首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The obesity epidemic has intensified efforts to understand the mechanisms controlling adipose tissue development. Adipose tissue is generally classified as white adipose tissue (WAT), the major energy storing tissue, or brown adipose tissue (BAT), which mediates non-shivering thermogenesis. It is hypothesized that brite adipocytes (brown in white) may represent a third adipocyte class. The recent realization that brown fat exist in adult humans suggests increasing brown fat energy expenditure could be a therapeutic strategy to combat obesity. To understand adipose tissue development, several groups are tracing the origins of mature adipocytes back to their adult precursor and embryonic ancestors. From these studies emerged a model that brown adipocytes originate from a precursor shared with skeletal muscle that expresses Myf5-Cre, while all white adipocytes originate from a Myf5-negative precursors. While this provided a rational explanation to why BAT is more metabolically favorable than WAT, recent work indicates the situation is more complex because subsets of white adipocytes also arise from Myf5-Cre expressing precursors. Lineage tracing studies further suggest that the vasculature may provide a niche supporting both brown and white adipocyte progenitors; however, the identity of the adipocyte progenitor cell is under debate. Differences in origin between adipocytes could explain metabolic heterogeneity between depots and/or influence body fat patterning particularly in lipodystrophy disorders. Here, we discuss recent insights into adipose tissue origins highlighting lineage-tracing studies in mice, how variations in metabolism or signaling between lineages could affect body fat distribution, and the questions that remain unresolved. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

2.
Previous studies demonstrated reduced weight of abdominal white adipose tissue depots and of carcass fat in capsaicin-desensitized (Cap-Des) rats up to 8 months after treatment. The objective of the present study was to find out whether aging-associated obesity and hyperplasia of retroperitoneal white adipose tissue was prevented in older (13.5 month old) Cap-Des rats, one year after treatment with Cap (done when they were 1.5 months old). The prevalence of obesity is known to increase in rats by this age. Abdominal white adipose tissue depots weighed less in old Cap-Des rats, both epididymal (9% less) and retroperitoneal (30% less). The number of mature white adipocytes was 28% less in the retroperitoneal depot but was not significantly different in the epididymal depot. Adipocyte size was not different. Carcass fat was less, both total and as percent of body weight. Food intake was normal for their reduced body size. The exponential increase in retroperitoneal white adipose tissue weight characteristic of aging rats that are becoming obese was virtually absent in Cap-Des rats. We conclude that lack of function of capsaicin-sensitive afferent autonomic nerves, known to be destroyed in Cap-Des rats, results in an alteration in energy balance conducive to leanness. We suggest that the attenuated age-associated increase in circulating CGRP (derived mainly from capsaicin-sensitive nerves) in the Cap-Des rat results in a lower degree of aging-associated insulin-resistance, hence in a lesser degree of obesity.  相似文献   

3.
The glucose-dependent insulinotropic polypeptide receptor (GIPr) has been implicated in high fat diet-induced obesity and is proposed as an anti-obesity target despite an uncertainty regarding the mechanism of action. To independently investigate the contribution of the insulinotropic effects and the direct effects on adipose tissue, we generated transgenic mice with targeted expression of the human GIPr to white adipose tissue or beta-cells, respectively. These mice were then cross-bred with the GIPr knock-out strain. The central findings of the study are that mice with GIPr expression targeted to adipose tissue have a similar high fat diet -induced body weight gain as control mice, significantly greater than the weight gain in mice with a general ablation of the receptor. Surprisingly, this difference was due to an increase in total lean body mass rather than a gain in total fat mass that was similar between the groups. In contrast, glucose-dependent insulinotropic polypeptide-mediated insulin secretion does not seem to be important for regulation of body weight after high fat feeding. The study supports a role of the adipocyte GIPr in nutrient-dependent regulation of body weight and lean mass, but it does not support a direct and independent role for the adipocyte or beta-cell GIPr in promoting adipogenesis.  相似文献   

