首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shoji JY  Kikuma T  Arioka M  Kitamoto K 《PloS one》2010,5(12):e15650
Filamentous fungi consist of continuum of multinucleate cells called hyphae, and proliferate by means of hyphal tip growth. Accordingly, research interest has been focusing on hyphal tip cells, but little is known about basal cells in colony interior that do not directly contribute to proliferation. Here, we show that autophagy mediates degradation of basal cell components in the filamentous fungus Aspergillus oryzae. In basal cells, enhanced green fluorescent protein (EGFP)-labeled peroxisomes, mitochondria, and even nuclei were taken up into vacuoles in an autophagy-dependent manner. During this process, crescents of autophagosome precursors matured into ring-like autophagosomes to encircle apparently whole nuclei. The ring-like autophagosomes then disappeared, followed by dispersal of the nuclear material throughout the vacuoles, suggesting the autophagy-mediated degradation of whole nuclei. We also demonstrated that colony growth in a nutrient-depleted medium was significantly inhibited in the absence of functional autophagy. This is a first report describing autophagy-mediated degradation of whole nuclei, as well as suggesting a novel strategy of filamentous fungi to degrade components of existing hyphae for use as nutrients to support mycelial growth in order to counteract starvation.  相似文献   

2.
《Fungal biology》2020,124(7):613-618
Most fungi are multinucleated organisms. In some fungi, they have asynchronous nuclei in the same cytoplasm. We analyzed a cell-cycle regulation mechanism using a model fungus Neurospora crassa, which can make heterokaryon cells. G1/S cyclin CLN-1 and cyclin-dependent kinase CDC-2 were tagged with different fluorescence in different strains and expressed. By forming a heterokaryon strain of these, two different fluorescence-tagged proteins were expressed in the same cytoplasm. CDC-2 was localized in all nuclei, whereas CLN-1 was not detected in most of the nuclei and was dispersed in the cytoplasm with small granular clusters. This indicates that in multinucleated fungi, cell-cycle regulators, similar to other proteins, are shared around the nuclei regardless of different cell-cycle stages. Moreover, each nucleus can select and use a special cell-cycle regulator only when it is necessary. Fungal nuclei may have a novel pickup mechanism of necessary proteins from their cytoplasm at the point of use.  相似文献   

3.
Pairings between heterokaryons and homokaryons of Agaricomycete fungi (he-ho pairings) can lead to either heterokaryotization of the homokaryon or displacement of the homokaryotic nucleus through migration of nuclei from the heterokaryon into the homokaryon. In species of Agaricomycetes with multinucleate cells (>2 nuclei per cell), he-ho pairings could result in the stable or transient formation of a hypha with three genetically different nuclei (trikaryons). In this study, he-ho pairings were conducted using the multinucleate Agaricomycete Heterobasidion parviporum to determine whether trikaryons can be formed in the laboratory and whether nuclear genotype affects migration and heterokaryon formation. Nuclei were tracked by genotyping the heterokaryotic mycelium using nucleus-specific microsatellite markers. The data indicated that certain nuclear combinations were favored, and that nuclei from some strains had a higher rate of migration. A high percentage of trikaryons (19 %) displaying three microsatellite alleles per locus were identified among subcultures of the he-ho pairings. Using hyphal tip and conidial isolation, we verified that nuclei of three different mating types can inhabit the same mycelium, and one of the trikaryotic strains was judged to be semi-stable over multiple sub-culturing steps, with some hyphal tips that retained three alleles and others that reduced to two alleles per locus. These results demonstrate that nuclear competition and selection are possible outcomes of heterokaryon-homokaryon interactions in H. parviporum and confirm that ratios of component nuclei in heterokaryons are not strictly 1:1. The high rate of trikaryon formation in this study suggests that fungi with multinucleate cells may have the potential for greater genetic diversity and recombination relative to dikaryotic fungi.  相似文献   

