首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Extracellular matrix molecules play important roles in neural developmental processes such as axon guidance and synaptogenesis. When development is complete, many of these molecules are down-regulated, however the molecules that remain highly expressed are often involved in modulation of synaptic function. SC1 is an example of an extracellular matrix protein whose expression remains high in the adult rat brain. Confocal microscopy revealed that SC1 demonstrates a punctate pattern in synaptic enriched regions of the cerebral cortex and cerebellum. Higher resolution analysis using electron microscopy indicated that SC1 localizes to synapses, particularly the postsynaptic terminal. SC1 was also detected in perisynaptic glial processes that envelop synapses. This work was supported by the National Science and Engineering Research Council of Canada.  相似文献   

4.
Abstract: The effects of subcutaneous daily treatment with thyroxine on cell proliferation, differentiation, polyamines, and γ-aminobutyric acid metabolism in the rat retina were studied during the first 20 postnatal days. The retinal layers of the treated rats displayed an enhanced cell differentiation which reached its maximum 9–12 days from birth; but this effect stopped very quickly and was finished by the 20th postnatal day. Primarily there was an increase in ornithine decarboxylase activity which was accompanied by an increase in putrescine, spermidine, and spermine levels. S -Adenosylmethionine decarboxylase was induced later than ODC; corresponding with the enhanced synaptogenesis, glutamate decarboxylase increased 15-fold between the fourth and 15th days. Our data are consistent with the hypothesis that thyroxine may exert some of its effects by inducing the enzymes which regulate polyamine metabolism and synaptogenesis.  相似文献   

5.
We describe the cloning of SC1, a novel cDNA that was selected from a rat brain expression library using a mixed polyclonal antibody directed against synaptic junction glycoproteins. SC1 detects a 3.2 kb mRNA expressed throughout postnatal development of the brain and present at high levels in the adult. In situ hybridization reveals that the SC1 mRNA is expressed widely in the brain and is present in many types of neurons. DNA sequence data suggest that the SC1 product is a secreted, calcium binding glycoprotein. Strikingly, the carboxy-terminal region of the SC1 protein shows substantial similarity to the extracellular matrix glycoprotein osteonectin/BM40/SPARC. These data are consistent with the hypothesis that SC1 is an extracellular matrix glycoprotein in the brain.  相似文献   

6.
The expression of protein kinase C (PKC) subspecies in synaptosomes prepared from a number of adult brain regions was compared. Cerebral cortical and thalamic/striatal synaptosomes were found to express three peaks of enzyme activity upon hydroxyapatite chromatography, corresponding to the type I(gamma), type II(beta), and type III(alpha) subspecies. Synaptosomes prepared from either the hippocampus or the cerebellar cortex, however, contained only two major peaks, corresponding to the alpha- and beta-subspecies, with barely detectable levels of the gamma-subspecies, even though these tissue areas were enriched in the latter enzyme. When the ontogenic pattern of hippocampal synaptosomal PKC subspecies was examined, it was found that at postnatal day 7, significant quantities of the gamma-subspecies were present and that this subspecies reached its peak levels at around postnatal day 14, before steadily declining to its adult level. Similar changes were observed also for the gamma-subspecies in cerebellar cortex synaptosomes. The dynamic changes in the synaptosomal PKC subspecies take place at a critical period in the development of the rat brain, concomitant with an active period of synaptogenesis, suggesting that it may play a role in synaptogenesis.  相似文献   

7.
Calmodulin-dependent protein phosphatase: a developmental study   总被引:10,自引:0,他引:10  
E A Tallant  W Y Cheung 《Biochemistry》1983,22(15):3630-3635
Calmodulin-dependent protein phosphatase, one of the major calmodulin-binding proteins in bovine brain, dephosphorylates casein with a specific activity of 15 nmol mg-1 min-1 at 30 degrees C. The stimulation of phosphatase activity by calmodulin is reversed by ethylene glycol bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid or trifluoperazine, a calmodulin antagonist. Antibodies raised in rabbit against the phosphatase inhibit the enzyme activity. The levels of the protein in brain extracts from various animals, determined by a radioimmunoassay, range from 20 micrograms/g of tissue in chick and fish brains to 143 micrograms in rat cerebrum. The ontogeny of the phosphatase was studied in nervous tissues from rat and chick, animals in which synaptogenesis takes place at different times during their development. The levels of the protein increased significantly in rat cerebrum and cerebellum and in chick brain and retina during the periods corresponding to major synapse formation. In rat cerebrum, the enzyme appeared to be equally distributed between the cytosol and the particulate fraction; the level in both compartments increased during the major period of synapse formation. Thus, the development of calmodulin-dependent protein phosphatase closely parallels synaptogenesis, implicating a role in some synaptic function.  相似文献   

