首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method has been developed that extracts DNA from stem tissue of flowering tobacco plants, Nicotiana tabacum cv. Wis. 38. The DNA content of stem tissue from a flowering tobacco plant is correlated with its capacity to flower in vitro. Stem segments known to form 100% floral buds contain 10 times more DNA per gram fresh weight than segments that form 5% floral buds and 95% vegetative buds, and in the uppermost 28 centimeters of flowering tobacco plant stems the DNA content decreases roughly in parallel with the floral gradient.  相似文献   

2.
In Torenia stem segments cultured on a defined medium from whichammonium nitrate and growth regulators were omitted, adventitiousbuds were readily formed from epidermal tissue, with subsequentdifferentiation of floral buds. Using this plant material, thecorrelation between the time of application of various chemicalsand the time-course of floral bud differentiation was investigated.Histological examination showed that adventitious buds werevegetative during the first two weeks of the culture, and floralprimordia appeared after about three to four weeks of culture.We divided the flowering process in Torenia stem segments intothe following 3 phases: the first phase (first 2 weeks) duringwhich adventitious buds are formed, the second phase (3rd and4th weeks) during which floral buds are initiated and the thirdphase (5th to 12th weeks) during which floral buds develop.Then we added IAA, zeatin, ammonium nitrate or a high concentrationof sucrose to the medium during one, two or three of these phases.Ammonium nitrate added during the third phase suppressed floralbud development, but the high concentration of sucrose givenduring this phase stimulated it. These two chemicals influencedonly the development of floral buds previously initiated. Theapplication of IAA during the first phase promoted both theinitiation and development of floral buds. However, its applicationafter 2 weeks of culture failed to promote floral bud formation.Zeatin inhibited floral bud formation in a manner similar toammonium nitrate, but if it was added to the medium only duringthe first phase, it slightly promoted the initiation and developmentof floral buds. (Received July 7, 1981; Accepted October 12, 1981)  相似文献   

3.
Carbon Dioxide and Flowering in Pharbitis nil Choisy   总被引:2,自引:0,他引:2       下载免费PDF全文
The effects of photoperiod on floral and vegetative development of Pharbitis nil were modified by atmospheric CO2 concentrations maintained during plant growth. Short day (SD) photoperiods caused rapid flowering in Pharbitis plants growing in 0.03 or 0.1% CO2, while plants in long day (LD) conditions remained vegetative. At 1 or 5% CO2, however, flower buds were developed under both the SD and LD photoperiods. Flowering was earliest in the plants exposed to SD at low CO2 concentrations which formed floral buds at stem node 3 or 4. At high CO2 concentrations, floral buds did not form until stem node 6 or 7. Both high CO2 concentrations and LD photoperiods tended to enhance stem elongation and leaf formation.  相似文献   

4.
5.
The effect of floral-bud removal at different stages of developmenton the plant height and on the total number of buds of Petuniawas studied. Continuous removal of all the floral buds 2 d beforeanthesis caused a marked decrease in plant height and also increasedthe total number of floral buds formed thereafter. At otherstages of floral bud development, bud removal had a lesser effecton both phenomena. Moreover, the plants did not respond to budremoval at anthesis. GA3 at 25 ppm applied to plants from which the buds had beenremoved, promoted stem elongation. The most pronounced effectwas on plants from which the buds were removed 2 d before anthesis,but it had no effect on plants from which the buds were removedat anthesis stage. The possible involvement of endogenous growth hormones in theresponse of Petunia plants to floral-bud removal and to applicationof GA3 is discussed. Bud removal, bud number, dwarfness, GA3, Petunia, plant height  相似文献   

6.
《Developmental biology》1986,118(2):587-592
The terminal and axillary buds of the day-neutral plant, Nicotiana tabacum cv. Wisconsin 38, become determined for floral development during the growth of the plant. This state of determination can be demonstrated with a simple experiment: buds determined for floral development produce the same number of nodes in situ and if rooted. After several months of growth and the production of many leaves, the terminal bud became determined for floral development within a period of about 2 days. After the terminal bud became florally determined, it produced four nodes and a terminal flower. The buds located in the axils of leaves borne just below the floral branches became florally determined 5 to 9 days after the terminal bud became florally determined. Since florally-determined axillary buds were not clonally derived from a florally-determined terminal meristem, axillary buds and the terminal bud acquired the state of floral determination independently. These data indicate that a pervasive signal induced a state of floral determination in competent terminal and axillary buds.  相似文献   