4.
Nuclear movement in filamentous fungi   总被引:4,自引:0,他引:4  
One of the most striking features of eukaryotic cells is the organization of specific functions into organelles such as nuclei, mitochondria, chloroplasts, the endoplasmic reticulum, vacuoles, peroxisomes or the Golgi apparatus. These membrane-surrounded compartments are not synthesized de novo but are bequeathed to daughter cells during cell division. The successful transmittance of organelles to daughter cells requires the growth, division and separation of these compartments and involves a complex machinery consisting of cytoskeletal components, mechanochemical motor proteins and regulatory factors. Organelles such as nuclei, which are present in most cells in a single copy, must be precisely positioned prior to cytokinesis. In many eukaryotic cells the cleavage plane for cell division is defined by the location of the nucleus prior to mitosis. Nuclear positioning is thus absolutely crucial in the unequal cell divisions that occur during development and embryogenesis. Yeast and filamentous fungi are excellent organisms for the molecular analysis of nuclear migration because of their amenability to a broad variety of powerful analytical methods unavailable in higher eukaryotes. Filamentous fungi are especially attractive models because the longitudinally elongated cells grow by apical tip extension and the organelles are often required to migrate long distances. This review describes nuclear migration in filamentous fungi, the approaches used for and the results of its molecular analysis and the projection of the results to other organisms.  相似文献   

5.
采用石蜡切片技术对白及Bletilla striata、黄花白及B. ochracea和小白及B. formosana的栽培种在生长期、花期、果期和休眠期的菌根解剖结构特征、菌根真菌入侵方式和菌丝特征等进行观察研究,以进一步了解菌根真菌与白及属植物的共生关系。结果表明,3种白及属植物的菌根真菌均是通过通道细胞侵入根皮层薄壁细胞,侵入后菌丝靠近皮层细胞的细胞核分布,最终在皮层细胞形成菌丝团;真菌侵染率和菌丝形态随着植物生长发育变化而变化,3种白及属植物均表现为花期和生长期的真菌侵染率较高,以丝状菌丝团为主,而果期和休眠期较低,以团块状菌丝团居多;同一时期不同植物类型的菌根特征无显著差异。  相似文献   

6.
Vegetative nuclei of fungi Ceratocystis fagacearum and Fusarium oxysporum were studied both in the living condition with phase-contrast microscopy and after fixation and staining by HCl-Giemsa, aceto-orcein, and acid fuchsin techniques. Nucleoli, chromosomes, centrioles, spindles, and nuclear envelopes were seen in living hyphae of both fungi. The entire division process occurred within an intact nuclear envelope. Spindles were produced between separating daughter centrioles. At metaphase the chromosomes became attached to the spindle at different points. In F. oxysporum the metaphase chromosomes were clear enough to allow counts to be made, and longitudinal splitting of the chromosomes into chromatids was observed. Anaphase was characterized in both fungi by separation of chromosomes to poles established by the centrioles, and in F. oxysporum anaphase separation of chromosomes was observed in vivo. Continued elongation of the spindles further separated the daughter nuclei. Maturing daughter nuclei of both fungi were quite motile; and in C. fagacearum the centriole preceded the bulk of the nucleus during migration. The above observations on living cells were corroborated by observations on fixed and stained material.  相似文献   

7.
Meiotic division in Fomes annosus is similar to that reported for other higher fungi. Nuclei in dikaryotic cells prior to fusion in the basidia are long, thin, and double-stranded with paired heterochromatic areas. Various stages of prophase are similar to those in higher plants. At metaphase I and II seven pairs of chromosomes are aligned in a circle and the chromatids migrate to opposite poles established by two centrioles. The centrioles function in the movement of the nuclei in the basidium, nuclear alignment prior to fusion, establishment of poles for division, and the migration of the nuclei into the basidiospore. After nuclei migrate into the basidiospore, they soon divide, producing a binucleate spore.  相似文献   

8.
Summary— Positional and structural modifications were demonstrated in nuclei of leek cells, after establishment of a symbiosis with two vesicular-arbuscular fungi, Glomus versiforme and Glomus E3. By combining light, immuno-electron microscopy and morphometry, the fungi were shown to have a direct effect on the host nuclear morphology: the effect was confined to a specific plant tissue (the cortical parenchyma) and to a moment of the fungal morphogenesis (the arbuscule). When they branch to form the complex structures called arbuscules in the inner parenchyma cells, the host nucleus migrates from the periphery of these cells towards their centre. In addition, it becomes larger and lobed, with a decondensed chromatin. A monoclonal antibody that mostly binds to the condensed chromatin revealed a significant decrease in gold labelling intensity over the nuclei of the colonized cells. These modifications suggest that the nuclear migration and the changes in chromatin organization are related to the modifications in gene expression observed during the establishment of mycorrhizal symbiosis.  相似文献   

