首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conjugation of CTL with their cognate targets elicits a number of early changes within the target cell that are thought to play an important role in the lytic mechanism. We now report that at times earlier than 5 min after conjugation with allospecific CTL, free fatty acids (FFA) are produced in and then secreted from alloantigen-bearing target cells. Using murine CTL clones with different alloantigen specificities, stimulation of FFA production from target cells was found to be Ag specific. FFA production does not appear to be specific for any particular FFA species. Indeed, a wide spectrum of cis unsaturated as well as saturated FFA are produced. FFA production is well correlated with, and specific for, CTL-mediated target cell lysis. Other means of perturbing or lysing target cells, including freeze/thaw disruption, detergent solubilization, or increasing membrane permeabilization with ionomycin, do not stimulate FFA production. In particular, FFA production is not stimulated by treatment with pore-forming granules under conditions that cause more than 90% target cell lysis. These results suggest that FFA production plays an important role in CTL-mediated lysis because stimulation of FFA release specifically requires an event that is CTL induced, occurs very early after conjugation, and is strongly correlated with CTL-mediated lysis.  相似文献   

2.
Lack of target cell participation in cytotoxic T lymphocyte-mediated lysis.   总被引:1,自引:0,他引:1  
Data on the subject of cell-mediated cytotoxicity suggest that no single mechanism is likely to provide a satisfactory explanation of this process. Lytic pathways have been proposed that involve both the effector cell and the target cell as active participants. In this report we describe a system in which the target cell is rendered unable to participate in its own demise. Using sheep E derivatized with CD3 antibodies, we show that metabolic inhibition of SRBC by depleting intracellular ATP with iodoacetamide, or even conversion of SRBC to "ghosts" by hypotonic lysis and resealing, has no effect on cytolysis. In the presence of EGTA or cholera toxin, both of which inhibit CTL degranulation, there is a strong suppression of both serine esterase release and cytolysis. These data show clearly that in some situations CTL are able to lyse target cells without any active participation by the target cells themselves.  相似文献   

3.
The immune system has evolved various effector cells and functions to combat diverse infectious agents equipped with different virulence strategies. CD8 T cells play a critical role in protective immunity to Listeria monocytogenes (Lm), a bacterium that grows within the host cell cytosol and spreads directly into neighboring cells. The importance of CD8 T cells during Lm infection is currently attributed to the cytosolic niche of this organism, which allows it to evade many aspects of immune surveillance. CTL lysis of infected cells is believed to be an essential protective mechanism, presumably functioning to release intracellular bacteria, although its precise role remains to be fully defined. In this study, we examined the contribution of perforin-mediated CTL cytolysis to protective immunity against recombinant Lm capable of or defective in cell-cell spread. We found that CTL cytolysis is critical for protective immunity to Lm capable of cell-cell spread while protective immunity against spread-defective Lm is largely independent of CTL cytolysis. These results demonstrate that an important function of CTL cytolysis is to counter the microbial virulence strategy of direct cell-cell spread. We propose a model that advances the current view of the role of CTL cytolysis in immunity to intracellular pathogens.  相似文献   

