首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA replication in isolated HeLa cell nuclei   总被引:5,自引:0,他引:5  
DNA replication was investigated in HeLa cell nuclei isolated from different phases of the cell cycle. DNA synthesis occurred only in S-phase nuclei and was dependent on the presence of the four deoxynucleoside triphosphates, Mg++, ATP and S-phase cytoplasm. G1-phase cytoplasm was unable to support such DNA synthesis. A purified preparation of calf thymus DNA polymerase, however, was able to replace S-phase cytoplasm in supporting ATP dependent DNA synthesis, which suggests that the S-phase cytoplasmic factor is a DNA polymerase. G1-phase nuclei could under no conditions be stimulated to initiate DNA replication prematurely.  相似文献   

2.
[3H]dTMP incorporation into DNA of nuclei isolated from differentiating cardiac muscle of the rat has been characterized. Nuclei prepared at different times during the terminal phase of differentiation by a procedure not involving a detergent (Triton X-100) wash show a progressively diminished capacity to support in vitro [3H]dTMP incorporation; this diminution parallels the loss of DNA polymerase α from cardiac muscle. The rate of incorporation of [3H]dTMP into DNA of nuclei washed twice with 0.5% Triton X-100 does not correlate with the in vivo DNA synthetic activity. As determined by electron microscopy the Triton X-100 wash removes the outer nuclear membrane; the pellet obtained by centrifuging the Triton X-100 extract of these nuclei consists of circular membrane vesicles. The predominant DNA polymerase activity in these preparations was characterized using pH optimum, N-ethylmaleimide sensitivity, and correlation to in vivo DNA synthetic activity as criteria. DNA polymerase α activity predominated in the non-Triton X-100-extracted nuclei and in the outer nuclear membrane fraction; DNA polymerase β activity was the predominant activity observed in Triton X-100-extracted nuclei. These data emphasize that the procedure which is used to isolate nuclei from proliferating cells can greatly influence the nature of the DNA synthetic activity that is observed in vitro, suggest that DNA polymerase α is associated with the outer nuclear membrane, and add support to the idea that this enzyme is involved in eukaryotic DNA replication.  相似文献   

3.
RNA Polymerase Binding Sites of Phage fd Replicative Form DNA   总被引:3,自引:0,他引:3  
  相似文献   

4.
DnaA protein has the sole responsibility of initiating a new round of DNA replication in prokaryotic organisms. It recognizes the origin of DNA replication, and initiates chromosomal DNA replication in the bacterial genome. In Gram-negative Escherichia coli, a large number of DnaA molecules bind to specific DNA sequences (known as DnaA boxes) in the origin of DNA replication, oriC, leading to the activation of the origin. We have cloned, expressed, and purified full-length DnaA protein in large quantity from Gram-positive pathogen Bacillus anthracis (DnaABA). DnaABA was a highly soluble monomeric protein making it amenable to quantitative analysis of its origin recognition mechanisms. DnaABA bound DnaA boxes with widely divergent affinities in sequence and ATP-dependent manner. In the presence of ATP, the KD ranged from 3.8 × 10−8 M for a specific DnaA box sequence to 4.1 × 10−7 M for a non-specific DNA sequence and decreased significantly in the presence of ADP. Thermodynamic analyses of temperature and salt dependence of DNA binding indicated that hydrophobic (entropic) and ionic bonds contributed to the DnaABA·DNA complex formation. DnaABA had a DNA-dependent ATPase activity. DNA sequences acted as positive effectors and modulated the rate (Vmax) of ATP hydrolysis without any significant change in ATP binding affinity.  相似文献   

5.
Diadenosine 5′,5‴-P1,P4-tetraphosphate (Ap4A) stimulates DNA synthesis in Xenopus laevis oocytes in the presence of activated DNA as template. Besides Ap4A, other analogues such as Ap3A, ATP and other derivatives are able to stimulate DNA polymerase activity. The effect of Ap4A on DNA synthesis is observed with poly(dT) and poly(dT)-poly(dA) as templates, while no effect is found with poly(dA)(dT)12–18 and poly(dC)(dG)12–18. In the presence of a poly(dT) template, the oocyte extract is able to utilize Ap4A as primer and to form a covalent bond between this dinucleotide and the nascent poly(dA) chain. An Ap4A-binding protein present in the system has been purified and separated from DNA polymerase α-primase after phosphocellulose chromatography. After this separation, Ap4A is no longer able to stimulate the polymerase activity, or to be utilized as primer by DNA polymerase α-primase.  相似文献   

