首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In intensive agricultural systems runoff is one of the major potential diffuse pollution pathways for pesticides and poses a risk to surface water. Ditches are common in the Po Valley and can potentially provide runoff mitigation for the protection of watercourses. The effectiveness depends on ditch characteristics, so there is an urgent need for site-specific field trials. The use of a fugacity model (multimedia model) can allows recognition of the mitigation main processes. A field experiment was conducted in order to evaluate the mitigation capacity of a typical vegetated ditch, and results were compared with predictions by a fugacity model. To evaluate herbicide mitigation after an extreme runoff, the ditch was flooded with water containing mesotrione, S-metolachlor and terbuthylazine. Two other subsequent floods with uncontaminated water were applied 27 and 82 days later to evaluate herbicides release. Results show that the ditch can immediately reduce runoff concentration of herbicides by at least 50% even in extreme flooding conditions. The half-distances were about 250 m. As a general rule, a runoff of 1 mm from 5 ha is mitigated by 99% in 100 m of vegetated ditch. Herbicides retention in the vegetated ditch was reversible, and the second flood mobilized 0.03-0.2% of the previous one, with a concentration below the drinking water limit of 0.1 μg L-1. No herbicide was detected in the third flood, because the residual amount in the ditch was too low. Fugacity model results show that specific physical-chemical parameters may be used and a specific soil-sediment-plant compartment included for modelling herbicides behaviour in a vegetated ditch, and confirm that accumulation is low or negligible for herbicides with a half-life of 40 days or less. Shallow vegetated ditches can thus be included in a general agri-environment scheme for the mitigation of pesticides runoff together with wetlands and linear buffer strips. These structures are present in the landscape, and their environmental role can be exploited by proper management.  相似文献   

2.
Healthy wetlands play a significant role in climate change mitigation by storing carbon that would otherwise contribute to global warming, leading to the reduction of water and food resources as well as more extreme weather phenomena. Investigating the magnitude of carbon storage potential of different freshwater wetland systems using multiple ecological indicators at varying spatial scales provides insight and justification for selective wetland restoration and conservation initiatives. We provide a holistic accounting of total carbon values for 193 wetland sites, integrating existing carbon algorithms to rapidly assess each of the following carbon pools: above-ground, below-ground, soil, woody debris, shrub cover, and herbaceous cover. Aspects of soil, vegetation, and ecosystem characteristics and stressors were measured to obtain an overall understanding of the ecosystems ability to store carbon (long-term) along a gradient of human disturbance. Based on a review of the literature, methods were prioritized based on the initial data available from field measurements as well as their practicality and ease in replicating the process in the future. Lacustrine human impounded (88.7?±?18.0 tC/ha), riverine beaver impounded (116.2?±?29.4 tC/ha), riverine upper perennial (163.3?±?11.8 tC/ha), riverine lower perennial (199.2?±?24.7 tC/ha), riverine headwater complex (159.5?±?22.2 tC/ha), perennial/seasonal depression (269.6?±?42.4 tC/ha), and slope (162.2?±?14.6 tC/ha) wetland types were compared. Overall results showed moderate variability (9.33–835.95 tC/ha) for total carbon storage values across the wetland types, with an average total carbon storage of 174.6?±?8.8 tC/ha for all wetlands. Results show that carbon storage was significantly higher (p?=?0.002) in least disturbed wetland sites. Apart from perennial/seasonal depression wetlands, all reference standard wetlands had greater carbon storage, less disturbance impact, and a greater extent of forest cover than non-reference wetlands. Carbon storage values calculated were comparable to published literature.  相似文献   

