首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymes capable of hydrolyzing the beta-glycosidic linkage between oligosaccharides and ceramides in various glycosphingolipids has been found in microorganisms and invertebrates and designated endoglycoceramidase (EC 3.2.1.123) or ceramide glycanase. Here we report the molecular cloning, characterization, and homology modeling of a novel endoglycoceramidase that hydrolyzes oligogalactosylceramides to produce galactooligosaccharides and ceramides. The novel enzyme was purified from a culture supernatant of Rhodococcus equi, and the gene encoding 488 deduced amino acids was cloned using peptide sequences of the purified enzyme. Eight residues essential for the catalytic reaction in microbial and animal endoglycoceramidases were all conserved in the deduced amino acid sequence of the novel enzyme. Homology modeling of the enzyme using endocellulase E1 as a template revealed that the enzyme displays a (beta/alpha)8 barrel structure in which Glu234 at the end of beta-strand 4 and Glu341 at the end of beta-strand 7 could function as an acid/base catalyst and a nucleophile, respectively. Site-directed mutagenesis of these glutamates resulted in a complete loss of the activity without a change in their CD spectra. The recombinant enzyme hydrolyzed the beta-galactosidic linkage between oligosaccharides and ceramides of 6-gala series glycosphingolipids that were completely resistant to hydrolysis by the enzymes reported so far. In contrast, the novel enzyme did not hydrolyze ganglio-, globo-, or lactoseries glycosphingolipids. The enzyme is therefore systematically named "oligogalactosyl-N-acylsphingosine 1,1'-beta-galactohydrolase" or tentatively designated "endogalactosylceramidase."  相似文献   

2.
Cloning, sequencing, and expression of the tulip bulb chitinase-1 cDNA   总被引:3,自引:0,他引:3  
A cDNA encoding tulip bulb chitinase-1 (TBC-1) was cloned using a combination of immunoscreening from a lambda ZAP cDNA library with anti-TBC-1 antiserum and the 5' rapid amplification of cDNA end (RACE) method, and sequenced. The cDNA consists of 1,106 nucleotides and included an open reading frame encoding a polypeptide of 314 amino acids. Comparison of the deduced amino acid sequence and the determined protein sequence indicated the presence of a signal peptide and an extra peptide composed of 26 and 13 amino acids at the N- and C-termini, respectively. The deduced sequence of TBC-1 had 10-20% and 63% sequence similarities to plant class III chitinases and gladiolus bulb class IIIb chitinase (GBC-a), respectively. The cDNA encoding mature TBC-1 was amplified by polymerase chain reaction (PCR), ligated into the expression vector pET-22b, and expressed in Escherichia coli BL21(DE3). The recombinant TBC-1 (rTBC-1) expressed in E. coli was purified by gel filtration followed by ion-exchange chromatography. Specific activity of the rTBC-1 was almost same as the authentic TBC-1 toward glycolchitin. This is the first report on the cDNA cloning of a class III chitinase having C-terminal extra peptide.  相似文献   

3.
Mitochondrial NAD(+)-dependent malic enzyme (EC 1.1.1.40) is expressed in rapidly proliferating cells and tumor cells, where it is probably linked to the conversion of amino acid carbon to pyruvate. In this paper, we report the cDNA cloning, amino acid sequence, and expression in Escherichia coli of functional human NAD(+)-dependent mitochondrial malic enzyme. The cDNA is 1,923 base pairs long and contains an open reading frame coding for a 584-amino acid protein. The molecular mass is 65.4 kDa for the unprocessed precursor protein. Comparison of the amino acid sequence of the human protein with the published NADP(+)-dependent mammalian cytosolic or plant chloroplast malic enzymes reveals highly conserved regions interrupted with long stretches of amino acids without significant homology. Expression of the processed protein in E. coli yielded an enzyme with the same kinetic and allosteric properties as malic enzyme purified from human cells.  相似文献   