4.
TCR-mediated granule exocytosis, as measured by the release of serine esterase activity, has been implicated in the lytic process of Ag-specific CTL. Exocytosis appears to be the mechanism of release of other lysis-relevant molecules including cytotoxic lymphokines and proteins that have the capacity to induce membrane lesions as measured by the hemolysis of non-nucleated SRBC. In the studies presented here, we assessed the contribution of exocytosis and lymphokine production in CTL lysis of nucleated and non-nucleated target cells by using a panel of murine CTL clones. Ag-mediated activation of cytolysis, lymphokine production, and exocytosis could be mimicked by mAb against the TCR/CD3 complex, or by stimulation with the combination of PMA + calcium ionophore, which appear to bypass the TCR (neither PMA nor calcium ionophore alone induced these functions efficiently in our CD8+ CTL clones). Although lysis, IFN-gamma production and exocytosis of N-alpha-benzyloxycarbonyl-L-lysin esterase (BLTE) activity were induced by either stimulus, we were able to identify distinct activation requirements for each of these functions. We found that lymphokine production, exocytosis, and cytolysis could be selectively inhibited. Cycloheximide inhibited IFN-gamma production, but did not inhibit exocytosis of BLTE activity or cytolysis. In addition we showed that cyclosporine A (CsA) profoundly inhibited IFN-gamma production as well as exocytosis induced by stimulation through the Ag receptor or by PMA + calcium ionophore. In contrast, CsA had little or no effect on lysis of nucleated target cells that bear the relevant Ag. These findings indicate that our CTL clones can lyse target cells by a mechanism independent of exocytosis or (de novo) lymphokine production. To directly assess the capacity of our CTL clones to lyse target cells without inducing nuclear damage we developed a system of coating non-nucleated SRBC with anti-CD3 mAb for use as stimuli and as targets for lysis. We found that our cloned CTL were indeed activated to produce IFN-gamma by SRBC that were coated with anti-CD3 mAb, and, furthermore, they were able to lyse the SRBC in a short term cytolytic assay. Thus our CD8+ CTL are capable of lysing certain target cells by a mechanism independent of DNA degradation, presumably by inducing a membrane lesion. In addition, CsA did inhibit lysis of the non-nucleated SRBC targets as well as exocytosis of BLTE activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Increasing concentrations of concanavalin A (ConA) were found to increasingly inhibit immunologically specific cytotoxic T lymphocyte (CTL)-mediated cytolysis. Even concentrations of ConA that best enabled nonspecific cytolysis were found to inhibit immunologically specific cytolysis by the same population of effector cells. Higher concentrations of ConA inhibited both specific and nonspecific cytolysis. Similar increasing concentrations of succinyl ConA enabled nonspecific lysis by CTL but did not appreciably inhibit specific lysis by the same cells. Increasing concentrations of ConA inhibited cytolysis and capping of the Thy 1.2 surface antigen to comparable degrees in the same effector cell population. These results indicate that ConA may inhibit CTL-mediated cytolysis by interfering with the mobility of certain moieties on the effector cell surface.  相似文献   

6.
The T3 antigen is expressed on all cytotoxic T lymphocytes (CTL). Monoclonal antibodies (MAb) to the T3 antigen previously have been shown to inhibit CTL-mediated killing of cells expressing the relevant target antigens. The mechanism of T3 MAb inhibition, however, remains undefined. In this report, we describe a novel effect of the T3 MAb: the stimulation of allospecific CTL clones to kill target cells that do not express the relevant HLA antigens. The stimulation of nonspecific killing was seen only with MAb to the T3 antigen; MAb to other function-associated antigens (e.g., LFA-1, LFA-2, LFA-3, T4, T8, HLA-A,B,C, and DR) had no effect. T3 MAb stimulated nonspecific killing by CTL clones expressing both the T4+ and T8+ phenotype and by CTL clones specific for both class I and class II HLA alloantigens. Target cell susceptibility to T3 MAb stimulated killing was variable. CTL clones lysed some target cell lines very efficiently (e.g., K562, Daudi, and M124.1) but lysed other cell lines much less efficiently (e.g., 23.1, Mann, and L cells). In CTL-mediated cytotoxicity assays with target cells expressing the relevant HLA antigens, T3 MAb demonstrated the expected inhibition of cytolysis. Thus, the ability of T3 MAb to stimulate and inhibit CTL-mediated cytolysis suggests that both effects may be the result of a common mechanism of activation.  相似文献   