6.
Condensed and dispersed chromatin fractions were isolated from human placental nuclei. The DNA of each fraction was purified and characterised by isopycnic centrifugation, thermal fractionation on hydroxylapatite (HAP) and sequence complexity studies. The DNAs had identical buoyant densities in neutral CsCl (1.698 g/cm3) and similar melting profiles on HAP. Analytical ultracentrifugation in Ag+-Cs2SO4, however, showed that satellite DNAs were present in the condensed fraction DNA (DNAC) but were not visible in the dispersed fraction DNA (DNAD). In addition, DNAC was found to be enriched in highly reiterated sequences (20% reassociated by C0t 10?3) which can be correlated with the presence of satellite DNAs, whereas DNAD contained only 3% of these fast reassociating sequences. In contrast DNAD contained 30% intermediate sequences (reassociating between C0t 10?3 and C0t 100) which represent only 10% of DNAC. The reassociated highly repeated sequences of DNAC showed the presence of two components in both CsCl density gradients and HAP thermal elution studies. This suggests that either there are sequence relationships resulting in partial mismatching between the different highly repeated DNA sequences in this fraction, or that highly repeated sequences are associated with less repetitious DNA. The results are discussed in terms of possible differences in genetic activity between the chromatin fractions.  相似文献   

7.
Escherichia coli DNA polymerase I (Klenow fragment), DNA polymerase α from both calf thymus and human lymphoma cells and DNA polymerase β from calf thymus and Novikoff hepatoma cells can incorporate nucleotides opposite N-guanin-8-yl-acetyl-2-aminofluorene in DNA. The polymerases incorporate dCTP opposite some AAF-dG4 lesions when Mg2+ is the divalent cation. Substitution of Mn2+ for Mg2+ broadens the specificity of insertion: E. coli DNA polymerase I (Klenow fragment) also inserts A, and at specific sites G or T; DNA polymerase α inserts any of the four dNTPs with A and C incorporated preferentially to G and T. Polymerase β is specific, inserting mainly C even in the presence of Mn2+. The Km for addition of dATP opposite a lesion by E. coli polymerase I (Klenow fragment) in the presence of Mn2+ is about 0.5 mm. dNMPs increase the insertion of nucleotides opposite AAF-dG in the presence of Mg2+ and increase both the rate and number of sites at which incorporation occurs in the presence of Mn2+. dNTPαS and recA protein increase only the insertion of C.We suppose that the incorporation of dCTP reflects normal base-pairing with the AAF-deoxyguanine in the anti conformation, whereas insertion of the other nucleotides (including some of the C) reflects insertion opposite the AAF adduct in its preferred syn conformation. The fact that the DNA polymerase plays a role in determining the specificity of insertion opposite a lesion terminating DNA synthesis suggests that the spectrum of base substitution mutagenesis seen in vivo may reflect the properties of the protein components, including the polymerase, involved in bypass synthesis.  相似文献   

8.
RNase-sensitive DNA polymerase activity (RSDP) was tested in different cell fractions of Neurospora crassa cell types and its morphological mutants. This RSDP was found localized in the microsomal pellet fraction and absent in the purified nuclear pellets isolated from different N. crassa cell types: conidia, germinated conidia, and mycelia. This enzyme is capable of synthesizing a DNA product only in the presence of all four deoxyribonucleoside-5-triphosphates and Mg2+. Removal of RNA from the pellet fraction by RNase strongly inhibited the DNA synthesis. The endogenous synthesis of DNA in the microsomal pellet fraction was associated with the formation of an RNA:DNA hybrid as analyzed by Cs2SO4 equilibrium density gradient centrifugation. The DNA product after alkali hydrolysis hybridizes with the RNA isolated from the same pellet fraction, as analyzed by elution from hydroxylapatite column at 60 C. This DNA product did not hybridize with poly(A). A few mutants tested showed this RNase-sensitive DNA polymerase activity.This work was supported in part by a contract with the U.S. Department of Energy and a grant from the U.S. Naval Research.  相似文献   