3.
Jim Bogen 《Hydrobiologia》2004,521(1-3):35-47
Variability in suspended sediment transport and its relation to erosion processes in two different catchments within the Atna river basin are discussed on the basis of 14 years of data collection. The upper Atna catchment is a headwater system covering 157 km2. Extensive glacifluvial deposits are the main sediment source of the river. Sediment transport in the upper Atna during 1988–2001 ranged from 79.4 t to 13,200 t. The extreme upper value was due to an extreme rainflood in 1996. Suspended sediment concentrations varied from less than 1.0 mg l?1 to a maximum of 2023.8 mg l?1. There was no correlation between water discharge and suspended sediment concentration. Despite a fairly constant volume of total runoff, sediment concentrations remained at a high level during the first years after extreme floods, and then decreased over several more years. The complicated pattern of short term and long term variations in suspended sediment concentration and load was explained in terms of channel changes and variations in exposure of the sedimentary deposits to fluvial erosion. The catchment of the lower Atna drains an area of 672 km2. Concentrations of inorganic suspended sediments were found to vary between <1.0 and 897 mg l?1, with only a weak correlation to water discharge. The suspended sediment transport per year ranged from a minimum value of 574 t in 1991 to 60,651 t per year in 1995, the extreme flood year. The mean annual transport for all the years was 6271 t. The sediment transported in the lower Atna is derived from the same types of sources as in the upper catchment, but the sediments are supplied from a larger area. Grain size distribution analyses indicate that the transported sediments in upper Atna have a sand content of 10 to 65% compared to 2–20% in lower Atna. The transport of particulate organic matter in the upper and lower Atna catchments amounted to 9.8% and 12.6% of the total load, respectively.  相似文献   

4.
廖文婷  邓红兵  李若男  郑华 《生态学报》2018,38(5):1750-1757
水利工程建设在给人类带来抗旱防洪效益、发电效益、航运效益、养殖等效益的同时,也对河流水文动态产生了一系列的影响,主要表现为对径流的调节。基于宜昌站1890—2014年径流数据,综合采用径流集中度、集中期和相位差分析等多种方法,分析了水利工程建设对径流年内分配以及枯水期的影响。结果表明:宜昌站径流集中度呈现缓慢下降趋势并在2004年发生突变,2003年以后径流集中度相对于2003年以前下降0.06(下降幅度为12.98%),说明葛洲坝水利枢纽、三峡工程建成以后宜昌站径流在年内分配变得平缓,洪峰被有效削弱,且三峡工程对宜昌站径流集中度减少的贡献率大于葛洲坝水利枢纽(贡献率分别为92.03%和7.97%);葛洲坝和三峡水利枢纽建成后,宜昌站径流重心提前8d(集中期从8月9日提前至7月31日);宜昌站进入枯水期的时间提前约20d(三峡大坝建设以前,宜昌站在12月7—11日进入枯水期,建设以后在11月底进入枯水期),水利工程对水文过程的影响可能导致下游枯水期污染加剧和湿地生境提前缩小,进而影响下游水环境和湿地生物多样性。上述结果定量揭示了水利工程对水文过程的影响及其潜在生态效应,可为认识水利工程的生态影响以及流域生态环境变化的驱动因素提供科学依据。  相似文献   

5.
Growingly scarce ecologically viable flood plain wetland of the Punarbhaba river basin is further endangered due to flow modification through Komardanga dam. This work intends to discover physical vulnerability of the wetlands in Punarbhaba river basin of Indo-Bangladesh considering seven conditioning parameters, e.g., water presence frequency (WPF) map, flood inundation map, frequency of pixel being non-permanent, agriculture presence frequency (APF) map, fragmentation of wetland, normalized differentiation built up index (NDBI), and wetland changes (WC). Frequency Ratio and Logistic Regression models have been used for deriving the vulnerability of wetland for both pre (1988–1992) and post dam (1993–2016) periods. From computed FR models it is exhibited that out of the total wetland area (194.81 km2), 5.88% and 2.92% area are high and very highly vulnerable in pre-dam period but such vulnerable area is increased to 33.45% and 23.10% in post-dam state (total wetland: 126.11 km2). LR models also state that in pre-dam period, high and very high vulnerable wetland area were 5.02% and 3.82% (total wetland: 194.79 km2) and it is enhanced to 28.94% and 24.49% in post-dam state (total wetland: 126.11 km2). Extensions of agricultural land, squeezing of active flood plain, lowering flood frequency are dominant determinants for growing wetland vulnerability.  相似文献   