9.
Dikaryons, cells with two haploid nuclei contributed by the members of a mating pair, are part of the life cycle of many filamentous fungi, but the molecular mechanisms underlying the division of dikaryons are largely unknown. We found that the fission yeast Schizosaccharomyces pombe has a latent ability to divide as a dikaryon. Cells capable of restarting the mitotic cycle with two nuclei were prepared by transient inactivation of the septation initiation network. Close pairing of the two nuclei before mitosis was dependent on minus-end-directed kinesin Klp2p and was essential for propagation as a dikaryon. The two spindles extended in opposite directions, keeping their old spindle pole bodies at the prospective site of cell division until the mid-anaphase. The spindles then overlapped, exchanging the inner nuclei. Finally, twin mitosis was followed by a single cytokinesis, producing two daughter dikaryons carrying copies of the original pair of nuclei.  相似文献   

10.
The review examines the structured organization of interphase nuclei using a range of examples from the plants, animals, and fungi. Nuclear organization is shown to be an important phenomenon in cell differentiation and development. The review commences by examining nuclei in dividing cells and shows that the organization patterns can be dynamic within the time frame of the cell cycle. When cells stop dividing, derived differentiated cells often show quite different nuclear organizations. The developmental fate of nuclei is divided into three categories. (i) The first includes nuclei that undergo one of several forms of polyploidy and can themselves change in structure during the course of development. Possible function roles of polyploidy is given. (ii) The second is nuclear reorganization without polyploidy, where nuclei reorganize their structure to form novel arrangements of proteins and chromosomes. (iii) The third is nuclear disintegration linked to programmed cell death. The role of the nucleus in this process is described. The review demonstrates that recent methods to probe nuclei for nucleic acids and proteins, as well as to examine their intranuclear distribution in vivo, has revealed much about nuclear structure. It is clear that nuclear organization can influence or be influenced by cell activity and development. However, the full functional role of many of the observed phenomena has still to be fully realized.  相似文献   

11.
The review examines the structured organization of interphase nuclei using a range of examples from the plants, animals, and fungi. Nuclear organization is shown to be an important phenomenon in cell differentiation and development. The review commences by examining nuclei in dividing cells and shows that the organization patterns can be dynamic within the time frame of the cell cycle. When cells stop dividing, derived differentiated cells often show quite different nuclear organizations. The developmental fate of nuclei is divided into three categories. (i) The first includes nuclei that undergo one of several forms of polyploidy and can themselves change in structure during the course of development. Possible function roles of polyploidy is given. (ii) The second is nuclear reorganization without polyploidy, where nuclei reorganize their structure to form novel arrangements of proteins and chromosomes. (iii) The third is nuclear disintegration linked to programmed cell death. The role of the nucleus in this process is described. The review demonstrates that recent methods to probe nuclei for nucleic acids and proteins, as well as to examine their intranuclear distribution in vivo, has revealed much about nuclear structure. It is clear that nuclear organization can influence or be influenced by cell activity and development. However, the full functional role of many of the observed phenomena has still to be fully realized.  相似文献   

12.
13.
Sexual reproduction, mutation, and reassortment of nuclei increase genotypic diversity in rust fungi. Sexual reproduction is inherent to rust fungi, coupled with their coevolved plant hosts in native pathosystems. Rust fungi are hypothesised to exchange nuclei by somatic hybridisation with an outcome of increased genotypic diversity, independent of sexual reproduction. We provide criteria to demonstrate whether somatic exchange has occurred, including knowledge of parental haplotypes and rejection of fertilisation in normal rust life cycles.  相似文献   

14.
Arbuscular mycorrhizas are a widespread symbiosis between soil fungi and plant roots. Flow cytometry, after DNase I partial digestion and DAPI staining, and light and electron microscopy were used to analyse chromatin condensation and nuclear conditions in mycorrhizal and control roots of Allium porrum . The 2C peak, detected by flow cytometry, split into two peaks representing two populations of nuclei, one more resistant and one more susceptible to the enzyme action. The microscopic analyses showed the presence of pyknotic and chromatolytic nuclei, two typical features of senescence. In order to quantify the senescing process, a terminal deoxynucleotidyl transferase assay was performed on extracted nuclei, later analysed by flow cytometry. The numbers of senescing nuclei and their DNA cleavage were higher in control plants. Our results show the existence of senescing nuclei in cortical cells of the bulbous monocotyledon A. porrum and the delaying effect of arbuscular mycorrhizas on senescence.  相似文献   