4.
A small synthetic peptide sequence of human growth hormone (hGH), AOD-9401, has lipolytic and antilipogenic activity similar to that of the intact hormone. Here we report its effect on lipid metabolism in rodent models of obesity and in human adipose tissue to assess its potential as a pharmacological agent for the treatment of human obesity. C57BL/6J (ob/ob) mice were orally treated with either saline (n = 8) or AOD-9401 (n = 10) for 30 days. From day 16 onward, body weight gain in AOD-9401-treated animals was significantly lower than that of saline-treated controls. Food consumption did not differ between the two groups. Analyses of adipose tissue ex vivo revealed that AOD-9401 significantly reduced lipogenic activity and increased lipolytic activity in this tissue. Increased catabolism was also reflected in an acute increase in energy expenditure and glucose and fat oxidation in ob/ob mice treated with AOD-9401. In addition, AOD-9401 increased in vitro lipolytic activity and decreased lipogenic activity in isolated adipose tissue from obese rodents and humans. Together, these findings indicate that oral administration of AOD-9401 alters lipid metabolism in adipose tissue, resulting in a reduction of weight gain in obese animals. The marked lipolytic and antilipogenic actions of AOD-9401 in human adipose tissues suggest that this small synthetic hGH peptide has potential in the treatment of human obesity.  相似文献   

5.
6.
Mammalian adipose tissues are broadly divided into white adipose tissue (WAT) and thermogenic fat tissue (brown adipose tissue and beige adipose tissue). Uncoupling protein 1 (UCP1) is the central protein in thermogenesis, and cells that exhibit induced UCP1 expression and appear scattered throughout WAT are called beige adipocytes, and their induction in WAT is referred to as “beiging”. Beige adipocytes can differentiate from preadipocytes or convert from mature adipocytes. UCP1 was thought to contribute to non-shivering thermogenesis; however, recent studies demonstrated the presence of UCP1-independent thermogenic mechanisms. There is evidence that thermogenic fat tissue contributes to systemic energy expenditure even in human beings. This review discusses the roles that thermogenic fat tissue plays in energy consumption and offers insight into the possibility and challenges associated with its application in the treatment of obesity and type 2 diabetes.  相似文献   

7.
8.
Brown adipose tissue is a thermogenic organ that dissipates stored energy as heat to maintain body temperature. This process may also provide protection from development of diet-induced obesity. We report that the bioactive lipid mediator lysophosphatidic acid (LPA) markedly decreases differentiation of cultured primary brown adipocyte precursors, whereas potent selective inhibitors of the LPA-generating enzyme autotaxin (ATX) promote differentiation. Transgenic mice overexpressing ATX exhibit reduced expression of brown adipose tissue-related genes in peripheral white adipose tissue and accumulate significantly more fat than wild-type controls when fed a high-fat diet. Our results indicate that ATX and its product LPA are physiologically relevant negative regulators of brown fat adipogenesis and are consistent with a model in which a decrease in mature peripheral brown adipose tissue results in increased susceptibility to diet-induced obesity in mice.  相似文献   

9.
10.
11.
Despite the magnitude of the obesity epidemic, the mechanisms that contribute to increases in fat mass and to differences in fat depots are still poorly understood. Prostanoids have been proposed as potent adipogenic hormones, e.g. metabolites of prostaglandin J2 (PGJ2) bind and activate PPARγ. We hypothesize that an altered expression of enzymes in PGJ2 synthesis may represent a novel pathogenic mechanism in human obesity. We characterized adipose depot-specific expression of enzymes in PGJ2 synthesis, prostaglandin transporter and PPARγ isoforms. Paired omental and subcutaneous adipose tissue samples were obtained from 26 women undergoing elective abdominal surgery and gene expression examined in whole tissue and cultured preadipocytes using an Affymetrix cDNA microarray technique and validated with quantitative real-time PCR. All enzymes involved in prostaglandin synthesis were expressed in both adipose tissues. Expression of prostaglandin synthase-1 (PGHS1), prostaglandin D synthase (PTGDS), human prostaglandin transporter (hPGT) and PPARγ2 was higher in OM adipose tissue compared to SC, whereas 17β-hydroxysteroid dehydrogenase 5 (AKR1C3) showed predominance in SC adipose tissue. In SC adipose tissue, PGHS1 mRNA expression increased with BMI. The differential, depot-specific expression of key enzymes involved in transport, synthesis and metabolism of prostaglandins may have an important impact upon fat cell biology and may help to explain some of the observed depot-specific differences. In addition, the positive correlation between PGHS1 and BMI offers the novel hypothesis that the regulation of PG synthesis may have a role in determining fat distribution in human obesity.  相似文献   