6.
Degradation of Metolachlor in Tobacco Field Soil   总被引:2,自引:0,他引:2  
The extensive use of metolachlor to control weeds in tobacco fields in China has aroused concern about its environmental fate. The aim of this study was to investigate the degradation and residue fate of metolachlor in tobacco field soil (silt loam) under laboratory and field conditions. In laboratory experiments, metolachlor in bulk soil exhibited fast degradation in a temperature range from 10 to 35°C and a soil moisture level of 20–80%, with half-lives (T1/2) from 66.7 to 28.8 days. The degradation rate of metolachlor decreased as the application dose increased. Owing to higher microbial populations and enzymatic activities, metolachlor rapidly dissipated in rhizosphere soil as compared to bulk soil. Field persistence of metolachlor was evaluated in the same soil during the tobacco (Nicotiana tabacum K326) growing season in 2012 and 2013. The dissipation of metolachlor followed the first-order kinetics and its T1/2 values were 11.7–13.5 days in soil and 9.0–9.6 days in green tobacco leaves, respectively. At harvest time, the residual levels of metolachlor in soil and green tobacco leaves were in the range of 0.626–1.623 and 0.083-0.481 mg kg?1, respectively. These findings might have practical implications for the fate of metolachlor residue in tobacco fields. Environmental factors, especially temperature and moisture, should be considered in combination with the appropriate application dose of metolachlor for achieving satisfactory weed-control efficacy, reducing runoff, and minimizing effects on environmental quality.  相似文献   

7.
Wetland conservation and restoration contribute to improved watershed functions through providing both water quantity benefits in terms of flood attenuation and water quality benefits such as retention of sediment and nutrients. However, it is important to quantify these environmental benefits for informed decision making. This study uses a “hydrologic equivalent wetland” concept in the Soil and Water Assessment Tool to examine the effects of various wetland restoration scenarios on stream flow and sediment at a watershed scale. The modeling system was applied to the 25,139 ha Broughton’s Creek watershed in western Manitoba in Canada. As a representative prairie watershed, the Broughton’s Creek watershed experienced historic wetland losses from 2,998 ha in 1968 to 2,379 ha in 2005. Modeling results showed that if wetlands in the Broughton’s Creek watershed can be restored to the 1968 level, the peak discharge and average sediment loading can be reduced by 23.4 and 16.9%, respectively at the watershed outlet. Based on wetland and stream drainage areas estimated by the model and empirical nutrient export coefficients, the corresponding water quality benefits in terms of reductions in total phosphorus and nitrogen loadings were estimated at 23.4%. The modeling results are helpful for designing effective watershed restoration strategies in the Broughton’s Creek watershed. The developed methodology can be also applied to other study areas for examining the environmental effects of wetland restoration scenarios.  相似文献   

8.
Etoliko, an anoxic semi-enclosed basin, is part of a complex wetland in Western Greece extremely rich in biodiversity. It covers an area of 1,700 ha with an atypical orientation that has been formed tectonically. In order to identify the main factors influencing the bacterial profile at the Etoliko basin, 48 samples were collected, representing seasonal variation at four sampling stations. Physico-chemical analysis of the samples indicates the presence of three layers in the Etoliko basin: (1) low-density surface layer, (2) a layer with a steep density gradient, and (3) dense water below a depth of 20 m. A permanent halocline, whose thickness is varying seasonally, has been identified in the Etoliko basin water column, while the spatiotemporal salinity distribution was highly affected by the basin’s interaction with the nearby Messolonghi lagoon. The anoxic zone extends from 20 m below the surface to the bottom of the Etoliko basin in summer, while the bottom layer was hypoxic during winter. Bacterial populations were analyzed by Automated Ribosomal Intergenic Spacer Analysis (ARISA). Bacterial richness and diversity were calculated and compared across samples. Hierarchical analysis showed that ARISA clustered the surface water samples according to seasonal variation, while sediment and near-to-bottom water samples appear to be stable and to cluster together. Non-metric multidimensional scaling (MDS) indicates that bacterial composition depends on dissolved oxygen and salinity. Increase in salinity of the ecosystem leads to a significant reduction of the microbial diversity.  相似文献   

