首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mosquitoes utilize the amino acids derived from blood meal protein to produce egg proteins. But the amino acids can also be used to produce egg lipid or can be oxidized for energy production. These latter two processes result in the release of nitrogen as toxic ammonia. Therefore, amino acids must be processed in such a way that amino acid nitrogen can be incorporated into non-toxic waste products. Proline is the predominant amino acid in the hemolymph of the adult female mosquito Aedes aegypti. After feeding on albumin meal, hemolymph proline levels increased five-fold over unfed levels, reached maximal levels in the first hours after feeding and remained high through oviposition. Hemolymph proline levels increased as the concentration of protein in the meal increased. When starved of sugar for 24 h prior to feeding on an albumin meal, hemolymph proline levels increased four-fold over the proline levels of non-starved mosquitoes. Proline levels after feeding on a protein deficient in essential amino acids, pike parvalbumin, increased to twice the levels of albumin fed mosquitoes. Based on these observations, we propose that mosquitoes utilize proline as a temporary nitrogen sink to store ammonia arising from deamination of blood meal amino acid.  相似文献   

2.
In the midgut of the mosquito Aedes aegypti, a vector of dengue and yellow fever, an intense release of heme and iron takes place during the digestion of a blood meal. Here, we demonstrated via chromatography, light absorption and mass spectrometry that xanthurenic acid (XA), a product of the oxidative metabolism of tryptophan, is produced in the digestive apparatus after the ingestion of a blood meal and reaches milimolar levels after 24 h, the period of maximal digestive activity. XA formation does not occur in the White Eye (WE) strain, which lacks kynurenine hydroxylase and accumulates kynurenic acid. The formation of XA can be diminished by feeding the insect with 3,4-dimethoxy-N-[4-(3-nitrophenyl)thiazol-2-yl] benzenesulfonamide (Ro-61-8048), an inhibitor of XA biosynthesis. Moreover, XA inhibits the phospholipid oxidation induced by heme or iron. A major fraction of this antioxidant activity is due to the capacity of XA to bind both heme and iron, which occurs at a slightly alkaline pH (7.5-8.0), a condition found in the insect midgut. The midgut epithelial cells of the WE mosquito has a marked increase in occurrence of cell death, which is reversed to levels similar to the wild type mosquitoes by feeding the insects with blood supplemented with XA, confirming the protective role of this molecule. Collectively, these results suggest a new role for XA as a heme and iron chelator that provides protection as an antioxidant and may help these animals adapt to a blood feeding habit.  相似文献   

3.
We previously described the adipokine CTRP1, which has up-regulated expression following exposure to the anti-diabetic drug rosiglitazone and increased circulating levels in adiponectin-null mice (Wong, G. W., Krawczyk, S. A., Kitidis-Mitrokostas, C., Revett, T., Gimeno, R., and Lodish, H. F. (2008) Biochem. J. 416, 161-177). Although recombinant CTRP1 lowers blood glucose in mice, its physiological function, mechanisms of action, and roles in metabolic stress remain unknown. Here, we show that circulating levels of CTRP1 are strikingly reduced in diet-induced obese mice. Overexpressing CTRP1 in transgenic mice improved insulin sensitivity and decreased high-fat diet-induced weight gain. Reduced adiposity resulted from enhanced fatty acid oxidation and energy expenditure, effects mediated by AMP-activated protein kinase (AMPK). In skeletal muscle of transgenic mice, AMPKα and its downstream target, acetyl-CoA carboxylase (ACC), were hyperphosphorylated, indicative of AMPK activation and ACC inhibition. Inactivation of ACC promotes mitochondrial fat oxidation. Consistent with the direct effect of CTRP1 on AMPK signaling, recombinant CTRP1 administration acutely stimulated muscle AMPKα and ACC phosphorylation in vivo. In isolated soleus muscle, recombinant CTRP1 activated AMPK signaling to increase fatty acid oxidation ex vivo, an effect abrogated by an AMPK inhibitor. These results provide the first in vivo evidence that CTRP1 is a novel regulator of fatty acid metabolism.  相似文献   

