首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three NAD(P)H-dependent nitroreductases that can transform 2,4,6-trinitrotoluene (TNT) by two reduction pathways were detected in Klebsiella sp. C1. Among these enzymes, the protein with the highest reduction activity of TNT (nitroreductase I) was purified to homogeneity using ion-exchange, hydrophobic interaction, and size exclusion chromatographies. Nitroreductase I has a molecular mass of 27 kDa as determined by SDS-PAGE, and exhibits a broad pH optimum between 5.5 and 6.5, with a temperature optimum of 30–40°C. Flavin mononucleotide is most likely the natural flavin cofactor of this enzyme. The N-terminal amino acid sequence of this enzyme does not show a high degree of sequence similarity with nitroreductases from other enteric bacteria. This enzyme catalyzed the two-electron reduction of several nitroaromatic compounds with very high specific activities of NADPH oxidation. In the enzymatic transformation of TNT, 2-amino-4,6-dinitrotoluene and 2,2′,6,6′-tetranitro-4,4′-azoxytoluene were detected as transformation products. Although this bacterium utilizes the direct ring reduction and subsequent denitration pathway together with a nitro group reduction pathway, metabolites in direct ring reduction of TNT could not easily be detected. Unlike other nitroreductases, nitroreductase I was able to transform hydroxylaminodinitrotoluenes (HADNT) into aminodinitrotoluenes (ADNT), and could reduce ortho isomers (2-HADNT and 2-ADNT) more easily than their para isomers (4-HADNT and 4-ADNT). Only the nitro group in the ortho position of 2,4-DNT was reduced to produce 2-hydroxylamino-4-nitrotoluene by nitroreductase I; the nitro group in the para position was not reduced.  相似文献   

2.
A new model for the initial transformation of 2,4,6-trinitrotoluene (TNT) by facultatively anaerobic and aerobic yeasts is presented. The model is based on the data that Saccharomyces sp. ZS-A1 was able to reduce the nitrogroups of TNT with the formation of 2- and 4-hydroxyaminodinitrotoluenes (2-HADNT and 4-HADNT) as the major early TNT metabolites (the molar HADNT/TNT ratio reached 0.81), whereas aminodinitrotoluenes (ADNTs) and the hydride-Meisenheimer complex of TNT (H-TNT) were the minor products. Candida sp. AN-L13 almost completely transformed TNT into H-TNT through the reduction of the aromatic ring. Candida sp. AN-L14 transformed TNT through a combination of the two mechanisms described. Aeration stimulated the production of HADNT from TNT, whereas yeast incubation under stationary conditions promoted the formation of HADNT. The transformation of TNT into HADNT led to a tenfold increase in the acute toxicity of the TNT preparation with respect to Paramecium caudatum, whereas the increase in the toxicity was about twofold in the case of the alternative attack at the aromatic ring.  相似文献   

3.
The manufacture, disposal, and detonation of explosives have resulted in the pollution of large tracts of land and groundwater. Historically, 2,4,6-trinitrotoluene (TNT) is the most widely used military explosive and is toxic to biological systems and recalcitrant to degradation. To examine the feasibility of enhancing the ability of plants to detoxify the explosive TNT, we created transgenic tobacco (Nicotiana tabacum) constitutively expressing the nsfI nitroreductase gene from Enterobacter cloacae. The product of TNT reduction by the nitroreductase was found to be 4-hydroxylamino-2,6-dinitrotoluene (4-HADNT). Characterization of the transgenic lines in sterile, aqueous conditions amended with TNT demonstrated that these plants were able to remove all of the TNT from the medium at an initial concentration of 0.5 mM (113 mg L(-1)) TNT. In contrast, growth was suppressed in wild-type plants at 0.1 mM (23 mg L(-1)). Following uptake, transgenic seedlings transformed TNT predominantly to 4-HADNT and its high levels appeared to correlate with enhanced tolerance and transformation of TNT. Transformation products of TNT were subsequently conjugated to plant macromolecules to a greater degree in transgenic tobacco, indicating enhanced detoxification compared to the wild type.  相似文献   