7.
Rat antiserum (as well as purified IgG and F(ab')2 fragments) raised against cellfree cytosolic extracts (CFE) of an alloimmune cytotoxic T lymphocyte (CTL) clone (B6.1.SF.1) is a potent inhibitor of CTL-mediated cytotoxicity. Inhibition by this antiserum (termed alpha CTLL) occurred during the postbinding lethal hit stages of cytolysis, because it did not inhibit target cell binding, nor did it prematurely dissociate CTL-target cell conjugates; inhibition was observed regardless of the H-2 haplotype of the target cell or CTL employed; inhibition was reversible when pretreated, and washed CTL were used as effectors; and in Ca++ pulse experiments alpha CTLL inhibited cytolysis beyond the Ca++-dependent (lethal hit) stage of cytolysis. This antiserum did not inhibit lysis of P815 cells by activated murine macrophages or by human cytotoxic cells, and extensive absorption of the antiserum on viable thymocytes, normal spleen cells, or CTL did not reduce its blocking activity. CFE prepared from several sources of CTL, including in vivo elicited peritoneal exudate lymphocytes (PEL), secondary MLC-generated CTL, alloimmune splenic T cells, and CTL clones, contained material(s) that inhibited the ability of alpha CTLL to block CTL-mediated cytolysis. The inhibitory activity was not detected in CFE from a variety of noncytotoxic cell sources, including thymocytes, normal C57BL/6 spleen cells, EL4 or P815 tumor cells, macrophages, and helper T cell clones. It was also absent in CFE prepared from human CTL cells. Furthermore, although alpha CTLL neutralizing activity was not detectable in CFE prepared from memory CTL, it rapidly appeared in CTL parallel to the development of cytolytic activity during secondary MLC cultures. The inhibitory material in CTL-CFE appeared to be specific for alpha CTLL antibody, as it did not affect the CTL blocking activity of anti-Lyt-2 or anti-target cell antisera. Finally, CTL-CFE did not contain proteases that degraded the alpha CTLL antibody. By the use of a soluble-phase immunoabsorbent assay, the biochemical properties of materials present CFE derived from CTL and reactive with alpha CTLL antibody were examined. CTL cytosolic material(s) reactive with alpha CTLL IgG was unstable to brief heating (50 degrees C) or acidic pH, but not to high ionic strength buffers. The material was inactivated by treatment with pronase but not by DNase, collagenase, or trypsin. Gel filtration chromatography of CTL-CFE revealed multiple peaks of alpha CTLL neutralizing activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Long-chain fatty acid assimilation By rhodopseudomonas sphaeroides   总被引:4,自引:4,他引:0       下载免费PDF全文
Exogenously supplied long-chain fatty acids have been shown to markedly alleviate the inhibition of phototrophic growth of cultures of Rhodopseudomonas sphaeroides caused by the antibiotic cerulenin. Monounsaturated and polyunsaturated C18 fatty acids were most effective in relieving growth inhibition mediated by cerulenin. Medium supplementation with saturated fatty acids (C14 to C18) failed to influence the inhibitory effect of cerulenin. The addition of mixtures of unsaturated and saturated fatty acids to the growth medium did not enhance the growth of cerulenin-inhibited cultures above that obtained with individual unsaturated fatty acids as supplements. Resolution and fatty acid analysis of the extractable lipids of R. sphaeroides revealed that exogenously supplied fatty acids were directly incorporated into cellular phospholipids. Cells treated with cerulenin displayed an enrichment in their percentage of total saturated fatty acids irrespective of the presence of exogenous fatty acids. Cerulenin produced comparable inhibitions of the rates of both fatty acid and phospholipid synthesis and was further found to preferentially inhibit unsaturated fatty acid synthesis.  相似文献   