4.
5.
Acetyl-CoA carboxylase (ACCase) catalyses the carboxylation of acetyl-CoA, forming malonyl-CoA, which is used in the plastid for fatty acid synthesis and in the cytosol in various biosynthetic pathways including fatty acid elongation. In Arabidopsis thaliana, ACC1 and ACC2, two genes located in a tandem repeat within a 25-kbp genomic region near the centromere of chromosome 1, encode two multifunctional ACCase isoforms. Both genes, ACC1 and ACC2, appear to be ubiquitously expressed, but little is known about their respective function and importance. Here, we report the isolation and characterisation of two allelic mutants disrupted in the ACC1 gene. Both acc1-1 and acc1-2 mutations are recessive and embryo lethal. Embryo morphogenesis is impaired and both alleles lead to cucumber-like structures lacking in cotyledons, while the shortened hypocotyl and root exhibit a normal radial pattern organisation of the body axis. In this abnormal embryo, the maturation process still occurs. Storage proteins accumulate normally, while triacylglycerides (TAG) are synthesised at a lower concentration than in the wild-type seed. However, these TAG are totally devoid of very long chain fatty acids (VLCFA) and consequently enriched in C18:1, like all lipid fractions analysed in the mutant seed. These data demonstrate, in planta, the role of ACCase 1 in VLCFA elongation. Furthermore, this multifunctional enzyme also plays an unexpected and central function in embryo morphogenesis, especially in apical meristem development.  相似文献   

6.
The relationship between fatty acid binding proteins, ATP citrate lyase activity and fatty acid synthesis in developing human placenta has been studied. Fatty acid binding proteins reverse the inhibitory efect of palmitoyl-CoA and oleate on ATP citrate lyase and fatty acid synthesis. In the absence of these inhibitors fatty acid binding proteins activate ATP citrate lyase and stimulate [ 1-14 C] acetate incorporation into placental fatty acids indicating binding of endogenous inhibitors by these proteins. Thus these proteins regulate the supply of acetyl-CoA as well as the synthesis of fatty acids from that substrates. As gestation proceeds and more lipids are required by the developing placenta fatty acid binding protein content, activity of ATP citrate lyase and rate of fatty acid synthesis increase indicating a cause and efect relationship between the demand of lipids and supply of precursor fatty acids during human placental development.  相似文献   

7.
Blood feeding in Aedes aegypti is essential for reproduction, but also permits the mosquito to act as a vector for key human pathogens such as the Zika and dengue viruses. Wolbachia pipientis is an endosymbiotic bacterium that can manipulate the biology of Aedes aegypti mosquitoes, making them less competent hosts for many pathogens. Yet while Wolbachia affects other aspects of host physiology, it is unclear whether it influences physiological processes associated with blood meal digestion. To that end, we examined the effects of wMel Wolbachia infection in Ae. aegypti, on survival post-blood feeding, blood meal excretion, rate of oviposition, expression levels of key genes involved in oogenesis, and activity levels of trypsin blood digestion enzymes. We observed that wMel infection altered the rate and duration of blood meal excretion, delayed the onset of oviposition and was associated with a greater number of eggs being laid later. wMel-infected Ae. aegypti also had lower levels of key yolk protein precursor genes necessary for oogenesis. However, all of these effects occurred without a change in trypsin activity. These results suggest that Wolbachia infection may disrupt normal metabolic processes associated with blood feeding and reproduction in Ae. aegypti.  相似文献   

8.
Expression of the HER2 oncogene is increased in approximately 30% of human breast carcinomas and is closely correlated with the expression of fatty acid synthase (FASN). In the present study, we determined the mechanism by which FASN and acetyl-CoA carboxylase alpha (ACCalpha) could be induced by HER2 overexpression. SK-BR-3 and BT-474 cells, breast cancer cells that overexpress HER2, expressed higher levels of FASN and ACCalpha compared with MCF-7 and MDA-MB-231 breast cancer cells in which HER2 expression is low. The induction of FASN and ACCalpha in BT474 cells were not mediated by the activation of SREBP-1. Exogenous HER2 expression in MDA-MB-231 cells induced the expression of FASN and ACCalpha, and the HER2-mediated increase in ACCalpha and FASN was inhibited by both LY294002, a phosphatidylinositol 3-kinase inhibitor, and rapamycin, a mammalian target of rapamycin (mTOR) inhibitor. In addition, the activation of mTOR by the overexpression of RHEB in MDA-MB-231 cells increased the synthetic rates of both FASN and ACCalpha. On the other hand, FASN and ACCalpha were reduced in BT-474 cells by a blockade of the mTOR signaling pathway. These changes observed in their protein levels were not accompanied by changes in their mRNA levels. The 5'- and 3'-untranslated regions of both FASN and ACCalpha mRNAs were involved in selective translational induction that was mediated by mTOR signal transduction. These results strongly suggest that the major mechanism of HER2-mediated induction of FASN and ACCalpha in the breast cancer cells used in this study is translational regulation primarily through the mTOR signaling pathway.  相似文献   