4.
Zaripov  S. A.  Naumov  A. V.  Nikitina  E. V.  Naumova  R. P. 《Microbiology》2002,71(5):558-562
A new model for the initial transformation of 2,4,6-trinitrotoluene (TNT) by facultatively anaerobic and aerobic yeasts is presented. The model is based on the data that Saccharomyces sp. ZS-A1 was able to reduce the nitrogroups of TNT with the formation of 2- and 4-hydroxyaminodinitrotoluenes (2-HADNT and 4-HADNT) as the major early TNT metabolites (the molar HADNT/TNT ratio reached 0.81), whereas aminodinitrotoluenes (ADNTs) and the hydride-Meisenheimer complex of TNT (H-TNT) were the minor products. Candidasp. AN-L13 almost completely transformed TNT into H-TNT through the reduction of the aromatic ring. Candida sp. AN-L14 transformed TNT through a combination of the two mechanisms described. Aeration stimulated the production of HADNT from TNT, whereas yeast incubation under stationary conditions promoted the formation of HADNT. The transformation of TNT into HADNT led to a tenfold increase in the acute toxicity of the TNT preparation with respect to Paramecium caudatum, whereas the increase in the toxicity was about twofold in the case of the alternative attack at the aromatic ring.  相似文献   

5.
Effect of 2,4,6-trinitrotoluene (TNT) on callus cells of Tartar buckwheat (Fagopyrum tataricum (L.) Gaertn.) was accompanied by six-electron reduction of ortho- or para-nitro groups of the xenobiotic with the production of 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT). It was discovered that the xenobiotic TNT impairs integrity of cell membrane, which apparently results from its one-electron reduction coupled with production of nitro radical-anion and superoxide anion.  相似文献   

6.
Manufacture of nitroorganic explosives generates toxic wastes leading to contamination of soils and waters, especially groundwater. For that reason bacteria living in environments highly contaminated with 2,4,6-trinitrotoluene (TNT) and other nitroorganic compounds were investigated for their capacity for TNT degradation. One isolate, Raoultella terrigena strain HB, removed TNT at concentrations between 10 and 100 mg l−1 completely from culture supernatants under optimum aerobic conditions within several hours. Only low concentrations of nutrient supplements were needed for the cometabolic transformation process. Radioactivity measurements with ring-labelled 14C–TNT detected about 10–20% of the initial radioactivity in the culture supernatant and the residual 80–90% as water-insoluble organic compounds in the cellular pellet. HPLC analysis identified aminodinitrotoluenes (2-ADNT, 4-ADNT) and diaminonitrotoluenes (2,4-DANT) as the metabolites which remained soluble in the culture medium and azoxy-dimers as the main products in the cell extracts. Hence, the new isolate could be useful for the removal of TNT from contaminated waters.  相似文献   

7.
Rhizobium strains used in inoculants for Trifolium spp., Medicago spp., Glycine max, and Lotus pedunculatus were isolated from nodules of these legumes grown in soils into which the rhizobia had been introduced 4 to 8 years before. Isolations were made from a total of 420 nodules. Nodule occupancy by the inoculant strains varied from 17.7% for a soybean strain to 100% in the case of L. pedunculatus whose specific rhizobia did not occur in the soils studied. In general, inoculant strains isolated from nodules did not differ in effectiveness from cultures of the same strains concurrently maintained in lyophilized form. The average effectiveness of all of the isolates (identified and unidentified) from a legume was 7.1 to 73.3% higher than that of the unidentified isolates alone, demonstrating the prolonged effect that a single-seed inoculation has on the rhizobial population in a soil which had not been planted with legumes before. Relatively weak recovery of a Rhizobium japonicum strain introduced into soil 4 years after soybean seed inoculated with a different strain had been planted in the same soil confirmed the advantage of a resident population over an introduced inoculant strain.  相似文献   

8.
中亚热带米槠天然林土壤甲烷吸收速率季节变化   总被引:4,自引:0,他引:4  
以福建省建瓯市万木林自然保护区米槠天然林为对象,定位观测了土壤甲烷吸收速率(VCH4)的季节变化.结果表明:米槠天然林土壤VCH4的季节变化表现出夏秋季高于冬春季的趋势,最大值(95.13 μg·m-2·h-1)出现在初秋(9月),最小值(9.13 μg·mμg·m-2·h-1)出现在初春(3月).土壤全年均为甲烷汇.随土壤温度和含水量的增加, VCH4分别呈增加和降低趋势,但VCH4与土壤温度和土壤含水量的相关性均不显著.米槠天然林土壤甲烷年通量为3.93 kg·hm-2·a-1,高于全球天然林土壤甲烷年通量的平均水平(2.4 kg·hm-2·a-1)和亚洲地区热带天然林土壤甲烷年通量(2.07 kg·hm-2·a-1),低于亚洲地区温带天然林的土壤甲烷年通量(8.12 kg·hm-2·a-1).  相似文献   