9.
To minimize wetland losses, many jurisdictions have adopted a ‘mitigation sequence’ that requires compliance for permit delivery. This study evaluated the outcome of this sequence in the province of Quebec, Canada, during the 3 years following its adoption in 2006. A case study was then conducted in the St. Lawrence Lowlands (29,096 km2) to compare statistics on delivered permits with losses detected by detailed mapping of disturbances from two periods: 1990 to 2011 and 2006 to 2011. A total of 558 permits were issued, most of which (550) represented 2870 ha of disturbed wetlands; the remaining (8) corresponding to restoration projects. The mitigation sequence was applied for 323 of the permits, mainly with compensations. The type of action undertaken was registered for only 63 % of the compensations with a minimal fraction dedicated to wetland restoration (1 ha) and creation (14 ha), resulting in a net loss of 99 % of the impacted wetland areas. In the case study, 56,681 ha (19 %) of wetlands had been disturbed in the last two decades, of which 22,535 ha were disturbed between 2006 and 2011, mainly by agricultural and forestry activities. No permit was delivered for these two activities according to our compilation. The area disturbed following permit deliverance was about 17–30 times smaller than losses estimated by our detailed mapping, depending on the period considered. Preserving wetlands will require not only mandatory compliance with the mitigation sequence but also efforts to subscribe all types of industries to the process of permit delivery.  相似文献   

10.
In Oregon’s Willamette Valley, remaining wetlands are at high risk to loss and degradation from agricultural activity and urbanization. With an increased need for fine temporal-scale monitoring of sensitive wetlands, we used annual Landsat MSS and TM/ETM+ images from 1972 to 2012 to manually interpret loss, gain, and type conversion of wetland area in the floodplain of the Willamette River. By creating Tasseled Cap Brightness, Greenness, and Wetness indices for MSS data that visually match TM/ETM+ Tasseled Cap images, we were able to construct a complete and consistent, annual time series and utilize the entire Landsat archive. With an extended time series we were also able to compare annual trends of net change in wetland area before and after the no-net-loss policy established under Section 404 of the Clean Water Act in 1990 using a Theil-Sen Slope estimate analysis. Vegetated wetlands experienced a 314 ha net loss of wetland area and non-vegetated wetlands experienced a 393 ha net gain, indicating higher functioning wetlands were replaced in area by non-vegetated wetland habitats such as agricultural and quarry ponds. The majority of both gain and loss in the study area was attributed to gains and losses of agricultural land. After 1990 policy implementations, the rate of wetland area lost slowed for some wetland categories and reversed into trends of gain in wetland area for others, perhaps representative of the success of increased regulations. Overall accuracy of land use classification through manual interpretation was at 80 %. This accuracy increased to 91.1 % when land use classes were aggregated to either wetland or upland categories, indicating that our methodology was more accurate at distinguishing between general upland and wetland than finer categorical classes.  相似文献   

11.
The dependence of downstream waters on upstream ecosystems necessitates an improved understanding of watershed-scale hydrological interactions including connections between wetlands and streams. An evaluation of such connections is challenging when, (1) accurate and complete datasets of wetland and stream locations are often not available and (2) natural variability in surface-water extent influences the frequency and duration of wetland/stream connectivity. The Upper Choptank River watershed on the Delmarva Peninsula in eastern Maryland and Delaware is dominated by a high density of small, forested wetlands. In this analysis, wetland/stream surface water connections were quantified using multiple wetland and stream datasets, including headwater streams and depressions mapped from a lidar-derived digital elevation model. Surface-water extent was mapped across the watershed for spring 2015 using Landsat-8, Radarsat-2 and Worldview-3 imagery. The frequency of wetland/stream connections increased as a more complete and accurate stream dataset was used and surface-water extent was included, in particular when the spatial resolution of the imagery was finer (i.e., <10 m). Depending on the datasets used, 12–60% of wetlands by count (21–93% of wetlands by area) experienced surface-water interactions with streams during spring 2015. This translated into a range of 50–94% of the watershed contributing direct surface water runoff to streamflow. This finding suggests that our interpretation of the frequency and duration of wetland/stream connections will be influenced not only by the spatial and temporal characteristics of wetlands, streams and potential flowpaths, but also by the completeness, accuracy and resolution of input datasets.  相似文献   