9.
10.
11.
A method for the isolation of the RNA portion of RNA-linked DNA fragments has been developed. The method capitalizes on the selective degradation of DNA by the 3′ to 5′ exonuclease associated with bacteriophage T4 DNA polymerase. After hydrolysis of the DNA portion, the RNA of RNA-linked DNA is recovered mostly as RNA tipped with a deoxyribomononucleotide and a small fraction as pure RNA. On the other hand, the 5′ ends of RNA-free DNA are recovered mostly as dinucleotides and a small fraction as mononucleotides.Using this method, we have isolated the primer RNA for T4 phage DNA synthesis. Nascent short DNA pieces were isolated from T4 phage-infected Escherichia coli cells and the 5′ ends of the pieces were dephosphorylated and then phosphorylated with polynucleotide kinase and [γ-32P]ATP. After selective degradation of the DNA portions, [5′-32P]oligoribonucleotides (up to pentanucleotide) were obtained with covalently bound deoxymononucleotides at their 3′ ends. More than 40% of the oligoribonucleotides isolated were pentanucleotides with pApC at the 5′-terminal dinucleotide. The 5′-terminal nucleotide of the tetraribonucleotides was AMP, but that of the shorter chains was not unique. The pentanucleotide could represent the intact primer RNA for T4 phage DNA synthesis.  相似文献   

12.
Cellular replicases include three subassemblies: a DNA polymerase, a sliding clamp processivity factor, and a clamp loader complex. The Escherichia coli clamp loader is the DnaX complex (DnaX3δδ′χψ), where DnaX occurs either as τ or as the shorter γ that arises by translational frameshifting. Complexes composed of either form of DnaX are fully active clamp loaders, but τ confers important replicase functions including chaperoning the polymerase to the newly loaded clamp to form an initiation complex for processive replication. The kinetics of initiation complex formation were explored for DnaX complexes reconstituted with varying τ and γ stoichiometries, revealing that τ-mediated polymerase chaperoning accelerates initiation complex formation by 100-fold. Analyzing DnaX complexes containing one or more K51E variant DnaX subunits demonstrated that only one active ATP binding site is required to form initiation complexes, but the two additional sites increase the rate by ca 1000-fold. For τ-containing complexes, the ATP analogue ATPγS was found to support initiation complex formation at 1/1000th the rate with ATP. In contrast to previous models that proposed ATPγS drives hydrolysis-independent initiation complex formation by τ-containing complexes, the rate and stoichiometry of ATPγS hydrolysis coincide with those for initiation complex formation. These results show that although one ATPase site is sufficient for initiation complex formation, the combination of polymerase chaperoning and the binding and hydrolysis of three ATPs dramatically accelerates initiation complex formation to a rate constant (25-50 s− 1 ) compatible with double-stranded DNA replication.  相似文献   

13.
Net DNA synthesis continues throughout the embryonic development of chick ventricular tissue but the rate of DNA accumulation declines during the perinatal period. This slowing of DNA accumulation is paralleled by a decreased capacity of chick ventricular slices and of perfused whole hearts to incorporate 3H-thymidine into DNA. Synthesis of DNA by slices and whole hearts is completely inhibited by cytosine arabinoside (ara-C).At least two classes of DNA polymerase which are dependent upon exogenous DNA have been measured in the 100,000 g suppernatant fraction of chick ventricular homogenates. The predominant polymerase, active with a denatured DNA primer, exhibits a decline in activity which is correlated with the fall-off in DNA synthesis in ventricular tissue. The activity of a second DNA polymerase, active with a native DNA primer, remains constant throughout the developmental stages examined. The decrease in polymerase activity with a denatured DNA primer cannot be ascribed to soluble inhibitors of the polymerase or to detectable DNase activity in older myocardial tissue. Several characteristics of the crude enzyme have been examined, including primer and substrate dependence, glycerol and magnesium ion optima, and enzyme inhibition with N-ethylmaleimide (NEM) and 1-β-d-arabinofuranosylcytosine triphosphate (ara-CTP). Polymerase activity with denatured and native DNA primers is differentially susceptible to these reagents.  相似文献   