9.
Short term exposure of murine CTL clones to long chain cis unsaturated free fatty acid (FFA) inhibits alloantigen specific lysis of cognate target cells, whereas long-chain saturated FFA have no effect. Inhibition of lysis occurs when cis FFA is added before or within 10 min after CTL-target cell conjugate formation and thus appears to interfere with lethal hit delivery. Our previous studies have shown that similar treatment with cis FFA inhibits, in CTL, the Ag stimulated increase in intracellular calcium and degranulation, suggesting that inhibition of lysis probably results from perturbation of the CTL signaling pathway. However, inhibition of lysis is probably not due to the inhibition of the rise in intracellular calcium or degranulation, because lysis can occur under conditions in which FFA inhibit degranulation and because cis FFA inhibit calcium-independent killing. Inhibition of lysis is detectable at unbound FFA concentrations less than 1 microM and is generally complete at concentrations less than 5 microM. Although these levels of FFA are somewhat higher than reported for normal physiologic conditions, plasma FFA levels can be elevated into this range in states of stress and disease, suggesting that FFA modulation of the immune response has important physiologic consequences.  相似文献   

10.
Three cell surface antigens associated with the cytolytic T lymphocyte(CTL)-target cell interaction were identified by generation of monoclonal antibodies (MAb) against OKT4+, HLA-DR-specific CTL and selection for inhibition of cytolysis in a 51Cr-release assay. These MAb block cytolysis by both OKT4+ and OKT8+ CTL and the proliferative responses to PHA and the mixed lymphocyte response (MLR). LFA-1 is an antigen widely distributed on lymphoid tissues and is composed of two polypeptides of 177,000 and 95,000 Mr on all cell types studied. Anti-LFA-1 MAb block NK cell-mediated cytolysis in addition to T lymphocyte-mediated cytotoxicity and proliferation. LFA-2 (Mr = 55,000 to 47,000), a determinant on the sheep red blood cell receptor, is expressed by T cells but not B cells and appears specific for T cell functions. LFA-3 (Mr = 60,000) is a widely distributed antigen present on both hematopoietic and nonhematopoietic tissues and appears to only be involved in T cell functions. MAb to LFA-1 and LFA-2 inhibit function by binding to effector cell surface molecules, whereas anti-LFA-3 MAb appear to block by binding to the target cells. Together with previously described molecules, LFA-1, LFA-2, and LFA-3 demonstrate the complexity of CTL-mediated cytotoxicity at the molecular level.  相似文献   

11.
TLRs provide critical signals to induce innate immune responses in APCs such as dendritic cells (DCs) that in turn link to adaptive immune responses. Results from our previous studies demonstrated that saturated fatty acids activate TLRs, whereas n-3 polyunsaturated fatty acids inhibit agonist-induced TLR activation. These results raise a significant question as to whether fatty acids differentially modulate immune responses mediated through TLR activation. The results presented in this study demonstrate that the saturated fatty acid, lauric acid, up-regulates the expression of costimulatory molecules (CD40, CD80, and CD86), MHC class II, and cytokines (IL-12p70 and IL-6) in bone marrow-derived DCs. The dominant negative mutant of TLR4 or its downstream signaling components inhibits lauric acid-induced expression of a CD86 promoter-reporter gene. In contrast, an n-3 polyunsaturated fatty acid, docosahexaenoic acid, inhibits TLR4 agonist (LPS)-induced up-regulation of the costimulatory molecules, MHC class II, and cytokine production. Similarly, DCs treated with lauric acid show increased T cell activation capacity, whereas docosahexaenoic acid inhibits T cell activation induced by LPS-treated DCs. Together, our results demonstrate that the reciprocal modulation of both innate and adaptive immune responses by saturated fatty acid and n-3 polyunsaturated fatty acid is mediated at least in part through TLRs. These results imply that TLRs are involved in sterile inflammation and immune responses induced by nonmicrobial endogenous molecules. These results shed new light in understanding how types of dietary fatty acids differentially modulate immune responses that could alter the risk of many chronic diseases.  相似文献   