12.
This study provides an integrated approach using geographical information system (GIS) based on a multi-criteria approach (MCDA) to assess coastal vulnerability, resulting from human activity, population density, erosion, and climate change-induced sea level rise. A coastal vulnerability index (CVI) for erosion and floods was calculated and mapped (~24 km in length; ~400 m in width, and 11.47 km2 in surface) for the lagoon barrier of Nador located on the Mediterranean coast of Morocco. Results suggest that 54% (~13 km) of the shoreline is moderately vulnerable, while 42% (~10 km) is highly vulnerable and only 4% (1 km) present a low vulnerability. The vulnerability map of the socio-economic activities indicates that most wetlands and forest areas 83% (~31 ha) and 50% (~440 ha) respectively, present low vulnerability. 52% percent of artificial areas (~23 ha), 73% of agricultural land (~128 ha), and 41% of natural areas (~363 ha) present moderate vulnerability. However, the level of vulnerability of the remaining artificial and agricultural areas classifies from high to very high. The north-western sector was classified as the most vulnerable area, characterized by an erosion (?0.6 m/yr to ?1.20 m/yr) for 70% of this area, while the south-eastern part shows a low to moderate vulnerability marked by an erosion (?0.1 m/yr to ?1m/yr) for 40% of this area. Coastal vulnerability maps have potential as decision tools to prepare and respond to sea level rise, and identify exposed coastal zones, as such contributing to national climate action and disaster risk reduction sustainable development goals (goals 13 and 11, respectively).  相似文献   

13.
Wind and Water Dispersal of Wetland Plants Across Fragmented Landscapes   总被引:1,自引:0,他引:1  
Biodiversity in wetlands is threatened by habitat loss and fragmentation, of which agricultural activities often are a cause. Dispersal of plant seeds via wind and ditches (water) may contribute to connecting remnant wetland plant populations in modern agricultural landscapes, and help to maintain and restore biodiversity. We developed a spatially explicit model to assess the relative importance of dispersal by wind and dispersal by water through drainage ditches for two wetland plant species in agricultural landscapes: a typical wind disperser and a typical water-disperser. Simulation results show that the typical wind disperser had a much higher capability to disperse by wind (90th percentile <30 m) than the typical water-disperser (90th percentile <2 m). Surprisingly, the capability to disperse via water was similar for the two species: 90th percentile dispersal distances following a combination of wind and water dispersal were between approximately 100 and 1000 m. Dispersal by water transported more seeds over long distances for both species. The main determinants for dispersal distance by water were roughness of the ditch (determined by, for example, bank vegetation) and the presence of obstructions (for example, culverts). Density or direction of the ditch network did not seem to affect water dispersal distances substantially. From a biodiversity conservation perspective, it would be most useful if areas with suitable riparian wetland habitat were intersected with a network of shallow ditches with a high roughness promoting seed deposition. These areas should then be connected to other suitable areas by a few regularly cleaned ditches with no obstructions and low seed trapping probability.  相似文献   

14.
Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh   总被引:1,自引:0,他引:1  
Natural contamination of groundwater with arsenic (As) occurs around the world but is most widespread in the river basin deltas of South and Southeast Asia. Shallow groundwater is extensively used in the Bengal basin for irrigation of rice in the dry winter season, leading to the possibility of As accumulation in soils, toxicity to rice and increased levels of As in rice grain and straw. The impact of As contaminated irrigation water on soil-As content and rice productivity was studied over two winter-season rice crops in the command area of a single tubewell in Faridpur district, Bangladesh. After 16–17 years of use of the tubewell, a spatially variable build up of As and other chemical constituents of the water (Fe, Mn and P) was observed over the command area, with soil-As levels ranging from about 10 to 70 mg kg?1. A simple mass balance calculation using the current water As level of 0.13 mg As L?1 suggested that 96% of the added arsenic was retained in the soil. When BRRI dhan 29 rice was grown in two successive years across this soil-As gradient, yield declined progressively from 7–9 to 2–3 t ha?1 with increasing soil-As concentration. The average yield loss over the 8 ha command area was estimated to be 16%. Rice-straw As content increased with increasing soil-As concentration; however, the toxicity of As to rice resulted in reduced grain-As concentrations in one of the 2 years. The likelihood of As-induced yield reductions and As accumulation in straw and grain has implications to agricultural sustainability, food quality and food security in As-affected regions throughout South and Southeast Asia.  相似文献   