15.
All orchids have an obligate relationship with mycorrhizal symbionts. Most orchid mycorrhizal fungi are classified in the form-genus Rhizoctonia. This group includes anamorphs of Tulasnella, Ceratobasidium, and Thanatephorus. Rhizoctonia can be classified according to the number of nuclei in young cells (multi-, bi-, and uninucleate). From nine Puerto Rican orchids we isolated 108 Rhizoctonia-like fungi. Our isolates were either bi- or uninucleate, the first report of uninucleate Rhizoctonia-like fungi as orchid endophytes. We sequenced the internal transcribed spacer (ITS) region of nuclear ribosomal DNA from 26 isolates and identified four fungal lineages, all related to Ceratobasidium spp. from temperate regions. Most orchid species hosted more than one lineage, demonstrating considerable variation in mycorrhizal associations even among related orchid species. The uninucleate condition was not a good phylogenetic character in mycorrhizal fungi from Puerto Rico. All four lineages were represented by fungi from Tolumnia variegata, but only one lineage included fungi from Ionopsis utricularioides. Tropical epiphytic orchids appear to vary in degree of specificity in their mycorrhizal interactions more than previously thought.  相似文献   

16.
The filamentous fungi Aspergillus oryzae and A. niger grow by apical extension of multinucleate hyphae that are subdivided into compartments by cross-walls called septa. Submerged cultivation, image analysis, and fluorescence microscopy were used to study the role of the carbon source on mitosis and hyphal extension in these fungi. In the two species of Aspergillus, the length of the apical compartment, the number of nuclei in the apical compartment, and the hyphal diameter were regulated in response to the surrounding glucose concentration. A long apical compartment with many nuclei was the result of a high glucose concentration, whereas a short apical compartment with few nuclei was the result of a low glucose concentration. This is the first study of the influence of glucose concentration on nuclear mitosis and septation in filamentous fungi grown submerged. In addition, this is the first time a model of the duplication cycle in higher filamentous fungi has been simulated.  相似文献   

17.
Symbiotic and parasitic relationships can alter the degree of endoreduplication in plant cells, and a limited number of studies have documented this occurrence in root cells colonized by arbuscular mycorrhizal (AM) fungi. However, this phenomenon has not been tested in a wide range of plant species, including species that are non-endopolyploid and those that do not associate with AM fungi. We grew 37 species belonging to 16 plant families, with a range of genome sizes and a range in the degree of endopolyploidy. The endoreduplication index (EI) was compared between plants that were inoculated with Glomus irregulare and plants that were not inoculated. Of the species colonized with AM fungi, 22 of the 25 species had a significant increase in endopolyploid root nuclei over non-mycorrhizal plants, including species that do not normally exhibit endopolyploidy. Changes in the EI were strongly correlated (R(2) = 0.619) with the proportion of root length colonized by arbuscules. No change was detected in the EI for the 12 non-mycorrhizal species. This work indicates that colonization by symbiotic fungi involves a mechanism to increase nuclear DNA content in roots across many angiosperm groups and is likely linked to increased metabolism and protein production.  相似文献   

18.
Ethidium bromide, (0.1% solution in ethanol-water, 1:3, v/v) was used to stain nuclei in mycelia and spores of different fungi. Nuclei looked bright brick red under green excitation. This method is very efficient, specific, reproducible and cost-effective.  相似文献   

19.
Cytological evidence for known associations observed between mitochondria and somatic (vegetative) nuclei in several fungi was noted. It is suggested that such associations may play some role in nuclear migration and in the so-called ‘ploidy’ of these nuclei.  相似文献   

20.
Ethidium bromide, (0.1% solution in ethanol-water, 1:3, v/v) was used to stain nuclei in mycelia and spores of different fungi. Nuclei looked bright brick red under green excitation. This method is very efficient, specific, reproducible and cost-effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号