8.
Thyroid hormones are major regulators of postnatal brain development. Thyroid hormones act through nuclear receptors to modulate the expression of specific genes in the brain. We have used microarray analysis to identify novel responsive genes in 14-day-old hypothyroid rat brains, and discovered that synaptosomal-associated protein of 25 kDa (SNAP-25) was one of the thyroid hormone-responsive genes. SNAP-25 is a presynaptic plasma membrane protein and an integral component of the vesicle docking and fusion machinery mediating secretion of neurotransmitters and is required for neuritic outgrowth and synaptogenesis. Using microarray analysis we have shown that SNAP-25 was down-regulated in the hypothyroid rat brain compared with the age-matched controls. Real-time RT-PCR and western blotting analysis confirmed that SNAP-25 mRNA and protein levels decreased significantly in the developing hypothyroid rat brain. Our data suggest that in the developing rat brain, SNAP-25 expression is regulated by thyroid hormone, and thyroid hormone deficiency can cause decreased expression of SNAP-25 and this may on some level account for the impaired brain development seen in hypothyroidism.  相似文献   

9.
Neuronal Membrane D2-Protein During Rat Brain Ontogeny   总被引:14,自引:11,他引:3  
Abstract The D2-protein exists as a sialylated form in fetal and in perinatal rat brain, and as a desialylated form in adult rat brain. By crossed Immunoelectrophoresis the concentrations and amounts of these forms were investigated during ontogeny of both forebrain and cerebellum. The concentration of sialylated D2-protein reached two peaks during ontogeny. The first peak occurred in forebrain around embryonic day 13, and in cerebellum just after birth. In both brain areas it coincided with the periods of major neuronal migration. The second peak occurred in forebrain around postnatal day 6 and in cerebellum around postnatal day 20, during the initial period of synaptogenesis in both brain areas. Moreover, the desialylated form of D2-protein was found only in postnatal rats and it increased to a slight maximum at postnatal day 25 in forebrain, and postnatal day 35 in cerebellum. The findings are discussed in relation to the possible role of D2-protein as an adhesion molecule.  相似文献   

10.
The maturing large neurons of the rat red nucleus in animals ranging in age from 1 to 21 days of postnatal life were studied ultrastructurally. Days 1--6 were characterized by rapid morphologic maturation occurring concomitantly with the onset of synaptogenesis. Morphogenesis was confined to the soma, while the first synaptic contacts were also formed in relationship to the soma. Days 6--9 demonstrated continued somal morphogenesis exemplified by cytoplasmic expansion and by the conspicuous presence of perisomatic and growth cone processes. Proximal dendritic morphogenesis was initiated, and synaptogenesis became complex with synaptic sites occurring in relation to the neuronal soma, the perisomatic processes and proximal dendrites. Days 9--15 were characterized by the completion of somal and proximal dendritic morphogenesis and by a massive degree of synaptogenic activity. During this interval, the soma lost perisomatic and growth cone processes, while somatic spines appeared. By the end of this period the neuronal soma and the proximal dendrites appeared mature in terms of both morphology and synaptic input. Complete neuronal maturation was ultimately attained by day 21 of postnatal life.  相似文献   