14.
We report for the first time an analysis of the ATPase activity of human DNA topoisomerase (topo) IIβ. We show that topo IIβ is a DNA-dependent ATPase that appears to fit Michaelis–Menten kinetics. The ATPase activity is stimulated 44-fold by DNA. The kcat for ATP hydrolysis by human DNA topo IIβ in the presence of DNA is 2.25 s–1. We have characterised a topo IIβ derivative which carries a mutation in the ATPase domain (S165R). S165R reduced the kcat for ATP hydrolysis by 7-fold, to 0.32 s–1, while not significantly altering the apparent Km. The specificity constant for the interaction between ATP and topo IIβ (kcat/Kmapp) showed a 90% reduction for βS165R. The DNA binding affinity and ATP-independent DNA cleavage activity of the enzyme are unaffected by this mutation. However, the strand passage activity is reduced by 80%, presumably due to reduced ATP hydrolysis. The mutant enzyme is unable to complement ts yeast topo II in vivo. We have used computer modelling to predict the arrangement of key residues at the ATPase active site of topo IIβ. Ser165 is predicted to lie very close to the bound nucleotide, and the S165R mutation could thus influence both ATP binding and ADP dissociation.  相似文献   

15.
Spheroplasts were disrupted with 0.2% Brij 58 and the separation of intact cells, spheroplasts, disrupted spheroplasts, fragmented membrane, and supernatant was performed on a linear 40~55% sucrose gradient. About half an amount of nucleic acid components was distributed in disrupted spheroplast fractions, while only a small amount of protein components was found in these fractions.

DNA polymerase in the fragmented membrane fraction incorporated 3H-TTP more rapidly than that in the supernatant fraction for the first 5 to 6 min, and then the incorporation rate decreased, while DNA polymerase in the supernatant fraction incorporated 3H-TTP linearly up to 20 min when native DNA was used as a primer. The former required native DNA as a primer and showed little activity towards denatured DNA, while the latter incorporated 3H-TTP at a similar rate to both the primer DNA’s.

DNA polymerase of the fragmented membrane fraction synthesized various sizes of DNA from short to a size of primer when native DNA was used as a primer, while when denatured DNA was used, products were only short. DNA polymerase of the supernatant fraction synthesized various sizes of DNA when both native and denatured DNA’s were used as primers.  相似文献   

16.
Mitochondrial DNA (MtDNA) with a neutral buoyant density of 1.681 g/cm3 has been isolated from unfertilized eggs of Drosophila melanogaster. This DNA is a circular molecule with an average length of 5.3 µm; it reassociates with a low C0t1/2 after denaturation, and in alkaline isopycnic centrifugation it separates into strands differing in density by 0.005 g/cm3. MtDNA isolated from purified mitochondria of unfertilized eggs or from total larval DNA melts with three distinct thermal transitions. The three melting temperature values suggest that the molecule may have three regions differing in average base composition. DNA isolated from unfertilized eggs of D. melanogaster contains approximately equal amounts of MtDNA and another DNA with a buoyant density of 1.697 g/cm3, slightly less dense than main peak DNA. The possibility that the heavier DNA fraction consists of amplified ribosomal DNA was excluded by hybridization experiments, but otherwise nothing is known of its origin or function.  相似文献   

17.
Emphasis was placed in this work on the assessment of biological features of 2,2,4-triaminooxazolone, a major one-electron and ·OH-mediated oxidation product of guanine. For this purpose, two oligonucleotides that contain a unique oxazolone residue were synthesized. Herein we report the mutagenic potential of oxazolone during in vitro DNA synthesis and its behavior towards DNA repair enzymes. Nucleotide insertion opposite oxazolone, catalyzed by Klenow fragment exo and Taq polymerase indicates that the oxazolone lesion induces mainly dAMP insertion. This suggests that the formation of oxazolone in DNA may lead to G→T transversions. On the other hand, oxazolone represents a blocking lesion when DNA synthesis is performed with DNA polymerase β. Interestingly, DNA repair experiments carried out with formamidopyrimidine DNA N-glycosylase (Fpg) and endonuclease III (endo III) show that oxazolone is a substrate for both enzymes. Values of kcat/Km for the Fpg-mediated removal of oxidative guanine lesions revealed that 8-oxo-7,8-dihydroguanine is only a slightly better substrate than oxazolone. In the case of endo III-mediated cleavage of modified bases, the present results suggest that oxazolone is a better substrate than 5-OHC, an oxidized pyrimidine base. Finally, MALDI-TOF-MS analysis of the DNA fragments released upon digestion of an oxazolone-containing oligonucleotide by Fpg gave insights into the enzymatic mechanism of oligonucleotide cleavage.  相似文献   