9.
10.
To identify the novel inhibitor of de novo lipogenesis in hepatocytes, we screened for inhibitory activity of triglyceride (TG) synthesis using [14C]acetate in the human hepatoma cell line, HepG2. Using this assay system we discovered the novel compound, benzofuranyl α-pyrone (TEI-B00422). TEI-B00422 also inhibited the incorporation of acetate into the triglyceride (TG) fraction in rat primary hepatocytes. In HepG2 cells, the incorporation of oleate into TG was unaffected. TEI-B00422 inhibited rat hepatic acetyl-CoA carboxylase (ACC), Ki = 3.3 μM, in a competitive manner with respect to acety-CoA but not fatty acid synthase and acyl-CoA transferase/diacylglycerol. Thus, these results suggest that the inhibition of TG synthesis by TEI-B00422 is based on the inhibitory action of ACC. The structure of TEI-B00422 is totally different from the known inhibitors of ACC and may be useful in the development of therapeutic agents to combat a number of metabolic disorders.  相似文献   

11.
In anautogenous mosquitoes such as Aedes aegypti females the calcitonin-like diuretic hormone 31 (DH31) stimulates natriuretic fluid excretion from the Malpighian tubules (MTs) after a blood meal. We previously cloned and functionally characterized AedaeGPCRcal1 from A. aegypti, the ortholog of the Drosophila melanogaster DH31 receptor and immunolocalized it in the MTs. However, localization of the calcitonin receptor-like receptor 1 (GPCRCAL1) in the hindgut of any insect is unknown, and specifically, knowledge on its role in hindgut contraction in response to Aedae-DH31 peptide is lacking. We analyzed the expression of AedaeGPCRCAL1 in hindgut by western blot and immunohistochemisty, and evaluated its role in hindgut contractility by application of Aedae-DH31 before and after receptor RNA interference (RNAi). The receptor was detected as a 73 kDa band in western blots of hindgut and immunofluorescence revealed the receptor was expressed in hindgut circular and longitudinal muscles but not in the hindgut epithelial cells. In vitro, incubation in 1 μM solution of Aedae-DH31 peptide significantly increased the hindgut contraction frequency in normal mosquitoes. Hindguts from females treated with AedaeGPCRcal1 dsRNA and incubated with DH31 showed a reduction of 50% percent in their contraction frequency with respect to controls. These results suggest that DH31 hormone released from the brain post-blood meal has a direct and coordinative action on the excretory system, MTs and hindgut, by which AedaeGPCRCAL1 signaling stimulates MT primary urine secretion and hindgut contraction resulting in rapid postprandial fluid excretion.  相似文献   

12.
Glucose uptake into adipose and liver cells is known to up-regulate mRNA levels for various lipogenic enzymes such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). To determine whether the hexosamine biosynthesis pathway (HBP) mediates glucose regulation of mRNA expression, we treated primary cultured adipocytes for 18 h with insulin (25 ng/ml) and either glucose (20 mm) or glucosamine (2 mm). A ribonuclease protection assay was used to quantitate mRNA levels for FAS, ACC, and glycerol-3-P dehydrogenase (GPDH). Treatment with insulin and various concentrations of d-glucose increased mRNA levels for FAS (280%), ACC (93%), and GPDH (633%) in a dose-dependent manner (ED50 8-16 mm). Mannose similarly elevated mRNA levels, but galactose and fructose were only partially effective. l-glucose had no effect. Omission of glutamine from the culture medium markedly diminished the stimulatory effect of glucose on mRNA expression. Since glutamine is a crucial amide donor in hexosamine biosynthesis, we interpret these data to mean that glucose flux through the HBP is linked to regulation of lipogenesis through control of gene expression. Further evidence for hexosamine regulation was obtained using glucosamine, which is readily transported into adipocytes where it directly enters the HBP. Glucosamine was 15-30 times more potent than glucose in elevating FAS, ACC, and GPDH mRNA levels (ED50 approximately 0.5 mm). In summary: 1) GPDH, FAS, and ACC mRNA levels are upregulated by glucose; 2) glucose-induced up-regulation requires glutamine; and 3) mRNA levels for lipogenic enzymes are up-regulated by glucosamine. Hyperglycemia is the hallmark of diabetes mellitus and leads to insulin resistance, impaired glucose metabolism, and dyslipidemia. We postulate that disease pathophysiology may have a common underlying factor, excessive glucose flux through the HBP.  相似文献   