7.
《Developmental biology》1985,112(2):377-382
At anthesis of the terminal flower the developmental fates of axillary buds of the long-day plant Nicotiana silvestris were assessed in situ and in isolation. The in situ developmental fate was assessed by decapitating the plant above the bud in question and letting the bud mature. The developmental fate of isolated buds was assessed by removing the bud from the main axis, rooting it, and letting it mature. The number of nodes below the terminal flower of the mature shoot was indicative of the developmental fate of the bud. Terminal meristems of rooted axillary buds exhibited two patterns of development: (1) Their developmental fate was the same as that of in situ buds at the same node or (2) their developmental fate was the same as that of seed-derived plants. For example, terminal meristems of rooted buds from the fourth node below the inflorescence produced either 15 to 19 nodes or 36 to 40 nodes. In situ fourth buds produced 12 to 14 nodes while seed-derived plants produced 33 to 39 nodes. Terminal meristems of rooted axillary buds that exhibited the same developmental fate as that of in situ buds were determined for floral development. Although determined buds produced a terminal flower, all but one had abnormal inflorescences. That is, in the place of floral branches determined buds produced vegetative branches. Four buds that were not determined for floral development had their shoot tips rooted each time the plant bolted. Only when the plants were allowed to grow without being rerooted did they flower. These results indicate that roots may prevent and/or destabilize floral determination in N. silvestris.  相似文献   

8.
Under strictly non-inductive photoperiods (24-h photoperiods) floral buds were initiated on plants receiving 25 treatments with Reso (resorcinol) or 8 treatments with GA3 (gibberellic acid) or GA3 + Reso, while water treated control plants did not flower at all. Although a single treatment of plants with GA3 or GA3 + Reso is not adequate to cause induction under LD conditions, its effect is added to the sub-threshold induction caused by one SD (short day: 8-h photoperiod) cycle. The initiation of floral buds was hastened with an increasing number of SD cycles accompanying respective number of treatments, the effect of GA3 alone or together with Reso being more pronounced than that of Reso alone. GA3 increased the number of floral buds more than Reso, the number being the highest in plants receiving the respective number of treatments with the combination GA3 + Reso under both inductive as well as non-inductive photoperiods. Deceased.  相似文献   

9.
This paper deals with the effect of 100 mg/1 each of GA3 TIBA and IAA singly and in combination with each other on stem elongation, development of lateral branches and floral bud initiation in Impatiens balsamina plants exposed to 8-, 16- and 24-h photoperiods. GA3 enhances stem elongation, the enhancing effect decreasing with IAA as well as with TIBA during 8-h but increasing during 16- and 24-h photoperiods. It decreases the number of lateral branches, the decrease being greatest during 16-, less during 8- and the least during 24-h photoperiods. The time taken for floral buds to initiate with and length of branches during 16-h photoperiods. During 8-h photoperiods, IAA delays the initiation of floral buds, while GA3 hastens it when used together with TIBA or IAA or both. GA3 increases the number of floral buds on the main axis but decreases it on lateral branches, while TIBA decreases the number on the main axis but increases it on lateral branches. IAA reduces the number of floral buds on the main axis only when used alone, but on both the main axis as well as on lateral branches when used together with GA3 and TIBA. Floral buds were not produced on lateral branches when plants were treated with GA3, TIBA and IAA all together. GA3 and TIBA induced floral buds even under non-inductive photoperiods, the number of buds and reproductive nodes being less in TIBA- than in GA3-treated plants during 24-h photoperiods. The time taken for floral buds to initiate with GA3 and TIBA during noninductive photoperiods is much longer than that during 8-h inductive photoperiods with or without GA3 or TIBA application. IAA completely inhibits the GA3- and TIBA-caused induction during 24-h, but only delays it and reduces the number of reproductive nodes and floral buds during 16-h photoperiods.  相似文献   

