrogenase of Escherichia coli, but differed in its catalytic properties, such as coenzyme specificity, pH dependency and kinetic parameters. Notably, the enzyme catalysed the oxidative decarboxylation of isocitrate, but not the reductive carboxylation of 2-oxoglutarate. The carboxylation reaction required the addition of cell extract and ATP-Mg, suggesting the existence of additional carboxylation factor(s). Further analysis of the carboxylation factor(s) resulted in the purification of two polypeptides. N-terminal amino acid sequencing revealed that the two polypeptides are homologues of pyruvate carboxylase with a biotinylated subunit, but do not catalyse pyruvate carboxylation. Pyruvate carboxylase was also purified, but was not active in stimulating isocitrate dehydrogenase. Isocitrate dehydrogenase, the novel biotin protein, ATP-Mg and NADH were essential for the reductive carboxylation of 2-oxoglutarate. These observations indicate that the novel biotin protein is an ATP-dependent factor, which is involved in the reverse (carboxylating) reaction of isocitrate dehydrogenase.  相似文献   

16.
Vitamin K-dependent (VKD) proteins are modified by the VKD carboxylase as they transit through the endoplasmic reticulum. In a reaction required for their activity, clusters of Glu's are converted to Gla's, and fully carboxylated VKD proteins are normally secreted. In mammalian cell lines expressing high levels of r-VKD proteins, however, under- and uncarboxylated VKD forms are observed. Overexpression of r-carboxylase does not improve carboxylation, but the lack of effect is not understood, and the intracellular events that occur during VKD protein carboxylation have not been investigated. We analyzed carboxylation in 293- and BHK cell lines expressing r-factor IX (fIX) and endogenous carboxylase or overexpressed r-carboxylase. The fIX secreted from the four cell lines was highly carboxylated, indicating fIX-carboxylase engagement during intracellular trafficking. The r-carboxylase was functional for carboxylation: overexpression resulted in a proportional increase in fIX-carboxylase complexes that yielded full fIX carboxylation. Interestingly, the carboxylated fIX product was not efficiently released from the carboxylase in r-fIX/r-carboxylase cells, resulting in decreased fIX secretion. r-Carboxylase overexpression changed the ratios of intracellular fIX to carboxylase, and we therefore developed an in vitro assay to test whether fIX levels affect release. FIX-carboxylase complexes were in vitro carboxylated with or without excess VKD substrate or propeptide. These analyses are the first to dissect the rates of release versus carboxylation and showed that release was much slower than carboxylation. In the absence of excess VKD substrate/propeptide, fIX in the fIX-carboxylase complex was fully carboxylated by 10 min, but 95% was still complexed with carboxylase after 30 min. The presence of excess VKD substrate/propeptide, however, led to a significant increase in VKD product release, possibly through a second propeptide binding site in the carboxylase. The intracellular analyses also showed that the fIX carboxylation rate was slow in vivo and was similar in r-fIX versus r-fIX/r-carboxylase cells, despite the large differences in carboxylase levels. The results suggest that the vitamin K cofactor may be limiting for carboxylation in the cell lines.  相似文献   

17.
Protease Ti, a new ATP-dependent protease in Escherichia coli, degrades proteins and ATP in a linked process, but these two hydrolytic functions are catalyzed by distinct components of the enzyme. To clarify the enzyme's specificity and the role of ATP, a variety of fluorogenic peptides were tested as possible substrates for protease Ti or its two components. Protease Ti rapidly hydrolyzed N-succinyl(Suc)-Leu-Tyr-amidomethylcoumarin (AMC) (Km = 1.3 mM) which is not degraded by protease La, the other ATP-dependent protease in E. coli. Protease Ti also hydrolyzed, but slowly, Suc-Ala-Ala-Phe-AMC and Suc-Leu-Leu-Val-Tyr-AMC. However, it showed little or no activity against basic or other hydrophobic peptides, including ones degraded rapidly by protease La. Component P, which contains the serine-active site, by itself rapidly degrades the same peptides as the intact enzyme. Addition of component A, which contains the ATP-hydrolyzing site and is necessary for protein degradation, had little or no effect on peptide hydrolysis. N-Ethylmaleimide, which inactivates the ATPase, did not inhibit peptide hydrolysis. In addition, this peptide did not stimulate the ATPase activity of component A (unlike protein substrates). Thus, although the serine-active site on component P is unable to degrade proteins, it is fully functional against small peptides in the absence of ATP. At high concentrations, Suc-Leu-Tyr-AMC caused a complete inhibition of casein breakdown, and diisopropylfluorophosphate blocked similarly the hydrolysis of both protein and peptide substrates. Thus, both substrates seem to be hydrolyzed at the same active site on component P, and ATP hydrolysis by component A either unmasks or enlarges this proteolytic site such that large proteins can gain access to it.  相似文献   

18.
Previously, we isolated an ATP-dependent proteolytic pathway in muscle, liver, and reticulocytes that requires ubiquitin and the enzymes which conjugate ubiquitin to proteins. We report here that skeletal muscle contains another soluble alkaline energy-dependent (but ubiquitin-independent) proteolytic activity. The cleavage of non-ubiquitinated protein substrates by the partially purified protease requires ATP hydrolysis since ATP in the absence of Mg2+, nonhydrolyzable ATP analogs, and pyrophosphate all fail to stimulate proteolysis. Proteolytic activity is also stimulated by UTP, CTP, and GTP, although not as effectively as by ATP (Km(ATP) = 0.027 mM). The enzyme is inactivated by the serine protease inhibitors diisopropyl fluorophosphate and 3,4-dichloroisocoumarin, but not by specific inhibitors of aspartic, thiol, or metalloproteases. It is maximally active at pH 8 and has a molecular weight of approximately 600,000. This new activity differs from the 720-kDa multicatalytic proteinase, but resembles the soluble ATP-dependent proteolytic system that we previously isolated from murine erythroleukemia cells.  相似文献   

19.
The vitamin K-dependent carboxylation of the exogenous pentapeptide, Phe-Leu-Glu-Glu-Ile, and endogenous liver microsomal protein was studied in solubilized rat liver microsomes. The MnCl2 stimulation of the vitamin K-dependent pentapeptide carboxylation rate, which is conducted at subsaturating concentrations of pentapeptide, is due to the cation's ability to lower the Km of the substrate. Although there are clear kinetic differences observed between the carboxylation rates for the pentapeptide and the endogenous protein substrates, several lines of evidence suggest that the same carboxylase system is responsible for both. These points of evidence are (i) the initial velocity of endogenous protein carboxylation is lowered in the presence of 3 mM pentapeptide; (ii) the presence of endogenous microsomal protein substrate causes an initial lag in pentapeptide carboxylation; and (iii) this initial lag phase is not observed when the total endogenous substrate pool is carboxylated by a preincubation reaction prior to the addition of pentapeptide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号