12.
Candidate AIDS vaccines consisting of recombinant forms of the HIV-1 envelope glycoprotein induce, in seronegative human volunteers, an env-specific T cell response that includes CD4+, MHC class II-restricted CTL capable of lysing HIV-1-infected target cells. In this study, we have analyzed the production of the cytokines TNF-alpha and lymphotoxin (LT) by a set of env-specific CD4+ human CTL clones. TNF-alpha and LT are of interest because of their potential role in target cell destruction by CD4+ CTL. Our studies focused on the possibility that a cell surface form of TNF-alpha expressed by CTL after physiologic activation with target APC might participate in the cytolytic reactions mediated by these clones. We found that, upon interaction with target cells expressing env epitopes in the context of the appropriate MHC class II molecules, CD4+ CTL released TNF-alpha with kinetics that were rapid, compared with other cytokines, and that were generally similar to the kinetics of target cell destruction. LT secretion was not detected during the time course of the cytolytic reactions. A novel flow cytometric assay was used to show that physiologic activation of CD4+ CTL with target APC induced expression by the CTL of cell surface forms of TNF-alpha. Immunoprecipitations from activated, surface-iodinated CTL clones revealed two forms of surface TNF-alpha, a 26-kDa form, representing the transmembrane precursor of secreted TNF-alpha, as well as the 17-kDa secreted form bound to the cell surface. For a subset of CD4+ CTL, we found that treatment of CTL with cyclosporin A inhibited Ag-induced production of both transmembrane and secreted forms of TNF-alpha but had no effect on cytolysis. Thus, although transmembrane and secreted TNF-alpha produced by HIV-1-specific CD4+ CTL may have important effects in vivo, the rapid destruction of target APC by the set of CD4+ CTL clones described here occurs through a TNF-alpha-independent mechanism.  相似文献   

13.
A number of different sugars were investigated for their effect on human and mouse natural killer cell (NK)-mediated cytolysis. From the pool of nonphosphorylated sugars, D-mannose, N-acetyl-D-glucosamine (NAcGlc), D-glucose, and, to a lesser extent, beta-gentiobiose were found to inhibit human NK cytolysis. Mouse NK activity against YAC-1 target cells was reduced consistently in the presence of D-mannose and NAcGlc only. The sugars, NAcGlc, D-glucose, and beta-gentiobiose, were specifically inhibitory against NK-mediated cytolysis with no inhibitory effects being observed against ADCC, monocyte-mediated cytolysis, or CTL activity. Pretreatment and washing at either the target or effector cell level as well as direct target binding assays using Percoll-purified NK cells indicated that at least NAcGlc and beta-gentiobiose function at the recognition stage of NK cytolysis. D-Mannose, which was the most effective nonphosphorylated sugar inhibitor, was capable of inhibiting all cell-mediated cytotoxic mechanisms tested (NK, ADCC, monocyte, and CTL) and its action did not appear to be solely due to an impairment in the recognition event. All the phosphorylated sugars caused significant inhibition of human and mouse NK-mediated cytolysis, although repeated analyses of sugar titration curves consistently showed mannose-6-phosphate (Man-6-P) to be the most effective inhibitor. Inhibition with the phosphorylated sugars was apparent against all cytotoxic mechanisms investigated. It is possible that these sugars may function as general metabolic inhibitors or may activate a common signal which negatively regulates cell-mediated cytotoxic mechanisms. Nevertheless, the relative degree of inhibition with the majority of these sugars (particularly Man-6-P) was greater against NK and ADCC activity than against monocyte and CTL activity. Furthermore, studies with selected well-characterized human and mouse NK-resistant target cells strongly indicated that these sugars, particularly Man-6-P, compete at an acceptor site responsible for the uptake of the NK lytic factor, which is independent of the recognition structure(s).  相似文献   