10.
Bud viability after various defoliation frequency treatments was determined in the perennial bunchgrass Poa ligularis under arid field conditions from 2002 to 2005. Bud respiratory activity was examined on various stem base hierarchies using the tetrazolium test, as validated with the vital stain Evan’s blue. The hypothesis of this work was that the total and viable axillary bud numbers on stem bases of all study stem base hierarchies are reduced as defoliation frequency increases. Interpretation of the results differed when they were expressed as a percentage rather than on a number per stem base basis. The total number of axillary buds per stem base was similar in all defoliation frequencies. When the results were expressed on a percentage basis, the order on stem bases having metabolically active buds was daughter tillers > stem bases with green tillers > stem bases without green tillers in all defoliation frequencies. The reverse order was found when considering dead buds. How the results are expressed thus deserves our attention when reporting results on bud viability in perennial grasses. An increased defoliation frequency increased the percentage of dead and dormant buds after the third or fourth defoliation of P. ligularis during the 1st study year. These percentages of bud viability, however, increased after the first defoliation during the 2nd study year. Bud viability was affected not only by the cumulative effects of defoliation but also by climatic variables throughout the seasons. However, our results show that P. ligularis can be defoliated up to twice a year without affecting bud viability, and thus its potential capacity for regrowth after defoliation.  相似文献   

11.
A single treatment of plants with GA3 (gibberellic acid) is not adequate to cause induction under LD (long day: 24-h photo-period) condition, but its effect is added to the sub-threshold induction caused by one SD (short day: 8-h photoperiod) cycle. Floral bud initiation is hastened, and the number of floral buds and flowers per flowering plant increases in plants receiving a single treatment with the combination GA3+ SA (salicylic acid) accompanying a single SD cycle. However, the increase on 10 replicate basis is more marked in plants receiving three treatments with the combination GA3+β-N (β-naphthol) and five treatments with the combination GA3+ SA accompanying six and 10 SD cycles, respectively. The number of floral buds and flowers decreases with an increase hi the number of SD cycles, but it is higher in plants treated with GA3, SA or GA3+β-N than in the water-treated controls. — Under long days, treatment of plants with the combinations GA3+ SA or GA3+β-N accelerates the initiation as well as increases the number of floral buds. While a minimum of five treatments with GA3 or of 25 with SA or β-N alone is needed for floral bud initiation under a 24-h photoperiod, three treatments are adequate to induce floral buds with the combination GA3+ SA or GA3+β-N under continuous illumination. Ten or more treatments with these combinations under a 24-h photoperiod produce more flowers than the same treatments under an 8-h photoperiod.  相似文献   

12.
The restricted flowering of colored cultivars ofZantedeschia is a consequence of developmental constraints imposed by apical dominance of the primary bud on secondary buds in the tuber, and by the sympodial growth of individual shoots. GA3 enhances flowering inZantedeschia by increasing the number of flowering shoots per tuber and inflorescences per shoot. The effects of gibberellin on the pattern of flowering and on the developmental fate of differentiated inflorescences along the tuber axis and individual shoot axes were studied in GA3 and Uniconazole-treated tubers. Inflorescence primordia and fully developed (emerged) floral stems produced during tuber storage and the plant growth period were recorded. Days to flowering, percent of flowering shoots and floral stem length decreased basipetally along the shoot and tuber axes. GA3 prolonged the flowering period and increased both the number of flowering shoots per tuber and the differentiated inflorescences per shoot. Activated buds were GA3 responsive regardless of meristem size or age. Uniconazole did not inhibit inflorescence differentiation but inhibited floral stem elongation. The results suggest that GA3 has a dual action in the flowering process: induction of inflorescence differentiation and promotion of floral stem elongation. The flowering pattern could be a result of a gradient in the distribution of endogenous factors involved in inflorescence differentialtion (possibly GAs) and in floral stem growth. This gradient along the tuber and shoot axes is probably controlled by apical dominance of the primary bud. Online publication: 7 April 2005  相似文献   

13.
Stem segments, axillary buds and leaves excised from established shoot cultures of Morus indica were soaked in MS liquid medium containing benzyladenine (0.5, 1, 2 mg/1) and were cultured subsequently on semi solid medium of the same composition. Numerous shoot buds differentiated from leaf and axillary buds but stem segments were unresponsive. The shoot buds on isolation and culture developed into plantlets. Callus tissues which developed at the base of the leaf explant upon subculture also differentiated numerous shoot buds.Abbreviations BA benzyl adenine - CM coconut milk - 2, 4-D 2, 4 dichlorophenoxy acetic acid - Kn kinetin - MS Murashige and Skoog - Z zeatin  相似文献   

14.
The content and pattern of soluble isoperoxidases were determined in epidermal explants taken from different internodes of tobacco plants in the vegetative and floral states. There were qualitative and quantitative differences in the isoperoxidases, with a decrease in content and fewer bands being observed acropetally, i.e., in going from the base of the stem towards the apex. Epidermal explants from floral branches were grown in in vitro culture, with various media moditications, to form de novo floral or vegetative buds, roots or callus. Changes in soluble isoperoxidases were followed electrophoretically in relation to these varying morphogenetic pathways. In each of them, the number of bands increased on both the anodic and cathodic sides with time in culture. Compared to each other these four morphogenetic programmes were different in their peroxidase zymograms, mainly through varying kinetics in the development of activity of the isoenzymes. The changes observed during root and vegetative bud formation agree with previously published data, and the changes during floral bud formation agree with those observed in vivo.  相似文献   

15.

