首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The origin of Hordelymus genome has been debated for years, and no consensus conclusion was reached. In this study, we sequenced and analyzed the RPB2 (RNA polymerase subunit II) gene from Hordelymus europaeus (L.) Harz, and its potential diploid ancestor species those were suggested in previous studies. The focus of this study was to examine the phylogenetic relationship of Hordelymus genomes with its potential donor Hordeum, Psathyrostachys, and Taeniatherum species. Two distinguishable copies of sequences were obtained from H. europaeus. The obvious difference between the two copies of sequences is a 24 bp indel (insertion/deletion). Phylogenetic analysis showed a strong affinity between Hordeum genome and Hordelymus with 85% bootstrap support. These results suggested that one genome in tetraploid H. europaeus closely related to the genome in Hordeum species. Another genome in H. europaeus is sister to the genomes in Triticeae species examined here, which corresponds well with the recently published EF-G data. No obvious relationship was found between Hordelymus and either Ta genome donor, Taeniatherum caput-medusae or Ns genome donor, Psathyrostachys juncea. Our data does not support the presence of Ta and Ns genome in H. europaeus, and further confirms that H. europaeus is allopolyploid.  相似文献   

2.
Klebsiella pneumoniae is an important bacterial pathogen of man that is commonly associated with opportunistic and hospital-associated infections. Increasing levels of multiple-antibiotic resistance associated with this species pose a major emerging clinical problem. This organism also occurs naturally in other diverse environments, including the soil. Consistent with its varied lifestyle and membership of the Enterobacteriaceae family, K. pneumoniae genomes exhibit highly plastic architecture comprising a core genome backbone interspersed with numerous and varied alien genomic islands. In this study the size of the presently known K. pneumoniae pan-genome gene pool was estimated through analysis of complete sequences of three chromosomes and 31 plasmids belonging to K. pneumoniae strains. In addition, using a PCR-based strategy the genomic content of eight tRNA/tmRNA gene sites that serve as DNA insertion hotspots were investigated in 28 diverse environmental and clinical strains of K. pneumoniae. Sequencing and characterization of five newly identified horizontally-acquired tmRNA-associated islands further expanded the archived K. pneumoniae gene pool to a total of 7648 unique gene members. Large-scale investigation of the content of tRNA/tmRNA hotspots will be useful to identify and/or survey accessory sequences dispersed amongst hundreds to thousands of members of many key bacterial species.  相似文献   

3.
4.
5.
6.
The use of rrs (16S rRNA) gene is widely regarded as the “gold standard” for identifying bacteria and determining their phylogenetic relationships. Nevertheless, multiple copies of this gene in a genome is likely to give an overestimation of the bacterial diversity. In each of the 50 Streptococcus genomes (16 species, 50 strains), 4–7 copies of rrs are present. The nucleotide sequences of these rrs genes show high similarity within and among genomes, which did not allow unambiguous identification. A genome-wide search revealed the presence of 27 gene sequences common to all the Streptococcus species. Digestion of these 27 gene sequences with 10 type II restriction endonucleases (REs) showed that unique RE digestion in purH gene is sufficient for clear cut identification of 30 genomes belonging to 16 species. Additional gene-RE combinations allowed identification of another 15 strains belonging to S. pneumoniae, S. pyogenes, and S. suis. For the rest 5 strains, a combination of 2 genes was required for identifying them. The proposed strategy is likely to prove helpful in proper detection of pathogens like Streptococcus.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0561-5) contains supplementary material, which is available to authorized users.  相似文献   