11.
Growth‐associated protein 43 (GAP‐43), a novel axonal phosphoprotein, is originally identified as a growth‐cone‐specific protein of developing neurons in vitro. The expression of GAP‐43 is also shown to be up‐regulated concomitant with increased synaptic plasticity in the brains in vivo, but how GAP‐43 is concerned with synaptic plasticity is not well understood. In the present study, therefore, we aimed to elucidate subcellular localization of GAP‐43 as culture development of rat hippocampal neurons. Western blotting showed that the expression of GAP‐43 in the cerebral and hippocampal tissues was prominently high at postnatal days 14 and 21 or the active period of synaptogenesis. Double‐labelling immunohistochemistry with an axonal marker Tau revealed that the immunoreactivity of GAP‐43 was seen throughout axons of cultured hippocampal neurons but stronger at axonal puncta of developing neurons than axonal processes. Double‐labelling immunohistochemistry with presynaptic terminal markers of synapsin and synaptotagmin revealed that the immunoreactivity of GAP‐43 was observed mostly at weak synapsin‐ and synaptotagmin‐positive puncta rather than strong ones. The quantitative analysis of immunofluorescent intensity showed a clear inverse correlation between GAP‐43 and either synapsin or synaptotagmin expression. These data indicate that GAP‐43 is highly expressed at immature growing axonal terminals and its expression is decreased along with the maturation of synaptogenesis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
1. We investigated the content of S100B protein by ELISA in three brain regions (hippocampus, cerebral cortex, and cerebellum) and in cerebrospinal fluid of rats during postnatal development as well as the content and secretion of S100B in pre- and postconfluent primary astrocyte cultures.2. An accumulation of S100B occurred in all brain regions with similar ontogenetic pattern between second and fourth postnatal weeks. However, we observed a decrease in the cerebrospinal fluid S100B after the critical period for synaptogenesis in rodents.3. A similar profile of cell accumulation and decrease in basal secretion was also observed during aging of astrocyte cultures.4. These data contribute to the proposal that S100B is an important glial-derived protein during brain development and that changes in extracellular levels of S100B may be related to glial proliferation and synaptogenesis.  相似文献   

13.
In the present study MRP2/ABCC2 and BSEP/ABCB11 expression were investigated in sandwich cultured (SC) human and rat hepatocytes exposed to the proinflammatory cytokines. The investigation was also done in lipopolysaccharide (LPS)-treated rats. In SC human hepatocytes, both absolute protein and mRNA levels of MRP2/ABCC2 were significantly down-regulated by TNF-α, IL-6, or IL-1β. In contrast to mRNA decrease, which was observed for BSEP/ABCB11, the protein amount was significantly increased by IL-6 or IL-1β. A discrepancy between the change in BSEP/ABCB11 mRNA and protein levels was encountered in SC human hepatocytes treated with proinflammatory cytokines. In SC rat hepatocytes, Mrp2/Abcc2 mRNA was down-regulated by TNF-α and IL-6, whereas the protein level was decreased by all three cytokines. Down-regulations of both Bsep/Abcb11 mRNA and protein levels were found in SC rat hepatocytes exposed to TNF-α or IL-1β. Administration of LPS triggered the release of the proinflammatory cytokines and caused the decrease of Mrp2/Abcc2 and Bsep/Abcb11 protein in liver at 24 h post-treatment; however, the Mrp2 and Bsep protein levels rebounded at 48 h post-LPS treatment. In total, our results indicate that proinflammatory cytokines regulate the expression of MRP2/Mrp2 and BSEP/Bsep and for the first time demonstrate the differential effects on BSEP/Bsep expression between SC human and rat hepatocytes. Furthermore, the agreement between transporter regulation in vitro in SC rat hepatocytes and in vivo in LPS-treated rats during the acute response phase demonstrates the utility of in vitro SC hepatocyte models for predicting in vivo effects.  相似文献   

14.
Insulin-like growth factor I (IGF-I) and its receptor (IGF-IR) are involved in growth of neurons. In the rat olfactory epithelium, we previously showed IGF-IR immunostaining in subsets of olfactory receptor neurons. We now report that IGF-IR staining was heaviest in the olfactory nerve layer of the rat olfactory bulb at embryonic days 18, and 19 and postnatal day 1, with labeling of protoglomeruli. In the adult, only a few glomeruli were IGF-IR-positive, some of which were unusually small and strongly labeled. Some IGF-IR-positive fibers penetrated deeper into the external plexiform layer, even in adults. In developing tissues, IGF-IR staining co-localized with that for olfactory marker protein and growth associated protein GAP-43, but to a lesser extent with synaptophysin. In the adult, IGF-IR-positive fibers were compartmentalized within glomeruli. IGF-I may play a role in glomerular synaptogenesis and/or plasticity, possibly contributing to development of coding patterns for odor detection or identification.  相似文献   

