首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
A SIM-ultaneous role for SUMO and ubiquitin   总被引:3,自引:0,他引:3  
Ubiquitin and ubiquitin-like proteins (Ubls) share a beta-GRASP fold and have key roles in cellular growth and suppression of genome instability. Despite their common fold, SUMO and ubiquitin are classically portrayed as distinct, and they can have antagonistic roles. Recently, a new family of proteins, the small ubiquitin-related modifier (SUMO)-targeted ubiquitin ligases (STUbLs), which directly connect sumoylation and ubiquitylation, has been discovered. Uniquely, STUbLs use SUMO-interaction motifs (SIMs) to recognize their sumoylated targets. STUbLs are global regulators of protein sumoylation levels, and cells lacking STUbLs display genomic instability and hypersensitivity to genotoxic stress. The human STUbL, RNF4, is implicated in several diseases including cancer, highlighting the importance of characterizing the cellular functions of STUbLs.  相似文献   

4.
5.
6.
7.
Intrinsic antiviral resistance represents the first line of intracellular defence against virus infection. During herpes simplex virus type-1 (HSV-1) infection this response can lead to the repression of viral gene expression but is counteracted by the viral ubiquitin ligase ICP0. Here we address the mechanisms by which ICP0 overcomes this antiviral response. We report that ICP0 induces the widespread proteasome-dependent degradation of SUMO-conjugated proteins during infection and has properties related to those of cellular SUMO-targeted ubiquitin ligases (STUbLs). Mutation of putative SUMO interaction motifs within ICP0 not only affects its ability to degrade SUMO conjugates, but also its capacity to stimulate HSV-1 lytic infection and reactivation from quiescence. We demonstrate that in the absence of this viral countermeasure the SUMO conjugation pathway plays an important role in mediating intrinsic antiviral resistance and the repression of HSV-1 infection. Using PML as a model substrate, we found that whilst ICP0 preferentially targets SUMO-modified isoforms of PML for degradation, it also induces the degradation of PML isoform I in a SUMO modification-independent manner. PML was degraded by ICP0 more rapidly than the bulk of SUMO-modified proteins in general, implying that the identity of a SUMO-modified protein, as well as the presence of SUMO modification, is involved in ICP0 targeting. We conclude that ICP0 has dual targeting mechanisms involving both SUMO- and substrate-dependent targeting specificities in order to counteract intrinsic antiviral resistance to HSV-1 infection.  相似文献   

8.
On the road to repair: PCNA encounters SUMO and ubiquitin modifications   总被引:7,自引:0,他引:7  
Matunis MJ 《Molecular cell》2002,10(3):441-442
The molecular events and targets regulated by the RAD6 pathway, which mediates postreplication DNA repair, have remained elusive. Now, ubiquitin and SUMO modification of proliferating cell nuclear antigen (PCNA) is shown to be induced by DNA damage and linked to components of the RAD6 pathway.  相似文献   

9.
A superfamily of protein tags: ubiquitin,SUMO and related modifiers   总被引:27,自引:0,他引:27  
The biological functions of many proteins are altered by their covalent attachment to polypeptide modifiers. The best-known example of this type of modification is ubiquitination. Ubiquitin has a well-documented role in targeting proteins for degradation by the proteasome, but additional effects of protein ubiquitination are now being uncovered. Furthermore, multiple polypeptides that are distinct from, but related to, ubiquitin are also enzymatically coupled to target macromolecules, and these ubiquitin-like proteins participate in diverse biological processes such as DNA repair, autophagy and signal transduction.  相似文献   

10.
Yu H 《Molecular cell》2011,42(4):409-410
Ubiquitin ligases (E3s) and ubiquitin-specific proteases (USPs) dynamically oppose each other during ubiquitination. In this issue of Molecular Cell, Huang et al. (2011) provide a counterintuitive example of a USP residing in an E3 complex, and establish Usp37 as a gatekeeper of APC/C-mediated ubiquitination of cyclin A.  相似文献   

11.
In an attempt to produce glucagon-like peptide-1 (GLP-1) using recombinant Escherichia coli, ubiquitin (Ub) as a fusion partner was fused to GLP-1 with the 6-lysine tag (K6) for simple purification. Despite the high solubility of ubiquitin, the fusion protein K6UbGLP-1 was expressed mainly as insoluble inclusion bodies in E. coli. In order to elucidate this phenomenon, various N- and C-terminal truncates and GLP-1 mutants of K6UbGLP-1 were constructed and analyzed for their characteristics by various biochemical and biophysical methods. The experiment results obtained in this study clearly demonstrated that the insoluble aggregation of K6UbGLP-1 was attributed to the electrostatic interaction between the N-terminal 6-lysine tag and the C-terminal GLP-1 before the completion of folding which might be one of the reasons for protein misfolding frequently observed in many foreign proteins introduced with charged amino acid residues such as the His tag and the protease recognition sites. The application of a cation exchanger for neutralizing the positive charge of the 6-lysine tag in solid-phase refolding of K6UbGLP-1 successfully suppressed the electrostatic interaction-driven aggregation even at a high protein concentration, resulting in properly folded K6UbGLP-1 for GLP-1 production.  相似文献   