13.
We evaluated how the presence of sugar sources impacted the distribution of Aedes aegypti in different habitats in Durán , Ecuador. Land cover and normalized difference vegetation index maps were used to guide a random point sampling routine to select study grids (30 m × 30 m) in low vegetation (LV) and high vegetation (HV). Five individual plants, at one home in the LV and HV grid, were treated with a different colored, non‐attractive, 60% sucrose solution to determine mosquito feeding and movement. Sugar alone is not attractive to mosquitoes, so spraying vegetation with a dyed sugar solution can be used for visual determination of sugar feeding. Outdoor collections using BG sentinel traps and indoor collections using aspirators were conducted at the treatment home and with collection points at 20, 40, and 60 m surrounding the treatment home for three consecutive days. A total of 3,245 mosquitoes in two genera, Aedes and Culex, was collected. The proportion of stained Ae. aegypti females was 56.8% (510/898) and 0% for males. For Culex, 63.9% (248/388) females and 36.1% (140/388) males were collected stained. Aedes aegypti and Culex spp. were found up to 60 m stained in both LV and HV grids. Significantly more stained females Ae. aegypti were found inside homes compared to females and males of Culex spp. in both habitats. This study identifies that outdoor sugar feeding is a common behavior of Ae. aegypti and can be targeted as a control strategy in urban habitats in Latin America.  相似文献   

14.
The possible involvement of central noradrenergic and/or adrenergic circuits in central mechanisms controlling free fatty acids and glucose levels was investigated in conscious pigeons. The effects of intracerebroventricular injections of noradrenaline (80 nmol) or adrenaline (80 nmol) on plasma free fatty acids and glucose concentrations were examined. The possible role of the autonomic nervous system, of sympathetic terminals and of pituitary hormone release in the metabolic responses induced by intracerebroventricular injections of adrenaline and noradrenaline was investigated by systemic pretreatment with a ganglionic blocker (hexamethonium, 1 mg/100 g), guanethidine (5 mg/100 g), and somatostatin (15 μg/100 g), respectively, 15 min before intracerebroventricular administration of adrenaline, noradrenaline or vehicle. Intracerebroventricular noradrenaline injections strongly increased plasma free fatty acid concentration but evoked no change in blood glucose levels, while adrenaline treatment increased glycemia without affecting free fatty acid levels. Hexamethonium did not block the increase in plasma free fatty acids induced by noradrenaline, while somatostatin pretreatment abolished noradrenaline-induced lipolysis during the experimental period. Adrenaline-induced hyperglycemia was blocked by systemic injections of somatostatin, hexamethonium and guanethidine. The present results suggest that: (1) adrenergic and noradrenergic mechanisms may participate in central control of blood glucose and free fatty acids, respectively, as observed in mammals, (2) noradrenaline-induced lipolysis may be mediated by pituitary mechanisms, and (3) postganglionic sympathetic fibers, possibly innervating the endocrine pancreas, may be involved in adrenaline-induced hyperglycemia. Accepted: 14 April 2000  相似文献   

15.
Lipids from microalgae have become a valuable product with applications ranging from biofuels to human nutrition. While changes in fatty acid (FA) content and composition under nitrogen limitation are well documented, the involved molecular mechanisms are poorly understood. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the FA synthesis and elongation pathway. Plastidial and cytosolic ACCases provide malonyl-CoA for de novo FA synthesis in the plastid and FA elongation in the endoplasmic reticulum, respectively. The present study aimed at investigating the expression of plastidial and cytosolic ACCase in Chromera velia and Isochrysis aff. galbana (TISO) and their impact on FA content and elongation level when grown under nitrogen-deplete conditions. In C. velia, plastidial ACCase was significantly upregulated during nitrogen starvation and with culture age, strongly correlating with increased FA content. Conversely, plastidial ACCase of I. aff. galbana was not differentially expressed in nitrogen-deplete cultures, but upregulated during the logarithmic phase of nitrogen-replete cultures. In contrast to plastidial ACCase, the cytosolic ACCase of C. velia was downregulated with culture age and nitrogen-starvation, strongly correlating with an increase in medium-chain FAs. In conclusion, the expression of plastidial and cytosolic ACCase changed with growth phase and nutrient status in a species-specific manner and nitrogen limitation did not always result in FA accumulation.  相似文献   