9.
The fungus Fusarium oxysporum was isolated and identified from the aquatic plant M. aquaticum. The capability of this fungus to transform 2,4,6-trinitrotoluene (TNT) in liquid cultures was investigated TNT was added to shake flask cultures and transformed into 2-amino-4,6-dinitrotoluene (2-A-DNT), 4-amino-2,6-dinitrotoluene (4-A-DNT), and 2,4-diamino-6-nitrotoluene (2,4-DAT) via 2- and 4-hydroxylamino-dinitrotoluene derivatives, which could be detected as intermediate metabolites. Transformation of TNT, 2-A-DNT, and 4-A-DNT was observed by whole cultures and with isolated mycelium. Cell-free protein extracts from the extracellular, soluble, and membrane-bound fractions were prepared from this fungus and tested for TNT-reducing activity. The concentrated extracellular culture medium was unable to transform TNT; however, low levels of TNT transformation were observed by the membrane fraction in the presence of nicotinamide adenine dinucleotide phosphate in an argon atmosphere. A concentrated extract of soluble enzymes also transformed TNT, but to a lesser extent. When TNT toxicity was studied with this fungus, a 50% decrease in the growth of F. oxysporum mycelium was observed when exposed to 20 mg/L TNT.  相似文献   

10.
The ability of Phanerochaete chrysosporium to bioremediate TNT (2,4,6-trinitrotoluene) in a soil containing 12,000 ppm of TNT and the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5- triazine; 3,000 ppm) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 300 ppm) was investigated. The fungus did not grow in malt extract broth containing more than 0.02% (wt/vol; 24 ppm of TNT) soil. Pure TNT or explosives extracted from the soil were degraded by P. chrysosporium spore-inoculated cultures at TNT concentrations of up to 20 ppm. Mycelium-inoculated cultures degraded 100 ppm of TNT, but further growth was inhibited above 20 ppm. In malt extract broth, spore-inoculated cultures mineralized 10% of added [14C]TNT (5 ppm) in 27 days at 37 degrees C. No mineralization occurred during [14C]TNT biotransformation by mycelium-inoculated cultures, although the TNT was transformed.  相似文献   

11.
The biotransformation of 2,4,6-trinitrotoluene (TNT) (175 μM) by Phanerochaete chrysosporium with molasses and citric acid at pH 4.5 was studied. In less than 2 weeks, TNT disappeared completely, but mineralization (liberated 14CO2) did not exceed 1%. A time study revealed the presence of several intermediates, marked by the initial formation of two monohydroxylaminodinitrotoluenes (2- and 4-HADNT) followed by their successive transformation to several other products, including monoaminodinitrotoluenes (ADNT). A group of nine acylated intermediates were also detected. They included 2-N-acetylamido-4,6-dinitrotoluene and its p isomer, 2-formylamido-4,6-dinitrotoluene and its p isomer (as acylated ADNT), 4-N-acetylamino-2-amino-6-nitrotoluene and 4-N-formylamido-2-amino-6-nitrotoluene (as acetylated DANT), 4-N-acetylhydroxy-2,6-dinitrotoluene and 4-N-acetoxy-2,6-dinitrotoluene (as acetylated HADNT), and finally 4-N-acetylamido-2-hydroxylamino-6-nitrotoluene. Furthermore, a fraction of HADNTs were found to rearrange to their corresponding phenolamines (Bamberger rearrangement), while another group dimerized to azoxytoluenes which in turn transformed to azo compounds and eventually to the corresponding hydrazo derivatives. After 30 days, all of these metabolites, except traces of 4-ADNT and the hydrazo derivatives, disappeared, but mineralization did not exceed 10% even after the incubation period was increased to 120 days. The biotransformation of TNT was accompanied by the appearance of manganese peroxidase (MnP) and lignin-dependent peroxidase (LiP) activities. MnP activity was observed almost immediately after TNT disappearance, which was the period marked by the appearance of the initial metabolites (HADNT and ADNT), whereas the LiP activity was observed after 8 days of incubation, corresponding to the appearance of the acyl derivatives. Both MnP and LiP activities reached their maximum levels (100 and 10 U/liter, respectively) within 10 to 15 days after inoculation.  相似文献   