15.
The translocation of phosphorus (P) from terrestrial landscapes to aquatic bodies is of concern due to the impact of elevated P on aquatic system functioning and integrity. Due to their common location in depressions within landscapes, wetlands, including so-called geographically isolated wetlands (GIWs), receive and process entrained P. The ability of depressional wetlands, or GIWs, to sequester P may vary by wetland type or by land use modality. In this study we quantified three measures of P sorption capacities for two common GIW types (i.e., emergent marsh and forested wetlands) in two different land use modalities (i.e., agricultural and least impacted land uses) across 55 sites in Florida, USA. The equilibrium P concentration (EPC0) averaged 6.42 ± 5.18 mg P L?1 (standard deviation reported throughout); and ranged from 0.01–27.18 mg P L?1; there were no differences between GIW type or land use modality, nor interaction effects. Significant differences in phosphorus buffering capacity (PBC) were found between GIW types and land use, but no interaction effects. Forested GIWs [average 306.64 ± 229.63 (mg P kg?1) (µg P L?1)?1], and GIWs in agricultural settings [average 269.95 ± 236.87 (mg P kg?1) (µg P L?1)?1] had the highest PBC values. The maximum sorption capacity (Smax) was found to only differ by type, with forested wetlands (1274.5 ± 1315.7 mg P kg?1) having over three times the capacity of emergent GIWs (417.5 ± 534.6 mg P kg?1). Classification trees suggested GIW soil parameters of bulk density, organic content, and concentrations of total P, H2O-extractable P, and HCl-extractable P were important to classifying GIW P-sorption metrics. We conclude that GIWs have high potential to retain P, but that the entrained P may be remobilized to the wetland water column depending on storm and groundwater input P concentrations. The relative hydrologic dis-connectivity of GIWs from other aquatic systems may provide sufficient retention time to retain elevated P within these systems, thereby providing an ecosystem service to downstream waters.  相似文献   

16.
Simulation modeling with uncertainty analysis was applied to the question of nonpoint source pollution control through extensive wetland restoration. The model was applied to the Quanicassee River basin, a tributary stream to Saginaw Bay on Lake Huron in northeastern Michigan, USA. An estimate of the role of the existing 695 ha of riverside and lake-side wetlands in the lower Quanicassee River basin suggests that they retain 1.2 metric tons of phosphorus per year (mt P/yr), or 2.5% of the total phosphorus load from the basin. A simple Vollenweider-type model of phosphorus retention by created wetlands, calibrated with 3-years of data from two wetland sites in Midwestern USA, was used to estimate the effect of major wetland restoration in the basin. For a wetland restoration project involving 15% of the Quanicassee River basin or 3,120 ha of wetlands, an estimated 33 mt P/yr could be retained, assuming a proper hydrologic connection between the wetlands and the river. This would represent a reduction of two-thirds of the existing phosphorus load to the Bay from the Quanicassee River basin. Large-scale wetland restoration appears to be a viable management practice for controlling phosphorus and other nonpoint source pollution from entering Saginaw Bay. It is an alternative that meets two major resource goals – developing wetland habitat and controlling pollution to the Great Lakes.  相似文献   

17.
The composition and biodegradability of streamwater dissolved organic matter (DOM) varies with source material and degree of transformation. We combined PARAFAC modeling of fluorescence excitation–emission spectroscopy and biodegradable dissolved organic carbon (BDOC) incubations to investigate seasonal changes in the lability of DOM along a soil-stream continuum in three soil types: bog, forested wetland and upland forest. The percent BDOC ranged from 7 to 38% across all sites, and was significantly greater in soil compared to streamwater in the bog and forested wetland, but not in the upland forest. The percent BDOC also varied significantly over the entire sampling period in soil and streamwater for the bog and forested wetland, as BDOC peaked during the spring runoff and was lowest during the summer months. Moreover, the chemical quality of DOM in wetland soil and streamwater was similar during the spring runoff and fall wet season, as demonstrated by the similar contribution of protein-like fluorescence (sum of tyrosine and tryptophan fluorescence) in soil water and in streams. These findings suggest that the tight coupling between terrestrial and aquatic ecosystems is responsible for the delivery of labile DOM from wetland soils to streams. The contribution of protein-like fluorescence was significantly correlated with BDOC (p < 0.001) over the entire sampling period indicating DOM is an important source of C and N for heterotrophic microbes. Taken together, our findings suggest that the production of protein-rich, labile DOM and subsequent loss in stream runoff might be an important loss of labile C and N from coastal temperate watersheds.  相似文献   