16.
The effects of Triton WR 1339, starvation and cholesterol diet on the activities of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and acetyl-CoA carboxylase and on the rates of mevalonic acid (MVA) biosynthesis from acetyl-CoA and malonyl-CoA in the soluble (140 000 g) and microsomal fractions of rat liver, on the rate of incorporation of these substrates into squalene, cholesterol and lanosterol in the rat liver postmitochondrial fraction and on the rate of fatty acid biosynthesis was studied. The administration of Triton WR 1339 (200 mg per 100 g of body weight twice) stimulated the activity of HMG-CoA reductase and MVA biosynthesis from acetyl-CoA and malonyl-CoA in the intact and solubilized microsomal fractions and had no effect on these parameters in the soluble fraction. Starvation for 36 hrs did not cause inhibition of the reductase activity or MVA biosynthesis from both substrates in the soluble fraction. Alimentary cholesterol significantly increased the activity of HMG-CoA reductase, had no effect on the rate of MVA biosynthesis from acetyl-CoA and stimulated the malonyl-CoA incorporation in to MVA in the soluble fraction. Starvation an alimentary cholesterol inhibited the HMG-CoA reductase activity and MVA biosynthesis from both substrates in the solubilized microsomal fraction. Triton WR 1339 stimulated 4--19-fold the lipid formation in the total unsaponified fraction and its components i.e. squalene, lanosterol, cholesterol, from acetyl-CoA and only insignificantly (1,2--1,7-fold) increased malonyl-CoA incorporation into these compounds. Starvation and alimentary cholesterol repressed lanosterol and cholesterol biosynthesis from acetyl-CoA, decreased malonyl-CoA incorporation into these sterols and had no influence on squalene biosynthesis from the two substrates. Triton WR 1339 and starvation inhibited the acetyl-CoA carboxylase activity, unaffected by alimentary cholesterol. No significant changes in the rate of fatty acid biosynthesis from the substrates were observed. The data obtained provide evidence for the existence of autonomic pathways of MVA biosynthesis localized in the soluble and microsomal fractions of rat liver. The pathway of MVA biosynthesis in the soluble fraction is less sensitive to regulatory factors. Sterol biosynthesis from malonyl-CoA is also more resistant to regulatory effects than sterol biosynthesis from acetyl-CoA. This suggests that HMG-CoA reductase localized in the soluble fraction takes part in MVA and sterol biosynthesis from malonyl-CoA.  相似文献   

17.
ATP-binding cassette transporter A1 (ABCA1) mediates the rate-limiting step in high density lipoprotein (HDL) particle formation, and its expression is regulated primarily by oxysterol-dependent activation of liver X receptors. We previously reported that ABCA1 expression and HDL formation are impaired in the lysosomal cholesterol storage disorder Niemann-Pick disease type C1 and that plasma HDL-C is low in the majority of Niemann-Pick disease type C patients. Here, we show that ABCA1 regulation and activity are also impaired in cholesteryl ester storage disease (CESD), caused by mutations in the LIPA gene that result in less than 5% of normal lysosomal acid lipase (LAL) activity. Fibroblasts from patients with CESD showed impaired up-regulation of ABCA1 in response to low density lipoprotein (LDL) loading, reduced phospholipid and cholesterol efflux to apolipoprotein A-I, and reduced α-HDL particle formation. Treatment of normal fibroblasts with chloroquine to inhibit LAL activity reduced ABCA1 expression and activity, similar to that of CESD cells. Liver X receptor agonist treatment of CESD cells corrected ABCA1 expression but failed to correct LDL cholesteryl ester hydrolysis and cholesterol efflux to apoA-I. LDL-induced production of 27-hydroxycholesterol was reduced in CESD compared with normal fibroblasts. Treatment with conditioned medium containing LAL from normal fibroblasts or with recombinant human LAL rescued ABCA1 expression, apoA-I-mediated cholesterol efflux, HDL particle formation, and production of 27-hydroxycholesterol by CESD cells. These results provide further evidence that the rate of release of cholesterol from late endosomes/lysosomes is a critical regulator of ABCA1 expression and activity, and an explanation for the hypoalphalipoproteinemia seen in CESD patients.  相似文献   