12.
The biotransformation of 2,4,6-trinitrotoluene (TNT) (175 microM) by Phanerochaete chrysosporium with molasses and citric acid at pH 4.5 was studied. In less than 2 weeks, TNT disappeared completely, but mineralization (liberated 14CO2) did not exceed 1%. A time study revealed the presence of several intermediates, marked by the initial formation of two monohydroxylaminodinitrotoluenes (2- and 4-HADNT) followed by their successive transformation to several other products, including monoaminodinitrotoluenes (ADNT). A group of nine acylated intermediates were also detected. They included 2-N-acetylamido-4,6-dinitrotoluene and its p isomer, 2-formylamido-4, 6-dinitrotoluene and its p isomer (as acylated ADNT), 4-N-acetylamino-2-amino-6-nitrotoluene and 4-N-formylamido-2-amino-6-nitrotoluene (as acetylated DANT), 4-N-acetylhydroxy-2,6-dinitrotoluene and 4-N-acetoxy-2, 6-dinitrotoluene (as acetylated HADNT), and finally 4-N-acetylamido-2-hydroxylamino-6-nitrotoluene. Furthermore, a fraction of HADNTs were found to rearrange to their corresponding phenolamines (Bamberger rearrangement), while another group dimerized to azoxytoluenes which in turn transformed to azo compounds and eventually to the corresponding hydrazo derivatives. After 30 days, all of these metabolites, except traces of 4-ADNT and the hydrazo derivatives, disappeared, but mineralization did not exceed 10% even after the incubation period was increased to 120 days. The biotransformation of TNT was accompanied by the appearance of manganese peroxidase (MnP) and lignin-dependent peroxidase (LiP) activities. MnP activity was observed almost immediately after TNT disappearance, which was the period marked by the appearance of the initial metabolites (HADNT and ADNT), whereas the LiP activity was observed after 8 days of incubation, corresponding to the appearance of the acyl derivatives. Both MnP and LiP activities reached their maximum levels (100 and 10 U/liter, respectively) within 10 to 15 days after inoculation.  相似文献   

13.
Liquid media containing potato extract and 1% of glucose or sucrose were used to culture root-nodule bacteria (rhizobia) in shaken Erlenmeyer flasks. For comparison, these bacteria were also cultured in yeast extract-mannitol broth (YEMB) as a standard medium. Proliferation of rhizobia was monitored by measuring optical densities (OD550) of the cultures and by plate counting of the viable cells (c.f.u) of the bacteria. In general, multiplication of the rhizobia in potato extract-glucose broth (PEGB) and potato extract-sucrose broth (PESB) was markedly faster, as indicated by higher values of OD550, than in YEMB. The numbers of R. leguminosarum by. vicae GGL and S. meliloti 330 in PEGB and PEGB were high and ranged from 1.2 x 10(10) to 4.9 x 10(10) mL(-1) after 48 h of incubation at 28 degrees C. B. japonicum B3S culture in PEGB contained 6.4 x 10(9) c.f.u. ml(-1) after 72 h of incubation. PEGB and YEMB cultures of the rhizobia were similar with respect to their beneficial effects on nodulation of the host-plants of these bacteria.  相似文献   