14.
Fatty acid composition of the phospholipids of mouse LM cells grown in suspension culture in serum-free chemically defined medium was modified by supplementing the medium with various fatty acids bound to bovine serum albumin.Following supplementation with saturated fatty acids of longer than 15 carbons (100 μM) profound inhibition of cell growth occurred; this inhibitory effect was completely abolished when unsaturated fatty acids were added at the same concentration. Supplementing with unsaturated fatty acids such as linoleic acid, linolenic acid or arachidonic acid had no effect on the cell growth.Fatty acid composition of membrane phospholipids could be manipulated by addition of different fatty acids. The normal percentage of unsaturated fatty acids in LM cell membrane phospholipids (63%) was reduced to 35–41% following incorporation of saturated fatty acids longer than 15 carbon atoms and increased to 72–82% after addition of unsaturated fatty acids.A good correlation was found between the unsaturated fatty acid content of membrane phospholipids and cell growth. When incorporated saturated fatty acids reduced the percentage of unsaturated fatty acids in membrane phospholipids to less than 50%, severe inhibition of the cell growth was found. Simultaneous addition of an unsaturated fatty acid completely abolished this effect of saturated fatty acids.  相似文献   

15.
Four out of six long-term murine cytotoxic T lymphocyte (CTL) clones specific for trinitrophenyl (TNP)-modified spleen cells could develop an anomalous cytotoxicity against syngeneic and allogeneic tumor cells upon stimulation with TNP-modified spleen cells and high doses of human recombinant interleukin 2 (rIL-2). On FACS analysis, hyperactivated CTLs were positive for Thy-1, Ly 2 and LFA-1, but negative for L3T4 and asialo GM1. The staining profile of the cells with each antibody indicated that the CTL clones consisted of just one cell type. Monoclonal anti-Ly 2.2 and anti-LAA (lymphokine-activated cell-associated antigen) antibodies inhibited cytolysis of CTL and hyperactivated CTL clones against TNP-modified spleen cells, but failed to inhibit the anomalous killing of the hyperactivated CTL. The cold target competition test suggested the degeneracy of antigen specificity. The present study demonstrated that the CTL clone acquired a new specificity for tumor target cells upon stimulation with a high dose of rIL-2.  相似文献   

16.
Uptake of Tween-fatty acid esters and incorporation of the fatty acids into lipids by soybean (Glycine max [L.] Merr.) suspension cultures was investigated, together with subsequent turnover of the incorporated fatty acids and associated changes in endogenous fatty acid synthesis. Tween uptake was saturable, and fatty acids were rapidly transferred from Tweens to all acylated lipids. Patterns of incorporation into glycerolipids were similar in cells treated with Tweens carrying [1-14C]-fatty acids and in cells treated with [1-14C]acetate, indicating that exogenous fatty acids were used for glycerolipid synthesis essentially as if they had been made by the cell. In Tween-treated cells neutral lipids (which include Tweens) initially accounted for the majority of lipid radioactivity. Radioactivity was then rapidly transferred to glycerolipids. A transient pool of free fatty acids accounting for up to 10% of lipid radioactivity was observed. This was consistent with the hypothesis that fatty acids are transferred from Tweens to lipids by deacylation of the Tweens, creating a pool of free fatty acids which are then used for lipid synthesis. Sterols were only slightly labeled in cells treated with Tweens, but accounted for nearly 50% of lipid radioactivity in cells treated with acetate. This suggested very little degradation and reutilization of the radioactive fatty acids in cells treated with Tweens. In cells treated with either [1-14C]acetate or Tween-[1-14C]-18:1, 70% of the initial fatty acid radioactivity remained in fatty acids after a 100 hour chase. By contrast, fatty acids not normally present disappeared more rapidly, suggesting differential treatment of such fatty acids compared with those normally present. Cells which had incorporated large amounts of exogenous fatty acids altered fatty acid synthesis in three distinct ways: (a) amounts of [1-14C]acetate incorporated into fatty acids were reduced; (b) cells incorporating exogenous unsaturated fatty acids increased the proportion of [1-14C]acetate partitioned into saturated fatty acids, while the converse was true of cells which had incorporated exogenous saturated fatty acids; (c) desaturation of 18:1 to 18:2 and 18:3 was reduced in cells which had incorporated unsaturated fatty acids. These results suggest that Tween-fatty acid esters will be useful for supplying fatty acids to cells for a variety of studies related to fatty acid or membrane metabolism.  相似文献   