4.
Two molecular species of endoglycoceramidase (designated as endoglycoceramidases I and II) were purified 32,700 and 43,000 times with overall recoveries of 4.8 and 2.9%, respectively, from a culture fluid of the mutant strain M-750 of Rhodococcus sp., cultivated in the absence of inducers (ganglioside). After being stained with Coomassie Brilliant Blue or a silver-staining solution, each purified enzyme showed a single protein band on polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The apparent molecular weights, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were 55,900 for endoglycoceramidase I and 58,900 for endoglycoceramidase II, and their pIs were 5.3 and 4.5, respectively. both were capable of hydrolyzing the glucosylceramide linkage of ganglio-type, lacto-type, and globo-type glycosphingolipids to afford intact oligosaccharides and ceramides. Globo-type glycosphingolipids were strongly resistant to hydrolysis by endoglycoceramidase II in comparison with endoglycoceramidase I. Neither could hydrolyze gala-type glycosphingolipids, cerebrosides, sulfatides, glycoglycerolipids, or sphingomyelins. In addition to these two enzymes, the strain M-750 produced a third minor molecular species of endoglycoceramidase designated as endoglycoceramidase III. It was found capable of specifically hydrolyzing the galactosylceramide linkage of gala-type glycosphingolipids that were not hydrolyzable at all by endoglycoceramidases I or II. The molecular weights of the oligosaccharide and ceramide released from asialo GM1, incubated either in normal H2O or H2(18)O with the enzyme, were compared by fast atom bombardment-mass spectrometry. The result clearly indicated that both endoglycoceramidases I and II hydrolyze the glycosidic linkage between the oligosaccharide and ceramide. Thus, a systematic name of the endoglycoceramidase should be glycosyl-N-acyl-sphingosine 1,1-beta-D-glucanohydrolase.  相似文献   

5.
Tyrosinase (monophenol, 3,4-dihydroxy L-phenylalanine (L-DOPA):oxygen oxidoreductase, EC 1.14.18.1) was isolated from fruit bodies of Pholiota nameko and purified to homogeneity. The purified enzyme was a monomer with a molecular weight of 42,000 and contained 1.9 copper atoms per molecule. The N-terminal of the purified enzyme could not be detected by Edman degradation, probably due to blocking, while the C-terminal sequence of the enzyme was determined to be -Ala-Ser-Val-Phe-OH. The amino acid sequence deduced by cDNA cloning was made up of 625 amino acid residues and contained two putative copper-binding sites highly conserved in tyrosinases from various organisms. The C-terminal sequence of the purified enzyme did not correspond to that of the deduced sequence, but agreed with Ala384-Ser385-Val386-Phe387 in sequence. When the encoded protein was truncated at Phe387, the molecular weight of the residual protein was calculated to be approximately 42,000. These results suggest that P. nameko tyrosinase is expressed as a proenzyme followed by specific cleavage to produce a mature enzyme.  相似文献   

6.
The C-terminal alpha-amide formation of the peptides is one of the most important events of prohormone processing. We have recently isolated an alpha-amidating enzyme, AE-I, from Xenopus laevis skin, which is the only enzyme ever purified to homogeneity. In this study, we report cloning and sequence of cDNA encoding AE-I. Our results indicate that enzyme AE-I is initially synthesized as a precursor with 400 amino acid residues, which is further processed to the mature enzyme consisting of 344 residues. Preliminary expression in E. coli of the cDNA corresponding to AE-I was found to produce an enzyme with appreciable alpha-amidating activity.  相似文献   