7.
Characterization of regions flanking a known sequence within a genome, known as genome walking, is a cornerstone technique in modern genetic analysis. In the present work we have developed a new PCR-dependent, directional genome walking protocol based on the unique circularization property of a novel DNA ligase, CircLigase. In the first step, PCR based primer extension is performed using a phosphorylated primer, designed to extend from the boundary of the known sequence, into the flanking region. This linear amplification results in the generation of single-stranded (ss) DNA, which is then circularized using CircLigase. Using the hyperbranching activity of Phi29 DNA polymerase, the circular ssDNA is then linearized by rolling circle amplification, resulting in copious amounts of double stranded concatameric DNA. Nested primers are used to amplify the flanking sequence using inverse PCR. The products are resolved on an agarose gel and the bands whose mobility change due to the nested location of the primer combination used are identified, extracted, and cloned into a plasmid vector for sequencing. Empirical proof for this concept was generated on two antimicrobial biosynthetic genes in Pseudomonas sp. LBUM300. Using the hcnB and phlD genes as starting points, ca 1 kb of flanking sequences were successfully isolated. The use of locus specific primers ensured both directionality and specificity of the walks, alleviating the generation of spurious amplicons, typically observed in randomly primed walking protocols. The presented genome walking protocol could be applied to any microbial genome and requires only 100-150 bp of prior sequence information. The proposed methodology does not entail laborious testing of restriction enzymes or adaptor ligation. This is the first report of a successful application of the novel ligase enzyme, CircLigase for genomic walking purposes.  相似文献   

8.
Solanum lycopersicum and Solanum tuberosum are agriculturally important crop species as they are rich sources of starch, protein, antioxidants, lycopene, beta-carotene, vitamin C, and fiber. The genomes of S. lycopersicum and S. tuberosum are currently available. However the linear strings of nucleotides that together comprise a genome sequence are of limited significance by themselves. Computational and bioinformatics approaches can be used to exploit the genomes for fundamental research for improving their varieties. The comparative genome analysis, Pfam analysis of predicted reviewed paralogous proteins was performed. It was found that S. lycopersicum proteins belong to more families, domains and clans in comparison with S. tuberosum. It was also found that mostly intergenic regions are conserved in two genomes followed by exons, intron and UTR. This can be exploited to predict regions between genomes that are similar to each other and to study the evolutionary relationship between two genomes, leading towards the development of disease resistance, stress tolerance and improved varieties of tomato.  相似文献   

9.
10.
11.
Here, we report the RNA polymerase beta-subunit gene (rpoB) as a new molecular marker for the identification of the Cronobacter species. The results indicated that members of the Cronobacter genus are more easily discriminated by rpoB sequencing than 16S rRNA sequencing, and reliable identification could be achieved by rpoB gene sequence comparison.  相似文献   

12.
We determined the complete mitochondrial genome sequences for Bursaphelenchus mucronatus, one species of pinewood nematode. The genome is a circular-DNA molecule of 14,583 bp (195 bp smaller than its congener Bursaphelenchus xylophilus) and contains 12 protein-coding genes (lacking atp8), 22 tRNA genes, and 2 rRNA genes encoded in the same direction, consistent with most other nematodes. Based on sequence comparison of mtDNA genomes, we developed a PCR-based molecular assay to differentiate B. xylophilus (highly pathogenic) and B. mucronatus (relatively less virulent) using species-specific primers. The molecular identification system employs multiplex-PCR and is very effective and reliable for discriminating these Bursaphelenchus species, which are economically important, but difficult to distinguish based on morphology. The comparison of the mitochondrial genomes and molecular identification system of the two species of Bursaphelenchus spp. should provide a rich source of genetic information to support the effective control and management (quarantine) of the pine wilt disease caused by pinewood nematodes.  相似文献   

13.

Background

Lateral gene transfer (LGT) from bacterial Wolbachia endosymbionts has been detected in ~20% of arthropod and nematode genome sequencing projects. Many of these transfers are large and contain a substantial part of the Wolbachia genome.