17.
18.
Apoptosis induced by cells from the immune system is frequently associated with an increase in the ceramide content of target cells, due to the activation of sphingomyelinases (SMase). Some studies have also reported the release of saturated and monounsaturated free fatty acids (FFA) from apoptotic cells. However, the possible relationship between these lipid biochemistry events has not been characterized. We have analysed for the first time the release of FFA triggered by tumor necrosis factor-alpha (TNF-alpha), Fas/CD95 or the perforin/granzyme system of cytotoxic T lymphocytes (CTL) and their relationship to intracellular ceramide generation. TNF-alpha- and Fas-induced apoptosis are associated with both intracellular ceramide generation from sphingomyelin (SM) and release of palmitic-derived FFA, with similar kinetics. Intracellular SMase activation and FFA release from target cells during Fas-induced apoptosis are much more rapid and efficient if Fas-based cytotoxicity is exerted by alloantigenic CTL. In the case of perforin/granzyme-based cytotoxicity exerted by CTL, intracellular ceramide generation and FFA release from target cells seem to depend on the type of lysis induction used. Importantly, the correlation between intracellular SMase activation and the release of palmitic acid-derived FFA from target cells has been observed in all types of cytotoxicity assayed. In addition, exogenous natural ceramide induces the rapid release of the same FFA, well before any apoptotic sign is detected, and FFA release during Fas-induced apoptosis is inhibited in SM-depleted cells by chronic fumonisin-B(1) treatment. These results demonstrate a novel connection between the release of palmitic acid-derived FFA and intracellular ceramide accumulation during apoptosis induction.  相似文献   

19.
A trans-acting regulatory gene product p40tax (Tax) of human T-cell leukemia virus type I (HTLV-I) is one of the main target antigens recognized by cytotoxic T lymphocytes (CTL) specific for HTLV-I. A CTL epitope within the Tax protein was identified in this report. HTLV-I-specific CD8+ CTL lines established from two HTLV-I carriers with HTLV-I-associated myelopathy or Sj?gren syndrome were previously demonstrated to kill predominantly the target cells expressing HTLV-I Tax. The CTL from two patients showed significant levels of cytotoxicity to autologous target cells pulsed with a synthetic peptide of 24 amino acids corresponding to the amino-terminal sequences of the Tax protein. Allogeneic target cells were also sensitized for CTL by this peptide when the target cells have HLA-A2. Tax-specific cytotoxicity, detected as cytolysis of the target cells infected with vaccinia virus-HTLV-I recombinant expressing Tax protein, was almost completely inhibited by competitor cells pulsed with the synthetic peptide. This indicates that a major CTL epitope is present in this peptide. Further analysis using shorter peptides revealed that the core sequence of the CTL epitope was LLFGYPVYV at positions 11 through 19. This sequence can be aligned with the HLA-A2-specific motifs reported recently.  相似文献   

20.
The development of a system for modifying the membrane fatty acid composition of cultured soybean cells (Glycine max [L.] Merr.) is described. Tween-fatty acid esters carrying specific fatty acids were synthesized and added to the medium of suspension cultures. Cells transferred large quantities of exogenous fatty acids from Tweens to all acylated membrane lipids; up to 50% of membrane fatty acids were exogenously derived. C15 to C20 saturated fatty acids and C16, C18, and C20 unsaturated fatty acids with either cis or trans double bonds were incorporated into lipids. Cells elongated saturated fatty acids of C16 or less, and unsaturated fatty acids with cis double bonds were further desaturated. No other types of modifications were observed. Growth ceased in cells treated with excessive concentrations of Tween-fatty acid esters, but frequently not for several days. Cessation of cell growth was correlated with changes in membrane fatty acid composition resulting from incorporation of large amounts of exogenous fatty acids into membrane lipids, although cells tolerated large variations in fatty acid composition. Maximum tolerable Tween concentrations varied widely according to the fatty acid supplied. Potential uses of this system and implications of the observed modifications on the pathway of incorporation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号