18.
The gene encoding Thermococcus guaymasensis DNA polymerase (Tgu DNA polymerase) was cloned and sequenced. The 2328 bp Tgu DNA polymerase gene encoded a 775 amino acid residue protein. Alignment of the entire amino acid sequence revealed a high degree of sequence homology between Tgu DNA polymerase and other archaeal family B DNA polymerases. The Tgu DNA polymerase gene was expressed under the control of the T7lac promoter on pET-22b(+) in Escherichia coli BL21-CodonPlus(DE3)-RIL. The expressed enzyme was then purified by heat treatment followed by two steps of chromatography. The optimum pH and temperature were 7.5 and 80 °C, respectively. The optimal buffer for PCR with Tgu DNA polymerase consisted of 50 mM Tris–HCl (pH 8.2), 4 mM MgCl2, 50 mM KCl, and 0.02% Triton X-100. Tgu DNA polymerase revealed 4-fold higher fidelity (3.17 × 10?6) than Taq DNA polymerase (12.13 × 10?6) and a faster amplification rate than Taq and Pfu DNA polymerases. Tgu DNA polymerase had an extension rate of 30 bases/s and a processivity of 150 nucleotides (nt). Thus, Tgu DNA polymerase has some faster elongation rate and a higher processivity than Pfu DNA polymerase. Use of different ratios of Taq and Tgu DNA polymerases determined that a ratio of 4:1 efficiently facilitated long PCR (approximately 15 kb) and a 3-fold lower error rate (4.44 × 10?6) than Taq DNA polymerase.  相似文献   

19.
DNA from plant mitochondria   总被引:18,自引:6,他引:12       下载免费PDF全文
DNA was isolated from a mitochondrial fraction of each of the following plant materials: Mung bean (Phaseolus aureus) etiolated hypocotyl; turnip (Brassica rapa) root; sweet potato (Ipomoea batatas) root; and onion (Allium cepa) bulb. It was found that all of these mitochondrial fractions contained DNA, the densities of which were identical (ρ=1.706 g·cm−3). An additional DNA (ρ=1.695) band found in the mitochondrial fraction of Brassica rapa, was identical to DNA separately isolated from the chloroplast-rich fraction. The origin of the second DNA from Allium mitochondrial fraction was not identified.

Contrary to the identity of the mitochondrial DNA, DNA from nuclear fractions differed not only with each other but from the corresponding mitochondrial DNA.

DNA from Phaseolus and Brassica mitochondria showed the hyperchromicity characteristic of double stranded, native DNA upon heating; Tm's in 0.0195 Na+ were the same; 72.0°. The amount of DNA within the mitochondrion of Phaseolus was estimated to be 5.0 × 10−10 μg; this estimate was made by isolating the mitochondrial DNA concomitantly with the known amount of added 15N2H B. subtilis DNA (ρ=1.740). Approximately the same amount of DNA was present in the mitochondrion of Brassica or Ipomoea.

  相似文献   

20.
We have investigated whether or not ATP or other nucleoside di- and trisphosphates (including some nonhydrolysable ATP analogues) can stimulate the activity and/or the processivity of DNA polymerase α associated with the nuclear matrix obtained from HeLa S3 cell nuclei that had been stabilized at 37°C prior to subfractionation, as has been reported previously for DNA polymerase α bound to the nuclear matrix prepared from 22-h regenerating rat liver. We have found that HeLa cell matrix-associated DNA polymerase α activity could not be stimulated at all by ATP or other nucleotides, a behaviour which was shared also by DNA polymerase α activity that solubilizes from cells during the isolation of nuclei and that is thought to be a form of the enzyme not actively engaged in DNA replication. Moreover, the processivity of matrix-bound DNA polymerase α activity was low (< 10 nucleotides). These results were obtained with the matrix prepared with either 2M NaCl or 0·25 M (NH4)2SO4 and led us to consider that a 37° incubation of isolated nuclei renders resistant to high-salt extraction a form of DNA polymerase α which is unlikely to be involved in DNA replication in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号