Results

Here, we re-sequenced three D. ananassae genomes from Asia and the Pacific that contain large LGTs from Wolbachia. We find that multiple copies of the Wolbachia genome are transferred to the Drosophila nuclear genome in all three lines. In the D. ananassae line from Indonesia, the copies of Wolbachia DNA in the nuclear genome are nearly identical in size and sequence yielding an even coverage of mapped reads over the Wolbachia genome. In contrast, the D. ananassae lines from Hawaii and India show an uneven coverage of mapped reads over the Wolbachia genome suggesting that different parts of these LGTs are present in different copy numbers. In the Hawaii line, we find that this LGT is underrepresented in third instar larvae indicative of being heterochromatic. Fluorescence in situ hybridization of mitotic chromosomes confirms that the LGT in the Hawaii line is heterochromatic and represents ~20% of the sequence on chromosome 4 (dot chromosome, Muller element F).

Conclusions

This collection of related lines contain large lateral gene transfers composed of multiple Wolbachia genomes that constitute >2% of the D. ananassae genome (~5 Mbp) and partially explain the abnormally large size of chromosome 4 in D. ananassae.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1097) contains supplementary material, which is available to authorized users.  相似文献   

14.
Glutamate synthase, glutamine α-ketoglutarate amidotransferase (often abbreviated as GOGAT) is a key enzyme in the early stages of ammonia assimilation in bacteria, algae and plants, catalyzing the reductive transamidation of the amido nitrogen from glutamine to α-ketoglutarate to form two molecules of glutamate. Most bacterial glutamate synthases consist of a large and small subunit. The genomes of three Pyrococcus species harbour several open reading frames which show homology with the small subunit of glutamate synthase. There are no open reading frames which may be coding for a large subunit responsible for the glutamate formation in these pyrococcal genomes.In this work, two open reading frames PH0876 and PH1873 from P. horikoshii were cloned and expressed in Escherichia coli as soluble proteins. Both proteins show NADPH-dependent oxidoreductase activity using artificial electron acceptors iodonitrotetrazolium chloride at thermophilic conditions. It is possible that these open reading frames are the products of gene duplication and that they are the early forms of an electron transfer domain in archaea which may have later contributed to many electron transfer enzymes.  相似文献   

15.

Background

Alteromonas is a genus of marine bacteria that is very easy to isolate and grow in the laboratory. There are genomes available of the species Alteromonas macleodii from different locations around the world and an Alteromonas sp. isolated from a sediment in Korea. We have analyzed the genomes of two strains classified by 16S rRNA (>99% similarity) as the recently described species Alteromonas australica, and isolated from opposite ends of the world; A. australica DE170 was isolated in the South Adriatic (Mediterranean) at 1000 m depth while A. australica H17T was isolated from a sea water sample collected in St Kilda Beach, Tasman Sea.

Results

Although these two strains belong to a clearly different species from A. macleodii, the overall synteny is well preserved and the flexible genomic islands seem to code for equivalent functions and be located at similar positions. Actually the genomes of all the Alteromonas species known to date seem to preserve synteny quite well with the only exception of the sediment isolate SN2. Among the specific metabolic features found for the A. australica isolates there is the degradation of xylan and production of cellulose as extracellular polymeric substance by DE170 or the potential ethanol/methanol degradation by H17T.

Conclusions

The genomes of the two A. australica isolates are not more different than those of strains of A. macleodii isolated from the same sample. Actually the recruitment from metagenomes indicates that all the available genomes are found in most tropical-temperate marine samples analyzed and that they live in consortia of several species and multiple clones within each. Overall the hydrolytic activities of the Alteromonas genus as a whole are impressive and fit with its known capabilities to exploit sudden inputs of organic matter in their environment.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-483) contains supplementary material, which is available to authorized users.  相似文献   

16.
Rickettsia are endosymbionts of arthropods, some of which are vectored to vertebrates where they cause disease. Recently, it has been found that some Rickettsia strains harbour conjugative plasmids and others encode some conjugative machinery within the bacterial genome. We investigated the distribution of these conjugation genes in a phylogenetically diverse collection of Rickettsia isolated from arthropods. We found that these genes are common throughout the genus and, in stark contrast to other genes in the genome, conjugation genes are frequently horizontally transmitted between strains. There is no evidence to suggest that these genes are preferentially transferred between phylogenetically related strains, which is surprising given that closely related strains infect similar host species. In addition to detecting patterns of horizontal transmission between diverse Rickettsia species, these findings have implications for the evolution of pathogenicity, the evolution of Rickettsia genomes and the genetic manipulation of intracellular bacteria.  相似文献   