7.
L Ni  K Guan  H Zalkin  J E Dixon 《Gene》1991,106(2):197-205
The purH cDNA, encoding 5-aminoimidazole-4-carboxamide-ribonucleotide (AICAR) transformylase-inosine monophosphate cyclohydrolase (ATIC), was cloned by functional complementation of an Escherichia coli purH mutant using a chicken liver cDNA expression library. This represents the first report of the cloning of any eukaryotic ATIC-encoding cDNA (PurH). The avian ATIC mRNA is 2.3 kb long and encodes a protein with an Mr of 64,422. The deduced amino acid sequence is 36% identical to the bacterial purH-encoded enzymes from Bacillus subtilis and E. coli. The avian cDNA was expressed as a glutathione S-transferase (GST) fusion protein that was purified in a single step by affinity chromatography. A novel vector was employed which permits rapid and highly efficient cleavage of the GST fusion protein yielding 10 mg of purified PurH product per liter of bacterial culture. Km values were determined with the purified fusion protein utilizing AICAR and (6-R)N10-formyl-tetrahydrofolate as substrates. These values compare favorably with the isolated avian enzyme, supporting the idea that kinetic, as well as other physical properties of the recombinant fusion protein are similar to the native avian enzyme. Large quantities of purified enzyme and the ability to generate site-directed mutations should make mechanistic studies possible. The recombinant enzyme also affords a simple and reliable approach to identifying new antifolates.  相似文献   

8.
This is the first report succeeding in the isolation and characterization of an enzyme and its gene involved in the phosphorylation of a steroid hormone. It has been demonstrated that ecdysteroid 22-phosphates in insect ovaries, which are physiologically inactive, serve as a "reservoir" that supplies active free ecdysteroids during early embryonic development and that their dephosphorylation is catalyzed by a specific enzyme, ecdysteroid-phosphate phosphatase (Yamada, R., and Sonobe, H. (2003), J. Biol. Chem. 278, 26365-26373). In this study, ecdysteroid 22-kinase (EcKinase) was purified from the cytosol of the silkworm Bombyx mori ovaries to about 1,800-fold homogeneity in six steps of column chromatography and biochemically characterized. Results obtained indicated that the reciprocal conversion of free ecdysteroids and ecdysteroid 22-phosphates by two enzymes, EcKinase and ecdysteroid-phosphate phosphatase, plays an important role in ecdysteroid economy of the ovary-egg system of B. mori. On the basis of the partial amino acid sequence obtained from purified EcKinase, the nucleotide sequence of the cDNA encoding EcKinase was determined. The full-length cDNA of EcKinase was composed of 1,850 bp with an open reading frame encoding a protein of 386 amino acid residues. The cloned cDNA was confirmed to encode the functional EcKinase using the transformant harboring the open reading frame of EcKinase. A data base search showed that EcKinase has an amino acid sequence characteristic of phosphotransferases, in that it harbors Brenner's motif and putative ATP binding sites, but there are no functional proteins that share high identity with the amino acid sequence of EcKinase.  相似文献   

9.
The cDNA coding for Penicillium purpurogenum α-galactosidase (αGal) was cloned and sequenced. The deduced amino acid sequence of the α-Gal cDNA showed that the mature enzyme consisted of 419 amino acid residues with a molecular mass of 46,334 Da. The derived amino acid sequence of the enzyme showed similarity to eukaryotic αGals from plants, animals, yeasts, and filamentous fungi. The highest similarity observed (57% identity) was to Trichoderma reesei AGLI. The cDNA was expressed in Saccharomyces cerevisiae under the control of the yeast GAL10 promoter. Almost all of the enzyme produced was secreted into the culture medium, and the expression level reached was approximately 0.2 g/liter. The recombinant enzyme purified to homogeneity was highly glycosylated, showed slightly higher specific activity, and exhibited properties almost identical to those of the native enzyme from P. purpurogenum in terms of the N-terminal amino acid sequence, thermoactivity, pH profile, and mode of action on galacto-oligosaccharides.  相似文献   