15.
Gestational-neonatal iron deficiency, a common micronutrient deficiency affecting the offspring of more than 30% of pregnancies worldwide, leads to long-term cognitive and behavioral abnormalities. Preclinical models of gestational-neonatal iron deficiency result in reduced energy metabolism and expression of genes critical for neuronal plasticity and cognitive function, which are associated with a smaller hippocampal volume and abnormal neuronal dendrite growth. Because insulin-like growth factor (IGF) modulates early postnatal cellular growth, differentiation, and survival, we used a dietary-induced rat model to assess the effects of gestational iron deficiency on activity of the IGF system. We hypothesized that gestational iron deficiency attenuates postnatal hippocampal IGF signaling and results in downstream effects that contribute to hippocampal anatomic and functional deficits. At postnatal day (P) 15 untreated gestational-neonatal iron deficiency markedly suppressed hippocampal IGF activation and protein kinase B signaling, and reduced neurogenesis, while elevating extracellular signal-regulated kinase 1/2 signaling and hypoxia-inducible factor-1α expression. Iron treatment beginning at P7 restored IGF signaling, increased neurogenesis, and normalized all parameters by the end of rapid hippocampal differentiation (P30). Expression of the neuron-specific synaptogenesis marker, disc-large homolog 4 (PSD95), increased more rapidly than the glia-specific myelination marker, myelin basic protein, following iron treatment, suggesting a more robust response to iron therapy in IGF-I-dependent neurons than IGF-II-dependent glia. Collectively, our findings suggest that IGF dysfunction is in part responsible for hippocampal abnormalities in untreated iron deficiency. Early postnatal iron treatment of gestational iron deficiency reactivates the IGF system and promotes neurogenesis and differentiation in the hippocampus during a critical developmental period.  相似文献   

16.
Information on the prenatal accumulation of rat brain membrane lipids is scarce. In this study we investigated in detail the fatty acid (FA) composition of the rat brain, on each day from embryonic day 12 (E12) up to birth, and on 8 time points during the first 16 days of postnatal life, and correlated the FA changes with well-described events of neurogenesis and synaptogenesis. Between E14 and E17, there was a steep increase in the concentration of all the FAs: 16:0 increased by 136%, 18:0 by 139%, 18:1 by 92%, 20:4n-6 by 98%, 22:4n-6 by 116%, 22:5n-6 by 220%, and 22:6n-3 by 98%. After this period and up to birth, the concentration of the FAs plateaued, except that of 22:6n-3, which accumulated further, reaching an additional increase of 75%. After birth, except 22:5n-6, all FAs steadily increased at various rates. Estimation of the FA/PL molar ratios showed that prenatally the ratios of all the FAs either decreased or remained constant, but that of 22:6n-3 increased more than 2-fold; postnatally the ratios remained constant, with the exception of 22:4n-6 and 22:5n-6, which decreased. In conclusion, prenatal accumulation of brain fatty acids parallels important events in neurogenesis. 22:6n-3 is exceptional inasmuch in its steep accumulation occurs just prior to synaptogenesis.  相似文献   

17.