18.
Pregnancy is associated with hyperlipidemia and hypercholesterolemia in humans. These changes take place to support fetal growth and development, and modifications of these maternal concentrations may influence lipids and cholesterol synthesis in the dam, fetus and placenta. Administration of a 0.2% enriched cholesterol diet (ECD) during rabbit gestation significantly increased cholesterol and triglyceride (TG) levels in maternal livers and decreased fetal weight by 15%. Here we used Western blot analysis to examine the impact of gestation and 0.2% ECD on the expression levels of fatty acid synthase (FAS), HMGR and SREBP-1/2, which are involved in either lipid or cholesterol synthesis. We confirmed that gestation modifies the hepatic and circulating lipid profile in the mother. Our data also suggest that the maternal liver mainly supports lipogenesis, while the placenta plays a key role in cholesterol synthesis. Thus, our data demonstrate a decrease in HMGR protein levels in dam livers by feeding an ECD. In the placenta, SREBPs are highly expressed, and the ECD supplementation increased nuclear SREBP-1/2 protein levels. In addition, our results show a decrease in FAS protein levels in non-pregnant liver and in the liver of offspring from ECD-treated animals. Finally, our data suggest that the placenta does not modify its own cholesterol synthesis in response to an increase in circulating cholesterol. However, the dam liver compensates for this increase by essentially decreasing the level of HMGR expression. Because HMGR and FAS expressions do not correlate with the circulating lipid profile, it would be interesting to find which genes are then targeted by SREBP-1/2 during gestation.  相似文献   

19.
Dairy fat contains high amounts of saturated fatty acids (FA), which are associated with cardiovascular disease (CVD) risk. Manipulation of dairy cows nutrition allows to decrease the saturated FA content of milk fat, and is associated with increases either in conjugated linoleic acid (CLA) and trans-11-C18:1 contents, or in trans-10-C18:1 content. CLA putatively exhibits beneficial properties on CVD risk, whereas trans FA are suspected to be detrimental. The present study compared the effects of a trans-10-C18:1-rich butter (T10 butter), a trans-11-C18:1+CLA-rich butter (T11-CLA butter) and a standard butter (S butter) on lipid parameters linked to the CVD risk and fatty streaks. Thirty-six White New Zealand rabbits were fed one of the three butters (12% of the diet, plus 0.2% cholesterol) for 6 (experiment 1) or 12 (experiment 2) weeks. Liver lipids, plasma lipids and lipoprotein concentrations (experiments 1 and 2) and aortic lipid deposition (experiment 2) were determined. The T10 butter increased VLDL-cholesterol compared with the two others, and total and LDL-cholesterol compared with the T11-CLA butter ( P < 0.05). The T10 butter also increased non-HDL/HDL ratio and aortic lipid deposition compared with the T11-CLA butter ( P < 0.05). The T11-CLA butter non-significantly reduced aortic lipid deposition compared with the S butter, and decreased HDL-cholesterol and increased liver triacyglycerols compared with the two other butters (< 0.05). These results suggest that, compared with the S butter, the T10 butter had detrimental effects on plasma lipid and lipoprotein metabolism in rabbits, whereas the T11-CLA butter was neutral or tended to reduce the aortic lipid deposition.  相似文献   

20.
ATP1-111, a suppressor of the slow-growth phenotype of yme1Δ lacking mitochondrial DNA is due to the substitution of phenylalanine for valine at position 111 of the alpha-subunit of mitochondrial ATP synthase (Atp1p in yeast). The suppressing activity of ATP1-111 requires intact beta (Atp2p) and gamma (Atp3p) subunits of mitochondrial ATP synthase, but not the stator stalk subunits b (Atp4p) and OSCP (Atp5p). ATP1-111 and other similarly suppressing mutations in ATP1 and ATP3 increase the growth rate of wild-type strains lacking mitochondrial DNA. These suppressing mutations decrease the growth rate of yeast containing an intact mitochondrial chromosome on media requiring oxidative phosphorylation, but not when grown on fermentable media. Measurement of chronological aging of yeast in culture reveals that ATP1 and ATP3 suppressor alleles in strains that contain mitochondrial DNA are longer lived than the isogenic wild-type strain. In contrast, the chronological life span of yeast cells lacking mitochondrial DNA and containing these mutations is shorter than that of the isogenic wild-type strain. Spore viability of strains bearing ATP1-111 is reduced compared to wild type, although ATP1-111 enhances the survival of spores that lacked mitochondrial DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号