10.
Dalcochinin-8'-O-beta-glucoside beta-glucosidase (dalcochinase) from the Thai rosewood (Dalbergia cochinchinensis Pierre) has aglycone specificity for isoflavonoids and can hydrolyze both beta-glucosides and beta-fucosides. To determine its structure and evolutionary lineage, the sequence of the enzyme was determined by peptide sequencing followed by PCR cloning. The cDNA included a reading frame coding for 547 amino acids including a 23 amino acid propeptide and a 524 amino acid mature protein. The sequences determined at peptide level were found in the cDNA sequence, indicating the sequence obtained was indeed the dalcochinase enzyme. The mature enzyme is 60% identical to the cyanogenic beta-glucosidase from white clover glycosyl hydrolase family 1, for which an X-ray crystal structure has been solved. Based on this homology, residues which may contribute to the different substrate specificities of the two enzymes were identified. Eight putative glycosylation sites were identified, and one was confirmed to be glycosylated by Edman degradation and mass spectrometry. The protein was expressed as a prepro-alpha-mating factor fusion in Pichia pastoris, and the activity of the secreted enzyme was characterized. The recombinant enzyme and the enzyme purified from seeds showed the same K(m) for pNP-glucoside and pNP-fucoside, had the same ratio of V(max) for these substrates, and similarly hydrolyzed the natural substrate, dalcochinin-8'-beta-glucoside.  相似文献   

11.
NAD(P)H:menadione oxidoreductase induction by polycyclic hydrocarbons is known to be governed by the aromatic hydrocarbon-responsive (Ah) locus. This cytosolic enzyme was isolated from 3-methylcholanthrene-treated rat liver by a rapid two-step procedure with the use of affinity gel purification and fast-protein liquid chromatography. Polyclonal antiserum to menadione reductase was raised in rabbits. On Western (immuno) blot analysis, large increases in this hepatic menadione reductase protein (NMOR1) of 3-methylcholanthrene-treated C57BL/6N but not DBA/2N mice confirmed that induction of this enzyme by 3-methyl-cholanthrene is regulated by the Ah receptor. A cDNA expression library was constructed in lambda gt11 and screened with antiserum. Positive cDNA clones were plaque purified and further characterized by showing enhanced hybridization to 3-methylcholanthrene-induced poly(A+) RNA from rats; the longest cDNA clone (1,501 base pairs) has an open reading frame (bases 75-899) and a nucleotide sequence consistent with a new gene family. On Northern blot analysis, a single 3-methylcholanthrene-inducible rat liver mRNA (approximately 1.6 kilobases) hybridizes to the cDNA probe. On Southern blot analysis a total of 14-16 kilobases of rat genomic DNA fragments hybridize to the cDNA probe, indicating one or a small number of menadione reductase genes in this family. The amino acid sequence (274 residues) and Mr of 30,946 compare well with the size of the rat enzyme (32 kDa) estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amino acid sequence of two internal fragments of the trypsin-digested purified NMOR1 protein is in complete agreement with that deduced from the cDNA nucleotide sequence. This study represents the first cloning and sequencing of a cDNA encoding a Phase II drug-metabolizing enzyme under control of the Ah locus.  相似文献   

12.
Endoglycoceramidase catalyzes the hydrolysis of the linkage between oligosaccharides and ceramides of various glycosphingolipids. We found that a bacterial strain Corynebacterium sp., isolated from soil, produced endoglycoceramidase both intracellularly and extracellularly. The intracellular enzyme bound to the cell membrane was solubilized with 1% Triton X-100 and purified to homogeneity about 170-fold with 60% recovery. The molecular mass of the enzyme was approximately 65 kDa. The enzyme is most active at pH 5.5-6.5 and stable at pH 3.5-8.0. Various neutral and acidic glycosphingolipids were hydrolyzed by the enzyme in the presence of 0.1% Triton X-100. Ganglio- and lacto-type glycosphingolipids were readily hydrolyzed, but globo-type glycosphingolipids were hydrolyzed slowly.  相似文献   