14.
Forty microbial strains isolated from raw milk samples and black and green olives were grown in MP5 (mineral pectin 5) medium containing 0.5% lemon pectin. All strains synthesized an extracellular polygalacturonase. Rhodotorula sp. ONRh9 (0.44 U x mL(-1)) and Leuconostoc sp. LLn1 (0.16 U x mL(-1)), which had a more active polygalacturonase in MP5 medium, were studied in MAPG5 medium containing polygalacturonic acid. Highest biomass and polygalacturonase production by these two strains were observed for polygalacturonic acid concentrations of 10 g x L(-1) (Rhodotorula sp. ONRh9) and 5 g x L(-1) (Leuconostoc sp. LLn1) and for initial pH values of 6 (Rhodotorula sp. ONRh9) and 5.5 (Leuconostoc sp. LLn1). The two strains grown in fermenters in MAPG5 medium generated the following results: with controlled initial pH, Rhodotorula sp. produced maximum biomass (DO) and polygalacturonase (PG) after 20 h (DO, 3.86; PG, 0.24 U x mL(-1)) of growth, and this level was sustained until the end of the culture; Leuconostoc sp. LLn1 synthesized more cells and polygalacturonase between 4 h (DO, 1.80; PG, 0.17 U x mL(-1)) and 24 h (DO, 3.90; PG, 0.27 U x mL(-1)) of culture. With uncontrolled initial pH, the cultures produced maximum biomass and polygalacturonase after 20 h (DO, 3.30; PG, 0.26 U x mL(-1)) for Rhodotorula sp. ONRh9 and 10 h (DO, 2.84; PG, 0.17 U x mL(-1)) for Leuconostoc sp. LLn1.  相似文献   

15.
Survival of 4 cowpea Rhizobium strains, IRC291, MI-50A, JRW3 and JRC29, in two soil types (bauxitic silt loam and sandy clay loam) undergoing drying at 30°C and 37°C was examined. While all strains except JRW3 showed a general pattern of increase in their numbers during the first 3 weeks in sterile soils, none of the strains showed any increase in their population in non-sterile soils. Cowpea rhizobia showed better survival in non-sterile bauxitic silt loam than in clay loam soils at 30°C. However, the long-term survival (examined up to 6 months) of rhizobia in both soils was poor at 37°C as compared to 30°C. We also found that cowpea rhizobia survived better in soils undergoing drying than in moist soils at 30°C. Our results suggest that (a) cowpea rhizobia survived better in bauxitic silt loam than in clay loam soil and (b) the low indigenous cowpea rhizobial population in Jamaican soils may be due to their poor long-term survival and weak saprophytic competence.  相似文献   

16.
The meiotic competence of canine oocytes collected from anoestrous bitch ovaries and cultured for 72 h in different media was studied. The base culture medium was TCM 199 enriched with 10% fetal bovine serum (TCM); the effect of supplementation with EGF (50 ng x mL(-1)) or ITS (insulin: 10 microg x mL(-1); transferrin: 5.5 microg x mL(-1); selenium: 5 microg x mL(-1)) was also studied. TCM was also compared to a Synthetic Oviductal Fluid (SOF). All the media contained FSH (0.1 UI x mL(-1)), LH (10 UI x mL(-1)), 17beta-oestradiol (4 microg x mL(-1)) and kanamycin. Despite the anoestrous stage of the donor bitches, resumption of meiosis occurred in a high proportion of the oocytes, (mean value 77.3%). The number of oocytes showing the 'germinal vesicle breakdown' nuclear stage was not influenced by the type of the culture medium used. ITS had a positive effect on nuclear progression to later stages (from metaphase I to metaphase II); however, this effect was not statistically significant.  相似文献   

17.
高生物量富硒酵母的选育及培养条件初步优化   总被引:18,自引:0,他引:18  
通过筛选、单倍体分离、诱变和原生质体融合,从融合子中选育了一株高生物量富硒酵母菌株(编号为ZFF-28),其细胞硒总含量分别是原始亲株ZY-67和ZY-198的2.8倍和2.0倍。通过单因素实验和正交试验设计,确定了优化培养条件:6%糖浓度的蔗糖糖蜜,添加0.5% (NH4)2SO4、0.1% H3PO4、60μg/mL Se,pH60~6.5,装液量50mL/250mL三角瓶,接种量10%,培养时间25h。在优化培养条件下,菌株ZFF_28的生物量可达8.2g/L,细胞中硒的含量达2050μg/g,硒总含量达到了16810μg/L,是培养条件优化前的1.3倍。细胞硒含量的91%为有机硒。  相似文献   