17.
18.
Musculista senhousia is a marine mussel with doubly uniparental inheritance (DUI) of mitochondria. In this study we analyzed the largest unassigned region (LUR) of its female- and male-transmitted mitochondrial genomes, described their fine characteristics and searched for shared features. Our results suggest that both LURs contain the control region of their respective mitochondrial genomes. The female-transmitted control region is duplicated in tandem, with the two copies evolving in concert. This makes the F-mtDNA of M. senhousia the first Bivalve mitochondrial genome with this feature. We also compared M. senhousia control regions to that of other Mytilidae, and demonstrated that signals for basic mtDNA functions are retained over evolutionary times even among the fast-evolving mitochondrial genomes of DUI species. Finally, we discussed how similarities between female and male LURs may be explained in the context of DUI evolution and if the duplicated female control region might have influenced the DUI system in this species.  相似文献   

19.
In Escherichia coli phage T4 and many of its phylogenetic relatives, gene 43 consists of a single cistron that encodes a PolB family (PolB-type) DNA polymerase. We describe the divergence of this phage gene and its protein product (gp43) (gene product 43) among 26 phylogenetic relatives of T4 and discuss our observations in the context of diversity among the widely distributed PolB enzymes in nature. In two T4 relatives that grow in Aeromonas salmonicida phages 44RR and 25, gene 43 is fragmented by different combinations of three distinct types of DNA insertion elements: (a) a short intercistronic untranslated sequence (IC-UTS) that splits the polymerase gene into two cistrons, 43A and 43B, corresponding to N-terminal (gp43A) and C-terminal (gp43B) protein products; (b) a freestanding homing endonuclease gene (HEG) inserted between the IC-UTS and the 43B cistron; and (c) a group I intron in the 43B cistron. Phage 25 has all three elements, whereas phage 44RR has only the IC-UTS. We present evidence that (a) the split gene of phage 44RR encodes a split DNA polymerase consisting of a complex between gp43A and gp43B subunits; (b) the putative HEG encodes a double-stranded DNA endonuclease that specifically cleaves intron-free homologues of the intron-bearing 43B site; and (c) the group I intron is a self-splicing RNA. Our results suggest that some freestanding HEGs can mediate the homing of introns that do not encode their own homing enzymes. The results also suggest that different insertion elements can converge on a polB gene and evolve into a single integrated system for lateral transfer of polB genetic material. We discuss the possible pathways for the importation of such insertion elements into the genomes of T4-related phages.  相似文献   

20.
The Columbia root-knot nematode Meloidogyne chitwoodi parasitizes several plant species, including grasses that have been developed for semiarid environments, and substantially reduces the productivity of cereals and the longevity of perennial grasses growing under semiarid conditions throughout the intermountain region. Thirty-two auto- and allotetraploid (2n = 28) taxa in the perennial Triticeae were evaluated as possible sources of resistance to M. chitwoodi. Low levels of root galling were observed on roots of all accessions; root-gall indices ranged from 0 (no galls) to 1.95 in the grasses compared to 4.67 for the susceptible ''Ranger'' alfalfa check on a scale of 1 to 6. Even though the gall ratings were low, significant (P < 0.01) differences among accessions of the same species, among species, and among genera with different genomes were observed. Within the reproductive indices, which ranged from 0.01 to 1.20 in the grasses compared to 65.38 for the alfalfa check, there was no difference among genera with different genomes and accessions within the same species and genome; however, there was a significant (P < 0.05) difference among species with the same genomes. This variation can be traced to Thinopyrum nodosum (Jaaska-19), which was the only accession with a reproductive factor greater than 1.00. Based on the data, all auto- and allotetraploids are considered resistant to M. chitwoodi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号