12.
Gross chromosomal rearrangements (GCRs) are frequently observed in many cancers. Previously, we showed that inactivation of Rad5 or Rad18, ubiquitin ligases (E3) targeting for proliferating cell nuclear antigen (PCNA), increases the de novo telomere addition type of GCR (S. Smith, J. Y. Hwang, S. Banerjee, A. Majeed, A. Gupta, and K. Myung, Proc. Natl. Acad. Sci. USA 101:9039-9044, 2004). GCR suppression by Rad5 and Rad18 appears to be exerted by the RAD5-dependent error-free mode of bypass DNA repair. In contrast, Siz1 SUMO ligase and another ubiquitin ligase, Bre1, which target for PCNA and histone H2B, respectively, have GCR-supporting activities. Inactivation of homologous recombination (HR) proteins or the helicase Srs2 reduces GCR rates elevated by the rad5 or rad18 mutation. GCRs are therefore likely to be produced through the restrained recruitment of an HR pathway to stalled DNA replication forks. Since this HR pathway is compatible with Srs2, it is not a conventional form of recombinational pathway. Lastly, we demonstrate that selection of proper DNA repair pathways to stalled DNA replication forks is controlled by the Mec1-dependent checkpoint and is executed by cooperative functions of Siz1 and Srs2. We propose a mechanism for how defects in these proteins could lead to diverse outcomes (proper repair or GCR formation) through different regulation of DNA repair machinery.  相似文献   

13.
Posttranslational modification by ubiquitin and SUMO is recognized as an effective means of controlling the stability, localization or activity of intracellular proteins, thereby contributing to the regulation of many biological processes. Over the past few years, it has become apparent that the two modification systems often communicate and jointly affect the properties of common substrate proteins, in some cases by being targeted to the same site. However, although SUMO and ubiquitin might have very different effects on a given target, their actions can rarely be explained by simple competition. This article gives an overview of target proteins that can serve as substrates for both SUMO and ubiquitin to highlight the diversity of regulatory strategies that result from the crosstalk between the two modification systems.  相似文献   

14.
SUMO-1 (small ubiquitin-related modifier-1) is a ubiquitin-like family member that is conjugated to its substrates through three discrete enzymatic steps, activation (involving the E1 enzyme (SAE1/SAE2)), conjugation (involving the E2 enzyme), and substrate modification (through the cooperation of the E2 and E3 protein ligases). The adenoviral protein Gam1 inactivates E1, both in vitro and in vivo, followed by SAE1/SAE2 degradation. We have shown here that Gam1 possesses a C-terminal SOCS domain that allows its interaction with two cellular cullin RING (really interesting new gene) ubiquitin ligases. We demonstrate that Gam1 is necessary for the recruitment of SAE1/SAE2 into Cul2/5-EloB/C-Roc1 ubiquitin ligase complexes and for subsequent SAE1 ubiquitylation and degradation. The degradation of SAE2 is not tightly related to Gam1 but is a consequent effect of SAE1 disappearance. These results reveal the mechanism by which a viral protein inactivates and subsequently degrades an essential cellular enzyme, arresting a key regulatory pathway.  相似文献   

15.
16.
17.
18.
SUMO蛋白酶(Ulp1)是切割小分子泛素修饰(SUMO)融合蛋白获得天然N端靶蛋白的一种工具酶,具有酶切效率高、特异性好等优点。但现有市售SUMO蛋白酶Ulp1价格昂贵、操作复杂,限制了SUMO融合体系的运用。利用基因工程技术,合成基因ulp1(Leu403-Lys621),并在N端和C端加入多聚组氨酸标签(His_6),构建重组表达载体psv T7-ulp1,将重组质粒转入大肠杆菌BL21(DE3)和BL21 trx B(DE3)中。经过高通量筛选技术快速确定最优的表达条件为采用BL21(DE3)作为表达宿主,转接后7h加入IPTG,IPTG的终浓度为0.1mmol/L,诱导时间为16h,最终蛋白质表达量占菌体总蛋白质量的34.5%,重组蛋白Ulp1的表达量为190mg/L,通过Ni-NTA一步纯化即可得到纯度95%以上的Ulp1。通过酶切反应,测定酶活为5.19U/μl,比酶活为5.23×10~4U/mg,是先前报道比酶活的1.87倍,通过酶活动力学分析,Ulp1的表观米氏常数K_m=0.359g/L,V_m=5.10μg/(ml·min)。将SUMO融合表达体系用于单链抗体(single-chain antibody fragment,scFv)的表达,得到可溶的SUMO-scFv融合蛋白,使用表达的Ulp1进行酶切并纯化,获得纯度高于90%且N端不含多余氨基酸的scFv,操作步骤简单,显著改善了scFv在大肠杆菌中难以高效可溶性表达纯化的现状。  相似文献   

19.
Posttranslational modification of proliferating cell nuclear antigen (PCNA), an essential processivity clamp for DNA polymerases, by ubiquitin and SUMO contributes to the coordination of DNA replication, damage tolerance, and mutagenesis. Whereas ubiquitination in response to DNA damage promotes the bypass of replication-blocking lesions, sumoylation during S phase is damage independent. As both modifiers target the same site on PCNA, an antagonistic action of SUMO on ubiquitin-dependent DNA damage tolerance has been proposed. We now present evidence that the apparent negative effect of SUMO on lesion bypass is not due to competition with ubiquitination but is rather mediated by the helicase Srs2p, which affects genome stability by suppressing unscheduled homologous recombination. We show that Srs2p physically interacts with sumoylated PCNA, which contributes to the recruitment of the helicase to replication forks. Our findings suggest a mechanism by which SUMO and ubiquitin cooperatively control the choice of pathway for the processing of DNA lesions during replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号