18.
Anaerobic transformation of 2,4,6-trinitrotoluene (TNT)   总被引:12,自引:0,他引:12  
A sulfate-reducing bacterium using trinitrotoluene (TNT) as the sole nitrogen source was isolated with pyruvate and sulfate as the energy sources. The organism was able to reduce TNT to triaminotoluene (TAT) in growing cultures and cell suspensions and to further transform TAT to still unknown products. Pyruvate, H2, or carbon monoxide served as the electron donors for the reduction of TNT. The limiting step in TNT conversion to TAT was the reduction of 2,4-diamino-6-nitrotoluene (2,4-DANT) to triaminotoluene. The reduction proceeded via 2,4-diamino-6-hydroxylaminotoluene (DAHAT) as an intermediate. The intermediary formation of DAHAT was only observed in the presence of carbon monoxide or hydroxylamine, respectively. The reduction of DAHAT to triaminotoluene was inhibited by both CO and NH2OH. The inhibitors as well as DANT and DAHAT significantly inhibited sulfide formation from sulfite. The data were taken as evidence for the involvement of dissimilatory sulfite reductase in the reduction of DANT and/or DAHAT to triaminotoluene. Hydrogenase purified from Clostridium pasteurianum and carbon monoxide dehydrogenase partially purified from Clostridium thermoaceticum also catalyzed the reduction of DANT in the presence of methyl viologen or ferredoxin, however, as the main reduction product DAHAT rather than triaminotoluene was formed. The findings could explain the function of CO as an electron donor for the DANT reduction (to DAHAT) and the concomitant inhibitory effect of CO on triaminotoluene formation (from DAHAT) by the inhibition of sulfite reductase. Triaminotoluene is further anaerobically converted to unknown products by the isolate under sulfate-reducing and by a Pseudomonas strain under denitrifying conditions. Triaminotoluene conversion was also catalyzed in the absence of cells under aerobic conditions by trace elements, especially by Mn2+, accompanied by the elimination of ammonia in a stoichiometry of 1 NH3 released per TAT transformed. The results might be of interest for the bioremediation of wastewater polluted with nitroaromatic compounds.Abbreviations TNT = 2,4,6-Trinitrotoluene DANT - 2,4-DANT = 2,4-Diamino-6-nitrotoluene - 2,6-DANT = 2,6-Diamino-4-nitrotoluene - ADNT = aminodinitrotoluene - 2-ADNT and 4-ADNT amino substituent at positions 2 or 4 - TAT = 2,4,6-Triaminotoluene - DAHAT = 2,4-Diamino-6-hydroxylaminotoluene - MV = Methyl viologen - Fd = Ferredoxin - H2ase = Hydrogenase - CODH = Carbon monoxide dehydrogenase - Pyr: Fd OR = Pyruvate: ferredoxin oxidoreductase - U = Units = mol of substrate converted per min  相似文献   

19.
Successful inoculation of peanuts and cowpeas depends on the survival of rhizobia in soils which fluctuate between wide temperature and moisture extremes. Survival of two cowpea rhizobial strains (TAL309 and 3281) and two peanut rhizobial strains (T-1 and 201) was measured in two soils under three moisture conditions (air-dry, moist (−0.33 bar), and saturated soil) and at two temperatures (25 and 35°C) when soil was not sterilized and at 40°C when soil was sterilized. Populations of rhizobia were measured periodically for 45 days. The results in nonsterilized soil indicated that strain 201 survived relatively well under all environmental conditions. The 35°C temperature in conjunction with the air-dry or saturated soil was the most detrimental to survival. At this temperature, the numbers of strains T-1, TAL309, and 3281 decreased about 2 logs in dry soil and 2.5 logs in saturated soil during 45 days of incubation. In sterilized soil, the populations of all strains in moist soil increased during the first 2 weeks, but decreased rapidly when incubated under dry conditions. The populations did not decline under saturated soil conditions. From these results it appears that rhizobial strains to be used for inoculant production should be screened under simulated field conditions for enhanced survival before their selection for commercial inoculant production.  相似文献   

20.
2,4,6-Trinitrotoluene (TNT)-contaminated soil material of a former TNT production plant was percolated aerobically in soil columns. Nineteen days of percolation with a potassium phosphate buffer supplemented with glucose or glucose plus ammonium sulfate caused an over 90% decline in the amount of extractable nitroaromatics in soils containing 70 to 2,100 mg of TNT per kg (dry weight). In the percolation solution, a complete elimination of TNT was achieved. Mutagenicity and soil toxicity were significantly reduced by the percolation process. 4-N-Acetylamino-2-amino-6-nitrotoluene was generated in soil and percolation fluid as a labile TNT metabolite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号