18.
The first-order removal model is widely used in constructed wetland design. The suitability of this model was tested to predict metal retention in a young constructed wetland receiving agricultural and urban runoff. During two years, water samples for total and dissolved metal analyses were collected every third day at both the inlet and the outlet. The wetland retained metals best during summer and fall whereas during winter the retention of metals was significantly lower. The first-order removal model predicted Fe and Mn retention in the spring and dissolved Zn retention from spring to fall in both years. During those periods, hydraulic retention times (HRTs) greater than 7 days provided maximum retention for Fe, Mn, and dissolved Zn. However, first-order removal models failed to fit summer, fall and winter data for almost every metal under investigation (Fe, Mn, dissolved Cu, dissolved As) suggesting that HRTs (<1–25 days) did not affect metal retention during these seasons. The metal loading to the wetland was low and the input of metals through internal loading may be more significant consequently decreasing the metal retention. Therefore, the first-order removal model is inadequate to predict metal retention on a seasonal basis. Models used to design constructed wetlands under cold climates must consider seasonal changes that affect biological as well as hydrological variables.  相似文献   

19.
We aimed at indicating some regularities of a constructed wetland treating agricultural runoff in China. The regularities, including the nitrogen removal capacity all year round, the nitrogen distribution pathways, and the nitrogen species removal kinetics, of a free water surface constructed wetland (2,800 m2) in the Dianchi Valley, which has been in operation for 27 months, were studied. The planted Phragmites australis and Zizania caduciflora were harvested biannually. The average inflow rate was recorded by an ultrasonic flow instrument, and then the hydraulic loading rate (HLR) and hydraulic retention time (HRT) were calculated. The average inflow and outflow concentrations of total nitrogen (TN), ammonia, and nitrate were measured, while the corresponding removal rates were calculated, showing better results than other constructed wetlands. Then the distribution pathways of nitrogen were analyzed, which indicated that plant harvesting was more important in wetland-treated agricultural runoff than in domestic wastewater. The reason for a good nitrogen removal capability and the obvious function of plants in the present wetland is the sound climate and intermittent inflow in the wetland. Results showed that inflow load had significant correction with both TN and ammonia removal efficiency. HLR, inflow rate, inflow nitrogen concentration, and temperature had significant and positive correction with both TN and ammonia removal. However, HRT had negative correction with both TN and ammonia removal, and the nitrate removal efficiency and parameters mentioned earlier were not significantly correlated. The rate constant values for nitrate and ammonia in summer were obviously larger than in winter. It is possible that bacterial and microbial activities were more active in summer than winter, and more conducive to bacterial and vegetative growth in summer than winter. Since this study was a pioneer for the implementation of constructed wetlands in China treating agricultural runoff, it has proved that this eco-technology could be used effectively for water quality enhancement in China and other areas with a similar climate.  相似文献   

20.
海河流域湿地生态系统服务功能价值评价   总被引:21,自引:10,他引:21  
江波  欧阳志云  苗鸿  郑华  白杨  庄长伟  方瑜 《生态学报》2011,31(8):2236-2244
摘要:海河流域湿地生态系统给人类提供了许多重要的产品和服务,但在社会经济发展的过程中,这些服务并没有完全被认识到,给海河流域社会经济的可持续发展造成了一定的影响。本研究结合海河流域湿地生态系统的特征、结构及过程,将海河流域湿地生态系统服务功能划分为提供产品功能、调节功能、支持功能及文化服务功能4大类,以2005年为基准年,评价了海河流域湿地生态系统所提供的12类生态系统服务,将这12类服务功能划分为具有直接使用价值的产品和具有间接使用价值的服务。结果表明,海河流域湿地生态系统提供的12类生态系统服务的总价值为4123.66?108元,其中直接使用价值和间接使用价值分别为257.46?108元和3866.20?108元,间接使用价值是直接使用价值的15.02倍。海河流域单位面积的湿地生态系统提供的生态系统服务功能价值为47.05?104元/hm2,高于单位面积的GDP产值8.10?104元/hm2。研究认为海河流域湿地生态系统对支持和保护人类社会具有重要的作用,为管理者和决策者有效的保护和管理湿地提供了重要的信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号