13.
We previously reported the purification and characterization of a novel type of alkaline ceramidase from Pseudomonas aeruginosa strain AN17 (Okino, N., Tani, M., Imayama, S., and Ito, M. (1998) J. Biol. Chem. 273, 14368-14373). Here, we report the molecular cloning, sequencing, and expression of the gene encoding the ceramidase of this strain. Specific oligonucleotide primers were synthesized using the peptide sequences of the purified ceramidase obtained by digestion with lysylendopeptidase and used for polymerase chain reaction. DNA fragments thus amplified were used as probes to clone the gene encoding the ceramidase from a genomic library of strain AN17. The open reading frame of 2,010 nucleotides encoded a polypeptide of 670 amino acids including a signal sequence of 24 residues, 64 residues of which matched the amino acid sequence determined for the purified enzyme. The molecular weight of the mature enzyme was estimated to be 70,767 from the deduced amino acid sequence. Expression of the ceramidase gene in Escherichia coli, resulted in production of a soluble enzyme with the identical N-terminal amino acid sequence. Recombinant ceramidase was purified to homogeneity from the lysate of E. coli cells and confirmed to be identical to the Pseudomonas enzyme in its specificity and other enzymatic properties. No significant sequence similarities were found in other known functional proteins including human acid ceramidase. However, we found a sequence homologous to the ceramidase in hypothetical proteins encoded in Mycobacterium tuberculosis, Dictyostelium discoideum, and Arabidopsis thaliana. The homologue of the ceramidase gene was thus cloned from an M. tuberculosis cosmid and expressed in E. coli, and the gene was demonstrated to encode an alkaline ceramidase. This is the first report for the cloning of an alkaline ceramidase.  相似文献   

14.
cDNAs encoding the human lysosomal hydrolase, arylsulfatase B (ASB; N-acetylgalactosamine-4-sulfatase, EC 3.1.6.1), were isolated from a hepatoma cell cDNA library using an ASB-specific oligonucleotide generated by the MOPAC (mixed oligonucleotide primed amplification of cDNA) technique. To facilitate cDNA cloning, human ASB was purified to apparent homogeneity and a total of 112 amino acid residues were microsequenced from the N-terminus and four internal tryptic peptides of the 47-kDa subunit. Based on the ASB N-terminal amino acid sequence, two oligonucleotide mixtures containing inosines to reduce the mixture complexity were constructed and used as primers to amplify an ASB-specific product from human placental cDNA by the polymerase chain reaction. DNA sequencing of this MOPAC product demonstrated colinearity with 21 N-terminal ASB amino acids. Based on this sequence and on codon usage for the adjacent conserved amino acids in human arylsulfatases A and C, a unique 66-mer was synthesized and used to screen a human hepatoma cell cDNA library. Four putative positive cDNA clones were isolated, and the largest insert (pASB-1) was sequenced in both orientations. The 1834-bp pASB-1 insert had a 1278-bp open reading frame encoding 425 amino acids that was colinear with 85 microsequenced amino acids of the purified enzyme, demonstrating its authenticity. Using the pASB-1 cDNA as a probe, a full-length cDNA clone, pASB-4, was isolated from a human testes library and sequenced in both orientations. pASB-4 had a 2811-bp insert containing a 559-bp 5' untranslated sequence, a 1602-bp open reading frame encoding 533 amino acids (six potential N-glycosylation sites), a 641-bp 3' untranslated sequence, and a 9-bp poly(A) tract. Comparison of the predicted amino acid sequences of arylsulfatases A, B, and C revealed regions of identity, particularly in their N-termini.  相似文献   

15.
We purified a mouse DNA repair enzyme having apurinic/apyrimidinic endonuclease, DNA 3'-phosphatase, 3'-5'-exonuclease and DNA 3' repair diesterase activities, and designated the enzyme as APEX nuclease. A cDNA clone for the enzyme was isolated from a mouse spleen cDNA library using probes of degenerate oligonucleotides deduced from the N-terminal amino acid sequence of the enzyme. The complete nucleotide sequence of the cDNA (1.3 kilobases) was determined. Northern hybridization using this cDNA showed that the size of its mRNA is about 1.5 kilobases. The complete amino acid sequence for the enzyme predicted from the nucleotide sequence of the cDNA (APEX nuclease cDNA) indicates that the enzyme consists of 316 amino acids with a calculated molecular weight of 35,400. The predicted sequence contains the partial amino acid sequences determined by a protein sequencer from the purified enzyme. The coding sequence of APEX nuclease was cloned into pUC18 SmaI and HindIII sites in the control frame of the lacZ promoter. The construct was introduced into BW2001 (xth-11, nfo-2) strain cells of Escherichia coli. The transformed cells expressed a 36.4-kDa polypeptide (the 316 amino acid sequence of APEX nuclease headed by the N-terminal decapeptide of beta-galactosidase) and were less sensitive to methyl methanesulfonate than the parent cells. The fusion product showed priming activity for DNA polymerase on bleomycin-damaged DNA and acid-depurinated DNA. The deduced amino acid sequence of mouse APEX nuclease exhibits a significant homology to those of exonuclease III of E. coli and ExoA protein of Streptococcus pneumoniae and an intensive homology with that of bovine AP endonuclease 1.  相似文献   