12.
Obesity and its associated disorders are increasing in companion animals, particularly in dogs. We have investigated whether genes encoding key adipokines, some of which are implicated in the pathologies linked to obesity, are expressed in canine adipose tissues. Using RT-PCR, mRNAs encoding the following adipokines were detected in dog white adipose tissue: adiponectin, leptin, angiotensinogen, plasminogen activator inhibitor-1, IL-6, haptoglobin, metallothionein-1 and 2, and nerve growth factor. The adipokine mRNAs were present in all fat depots examined. Fractionation of adipose tissue by collagenase digestion showed that each gene was expressed in mature adipocytes. The mRNA for TNFalpha was not evident in adipose tissue, but was detected in isolated adipocytes. Fibroblastic preadipocytes from gonadal white fat were differentiated into adipocytes in primary culture and adipokine expression examined before and after differentiation (days 0 and 11, respectively). Each adipokine gene expressed in dog white adipocytes was also expressed in the differentiated cells. These results demonstrate that dog white adipose tissue expresses major adipokine genes, expression being in the adipocytes. Investigation of adipokine production and function will provide insight into the mechanisms involved in obesity-related pathologies in dogs and serve as a model for the related human diseases.  相似文献   

13.
It is generally accepted that the location of body fat deposits may play an important role in the risk of developing some endocrine and metabolic diseases. We have studied the effect of food restriction and food restriction/refeeding, often practiced by individuals trying to lose body weight, on the expression of genes which are associated with obesity and certain metabolic disorders in inguinal, epididymal, and perirenal rat white adipose tissues. Gene expression was analyzed by real time semi-quantitative polymerase chain reaction and by Western blot. We found that prolonged food restriction caused a significant decrease of body and adipose tissue mass as well as the increase of Scd1 and Elovl6 gene expressions in all main rat adipose tissue deposits. Food restriction/refeeding caused increases of: a) Scd1 and Elovl6 mRNA levels in adipose tissue, b) Scd1 protein level and c) desaturation index in adipose tissue. The increased expression of both genes was unusually high in inguinal adipose tissue. The results suggest that the increase of Scd1 and Elovl6 gene expressions in white adipose tissue by prolonged food restriction and prolonged food restriction/refeeding may contribute to accelerated fat recovery that often occurs in individuals after food restriction/refeeding.  相似文献   

14.
The role of brown adipose tissue in the regulation of energy balance and maintenance of body weight is well known in rodents. Recently, interest in this tissue has re-emerged due to the realization of active brown-like adipose tissue in adult humans and inducible brown-like adipocytes in white adipose tissue depots in response to appropriate stimuli (“browning process”). Brown-like adipocytes that appear in white fat depots have been called “brite” (from brown-in-white) or “beige” adipocytes and have characteristics similar to brown adipocytes, in particular the capacity for uncoupled respiration. There is controversy as to the origin of these brite/beige adipocytes, but regardless of this, induction of the browning of white fat represents an attractive potential strategy for the management and treatment of obesity and related complications. Here, the different physiological, pharmacological and dietary determinants that have been linked to white-to-brown fat remodeling and the molecular mechanisms involved are reviewed in detail. In the light of available data, interesting therapeutic perspectives can be expected from the use of specific drugs or food compounds able to induce a program of brown fat differentiation including uncoupling protein 1 expression and enhancing oxidative metabolism in white adipose cells. However, additional research is needed, mainly focused on the physiological relevance of browning and its dietary control, where the use of ferrets and other non-rodent animal models with a more similar adipose tissue organization and metabolism to humans could be of much help. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.  相似文献   

15.
Developmental origin of fat: tracking obesity to its source   总被引:8,自引:0,他引:8  
Gesta S  Tseng YH  Kahn CR 《Cell》2007,131(2):242-256
The development of obesity not only depends on the balance between food intake and caloric utilization but also on the balance between white adipose tissue, which is the primary site of energy storage, and brown adipose tissue, which is specialized for energy expenditure. In addition, some sites of white fat storage in the body are more closely linked than others to the metabolic complications of obesity, such as diabetes. In this Review, we consider how the developmental origins of fat contribute to its physiological, cellular, and molecular heterogeneity and explore how these factors may play a role in the growing epidemic of obesity.  相似文献   