Mitogen-activated protein kinases (MAPKs) are a group of serine-threonine kinases, including p38MAPK, ERK 1/2 and JNK p54/p46, activated by phosphorylation in response to extracellular stimuli. The early postnatal period is characterized by significant changes in brain structure as well as intracellular signaling. In the hippocampus MAPKs have been involved in the modulation of development and neural plasticity. However, the temporal profile of MAPK activation throughout the early postnatal development is incomplete. An understanding of this profile is important since slight changes in the activity of these enzymes, in response to environmental stress in specific developmental windows, might alter the course of development. The present study was undertaken to investigate the hippocampal differential activation of MAPK during postnatal period. MAPK activation and total content were evaluated by Western blotting of hippocampal tissue obtained from male Wistar rats at postnatal days (P) 1, 4, 7, 10, 14, 21, 30 and 60. The total content and phosphorylation of each MAPK was expressed as mean ± SEM and then calculates as a percentile compared to P1 (set at 100 %). The results showed: (1) phosphorylation peaks of p38MAPK at PN4 (p = 0.036) and PN10 to PN60; (2) phosphorylation of ERK1 and ERK2 were increased with age (ERK1 p = 0.0000005 and ERK2 p = 0.003); (3) phosphorylation profile of JNK p54/p46 was not changed during the period analyzed (JNKp56 p = 0.716 and JNKp46 p = 0.192). Therefore, the activity profile of ERK 1/2 and p38MAPK during postnatal development of rat hippocampus are differentially regulated. Our results demonstrate that ERK 1/2 and p38MAPK are dynamically regulated during postnatal neurodevelopment, suggesting temporal correlation of MAPK activity with critical periods when programmed cell death and synaptogenesis are occurring. This suggests an important role for these MAPKs in postnatal development of rat hippocampus.

  相似文献   

18.
Expression of Synaptophysin During Postnatal Development of the Mouse Brain   总被引:18,自引:4,他引:14  
The expression of the synaptic vesicle membrane protein, synaptophysin, was analyzed during postnatal development of the mouse cerebrum using a quantitative immunoblotting procedure. From birth to adulthood, the relative contents of synaptophysin increased 80-fold, reaching a final level of 3.5 micrograms/mg of total protein. The time course of accumulation suggests that synaptophysin expression is correlated with synaptogenesis. Thus synaptophysin may be used as a reliable marker of nerve terminal differentiation.  相似文献   

19.
The NMDAR subunit NR3A is most highly expressed during the second postnatal week, when synaptogenesis reaches peak levels. Genetic ablation or overexpression of the NR3A subunit negatively interferes with the maturation of cortical synapses and leads to changes in the shape and number of dendritic spines, the density of which is increased in NR3A knock-out mice and decreased in NR3A-overexpressing transgenic mice. Alterations in spine density have been linked to dysregulation of mTOR signaling and synaptic protein translation. Using a yeast two-hybrid system, we identified the mTOR-activating GTPase Rheb as an interacting protein of the NMDAR subunit NR3A. We confirmed the interaction in mammalian cells by expressing recombinant Rheb and NR3A and showed that Rheb and NR3A could be co-immunoprecipitated from synaptic plasma membranes from the developing rat brain. These data suggest that NR3A sequesters synaptic Rheb and might thus function as a break of the mTOR-dependent synaptic translation of protein.  相似文献   

20.
Differentiation of adult Leydig cells (ALC) in the prepubertal rat testis is stimulated by thyroid hormone (Thy) and inhibited by the Anti-Mullerian Hormone (AMH) produced by the immature Sertoli cell (SC). As Thy induces SC maturation in the prepubertal rat testis, we hypothesized that Thy stimulation of ALC differentiation is mediated via inhibition of AMH production by the SC with their maturation. If this hypothesis is true, AMH production by the prepubertal Sertoli cells in hypothyroid rats should not decline immediately after birth as in euthyroid rats, but should be maintained throughout the hypothyroid period at a similar or higher level to that of day 1 rats. This concept was tested using control rats of postnatal days (pd) 1, 7 and 14 and hypothyroid (fed 0.1% propyl thiouracil/PTU to lactating mothers) rats of pd7 and pd14. Presence of AMH in SC was examined by immunocytochemistry for AMH. Results demonstrated that testes of pd1 rats had intense AMH positive labeling exclusively in cytoplasm of SC. In testes of pd7 and pd14 control and PTU rats, a positive but weak labeling was also observed in cytoplasm of some SC; Germ cells and testicular interstitial cells were negative for AMH at all tested ages in both experimental groups. These findings suggest that AMH production by the prepubertal SC is independent of Sertoli cell maturation and not regulated by Thy. Therefore, Thy regulation of ALC differentiation in the prepubertal rat testis is unlikely to be mediated via inhibition of AMH produced by the SC with their maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号