16.
Endoglycoceramidase (EGCase) is an enzyme capable of cleaving the glycosidic linkage between oligosaccharides and ceramides of various glycosphingolipids. We previously reported that the Asn-Glu-Pro (NEP) sequence is part of the active site of EGCase of Rhodococcus sp. strain M-777. This paper describes the molecular cloning of a new EGCase gene utilizing the NEP sequence from the genomic library of Rhodococcus sp. strain C9, which was clearly distinguishable from M-777 by 16S rDNA analysis. C9 EGCase possessed an open reading frame of 1,446 bp encoding 482 amino acids, and showed 78% and 76% identity to M-777 EGCase II at the nucleotide and amino acid levels, respectively. Interestingly, C9 EGCase showed the different specificity to the M-777 enzyme: it hydrolyzed b-series gangliotetraosylceramides more slowly than the M-777 enzyme, whereas both enzymes hydrolyzed a-series gangliosides and neutral glycosphingolipids to the same extent.  相似文献   

17.
Transketolase is a key enzyme in the pentose-phosphate pathway which has been implicated in the latent human genetic disease, Wernicke-Korsakoff syndrome. Here we report the cloning and partial characterisation of the coding sequences encoding human transketolase from a human brain cDNA library. The library was screened with oligonucleotide probes based on the amino acid sequence of proteolytic fragments of the purified protein. Northern blots showed that the transketolase mRNA is approximately 2.2 kb, close to the minimum expected, of which approximately 60% was represented in the largest cDNA clone. Sequence analysis of the transketolase coding sequences reveals a number of homologies with related enzymes from other species.  相似文献   

18.
Procerain B, a novel cysteine protease (endopeptidase) isolated from Calotropis procera belongs to Asclepiadaceae family. Purification of the enzyme, biochemical characterization and potential applications are already published by our group. Here, we report cDNA cloning, complete amino acid sequencing and molecular modeling of procerain B. The derived amino acid sequence showed high sequence homology with other papain like plant cysteine proteases of peptidase C1A superfamily. The three dimensional structure of active procerain B was modeled by homology modeling using X-ray crystal structure of actinidin (PDB ID: 3P5U), a cysteine protease from the fruits of Actinidia arguta. The structural aspect of the enzyme is also discussed.  相似文献   

19.
20.
The hydrogenosomal malic enzyme (ME) was purified from the anaerobic fungus Neocallimastix frontalis . Using reverse genetics, the corresponding cDNA was isolated and characterized. The deduced amino acid sequence of the ME showed high similarity to ME from metazoa, plants and protists. Putative functional domains for malate and NAD+/NADP+ binding were identified. Phylogenetic analysis of the deduced amino acid sequence of the new ME suggests that it is homologous to reference bacterial and eukaryotic ME. Most interestingly, the cDNA codes for a protein which contains a 27-amino-acid N-terminus which is not present on the purified mature protein. This presequence shares features with known mitochondrial targeting signals, including an enrichment in Ala, Leu, Ser, and Arg, and the presence of an Arg at position –2 relative to amino acid 1 of the mature protein. This is the first report of a mitochondrial-like targeting signal on a hydrogenosomal enzyme from an anaerobic fungus and provides support for the hypothesis that hydrogenosomes in Neocallimastix frontalis might be modified mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号