16.
The role of white and brown adipose tissues in energy metabolism is well established. However, the existence of brown fat in adult humans was until very recently a matter of debate, and the molecular mechanisms underlying brown adipocyte development remained largely unknown. In 2009, several studies brought direct evidence for functional brown adipose tissue in adults. New factors involved in brown fat cell differentiation have been identified. Moreover, work on the origin of fat cells took an unexpected path with the recognition of different populations of brown fat cell precursors according to the anatomical location of the fat depots: a precursor common to skeletal muscle cells and brown adipocytes from brown fat depots, and a progenitor cell common to white adipocytes and brown adipocytes that appear in certain conditions in white fat depots. There is also mounting evidence that mature white adipocytes, including human fat cells, can be converted into brown fat-like adipocytes, and that the typical fatty acid storage phenotype of white adipocyte can be altered towards a fat utilization phenotype. These data open up new opportunities for the development of drugs for obesity and its metabolic and cardiovascular complications.  相似文献   

17.
18.
Many epidemiological studies suggested a correlation between obesity and asthma. However, little is known about the molecular details explaining this correlation. Here, we show that asthma decreased body weight of asthmatic male mice fed with high fat diet via increasing energy expenditure and insulin sensitivity. The increase of energy expenditure was mainly due to upregulation of pAMPK and Sirt1. The activation of AMPK/Sirt1/PGC1α signaling promoted the expression of the thermogenic genes like ucp1, PRDM16, cidea, Elovl3, PPARα, which occurred in brown adipocyte tissue and subcutaneous white adipose tissue. Besides, by activating IL33/ILC2/AAMac pathway in subcutaneous white adipose tissue, asthma promoted subcutaneous white adipose tissue into beige fat. In addition, insulin sensitivity was improved in the asthmatic male mice by decreasing the expression of G6Pase in the liver, which was recapitulated in HepG2. In human, we found that Body Mass Index (BMI) and waist circumference were significantly lower in males suffering asthma compared with the control in the National Health and Nutrition Examination Survey (NHANES) cohort. These data together suggest asthma in males decreases obesity by improving the metabolism function of brown and subcutaneous adipose tissue, and decreasing insulin resistant in the liver.  相似文献   

19.
Thermogenesis (non-exercise activity) in brown adipose tissue (BAT) promotes energy expenditure because of its higher number of mitochondria than white adipose tissue (WAT). The main function of thermogenesis in BAT can counteract obesity through the dissipation of calories as heat. N-butylidenephthalide (BP) is a natural derivative from Angelica sinensis, a Chinese herb that has been used for thousands of years. In this report, we demonstrated that BP improved the metabolic profiles of mice with high fat diet-induced obesity (DIO) by preventing weight gain, improving serum blood parameters, enhancing energy expenditure, stimulating white fat browning, and reversing hepatic steatosis. Further investigations demonstrated that BP administration upregulated the mRNA expression of beige (CD137, TMEM26) and brown fat selected genes (UCP1, PRDM16, PGC-1α, PPARγ) in white adipose tissues. In vitro studies, BP treatment increased multilocular lipid droplet levels, induced β-adrenergic receptor (cAMP/PKA) and AMP-activated protein kinase (AMPK) signaling (AMPK/acetyl-CoA carboxylase/SIRT1), and increased oxygen consumption in murine differentiated beige adipocytes, and the effects of BP were blocked by an AMPK inhibitor. BP promoted the interaction of AMPK with PGC-1α in beige adipocytes. Our findings provide novel insights into the application of BP in regulating energy metabolism and suggest its utility for clinical use in the treatment of obesity and related diseases.  相似文献   

20.
Autotaxin (ATX) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA). ATX is secreted by adipose tissue and its expression is enhanced in obese/insulin-resistant individuals. Here, we analyzed the specific contribution of adipose-ATX to fat expansion associated with nutritional obesity and its consequences on plasma LPA levels. We established ATX(F/F)/aP2-Cre (FATX-KO) transgenic mice carrying a null ATX allele specifically in adipose tissue. FATX-KO mice and their control littermates were fed either a normal or a high-fat diet (HFD) (45% fat) for 13 weeks. FATX-KO mice showed a strong decrease (up to 90%) in ATX expression in white and brown adipose tissue, but not in other ATX-expressing organs. This was associated with a 38% reduction in plasma LPA levels. When fed an HFD, FATX-KO mice showed a higher fat mass and a higher adipocyte size than control mice although food intake was unchanged. This was associated with increased expression of peroxisome proliferator-activated receptor (PPAR)γ2 and of PPAR-sensitive genes (aP2, adiponectin, leptin, glut-1) in subcutaneous white adipose tissue, as well as in an increased tolerance to glucose. These results show that adipose-ATX is a negative regulator of fat mass expansion in response to an HFD and contributes to plasma LPA levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号