Background and Aims

Although studies have shown that pollen addition and/or removal decreases floral longevity, less attention has been paid to the relationship between reproductive costs and floral longevity. In addition, the influence of reproductive costs on floral longevity responses to pollen addition and/or removal has not yet been evaluated. Here, the orchid Cohniella ascendens is used to answer the following questions. (a) Does experimental removal of flower buds in C. ascendens increase flower longevity? (b) Does pollen addition and/or removal decrease floral longevity, and does this response depend on plant reproductive resource status?

Methods

To study the effect of reproductive costs on floral longevity 21 plants were selected from which we removed 50 % of the developing flower buds on a marked inflorescence. Another 21 plants were not manipulated (controls). One month later, one of four flowers on each marked inflorescence received one of the following pollen manipulation treatments: control, pollinia removal, pollination without pollinia removal or pollination with pollinia removal. The response variable measured was the number of days each flower remained open (i.e. longevity).

Key Results

The results showed significant flower bud removal and pollen manipulation effects on floral longevity; the interaction between these two factors was not significant. Flowers on inflorescences with previously removed flower buds remained open significantly longer than flowers on control inflorescences. On the other hand, pollinated flowers closed much faster than control and removed-pollinia flowers, the latter not closing significantly faster than control flowers, although this result was marginal.

Conclusions

The results emphasize the strong relationship between floral longevity and pollination in orchids, as well as the influence of reproductive costs on the former.Key words: Cohniella ascendens, floral longevity, flower bud removal, pollination, pollinia removal, reproductive costs  相似文献   

16.
GA3, cyclic AMP as well as 3′-AMP and 5′-AMP induced the formation of floral buds inImpatiens balsamina under strictly non-inductive photoperiods. While photoperiods and treatments with GA3 or AMPs did not much affect acid phosphatase activity, AMPs increased the activity of alkaline phosphatase both in the stem and the leaves under both photoperiods. The phosphatase activity of the water- and GA3-treated plants under inductive photoperiods was higher than that of the plants of the respective treatments under non-inductive photoperiods. GA3 as well as all the three AMPs induced both in the stem and the leaves the formation of new isoenzymes of both these enzymes under both photoperiods.  相似文献   

17.
Internodal segments of Torenia fournieri Lind. were culturedon various media to investigate chemical factors influencingin vitro flowering. The elimination or dilution of ammoniumnitrate from Murashige and Skoog's medium increased the formationof adventitious buds which subsequently differentiated floralbuds. The dilution of mineral salts in Murashige and Skoog'smedium enhanced adventitious bud formation, but did not influencethe ratio of cultures with floral buds to those with adventitiousbuds. Among various media tested, in vitro floral bud formationand development of Torenia was best on a medium having 1/5 ofthe mineral salts and no NH4NO3. Eighty-seven percent of thecultures produced floral buds on this medium. Using this medium,the effects of various sugars were also examined. Increasingthe concentration of sucrose in the medium (up to 60 g/liter)increased the rate of cultures with floral buds, and stimulatedthe development of floral buds led to anthesis. (Received January 17, 1981; Accepted February 21, 1981)  相似文献   

18.
19.
Shoots of orange jessamine (Murraya paniculata) a member of the Rutaceae family flowered in vitro on half-strength MT basal medium containing 5% sucrose. The highest percentage (95%) of flowering was obtained on medium supplemented with 0.1 mg l–1 N6-benzyladenine and pH 5.7. A “floral gradient” was detected among the stem internodes and root segments derived from seedlings, with shoot and flower formation significantly influenced by position on the shoot internodes and root segments. Flower buds originating from shoots derived from seeds but not other tissues developed into normal flowers and produced zygotic embryos. Received: 10 December 1997 / Revision received: 5 November 1998 / Accepted: 2 December 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号