首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The binding of [3H]aldosterone in the chick intestine cytosol was analyzed in terms of affinity and specificity. In this tissue, aldosterone binds to the mineralocorticosteroid receptor, with a high affinity (Kd approximately 0.3 nM) and low capacity (approximately 50 fmol/mg protein), and to the glucocorticosteroid receptor. The selective labeling of the mineralocorticosteroid receptor was achieved by incubating the cytosol with [3H]aldosterone in the presence of RU 486. This synthetic steroid completely inhibited the binding of [3H]aldosterone to the glucocorticosteroid receptor and did not bind to the mineralocorticosteroid receptor. The oligomeric structure of the mineralocorticosteroid receptor was studied by using BF4, a monoclonal antibody which reacts with the 90-kDa heat shock protein (hsp 90), a nonhormone-binding component of nontransformed steroid receptors. The mineralocorticosteroid receptor sedimented at 8.5 +/- 0.4 S (n = 8) in a 15-40% glycerol gradient. This peak was shifted to 11.2 +/- 0.6 S (n = 5) after incubation with BF4, indicating that, in the cytosol, hsp 90 was associated with the mineralocorticosteroid receptor. Dissociation of the complex was observed on gradients containing 0.4 M KCl, as judged by the absence of displacement by BF4 of the 4.3 +/- 0.4 S (n = 10) peak. The effect of molybdate and tungstate ions, and of dimethyl pimelimidate, an irreversible cross-linking agent, on the stability of the hsp 90-receptor complex was investigated. Complexes recovered in the presence of 20 mM molybdate ions dissociated on gradients containing 0.4 M KCl (5.2 +/- 0.6 S (n = 4), whereas complexes prepared in the presence of 20 mM tungstate ions sedimented at 8.5 +/- 0.4 S (n = 7). Similarly, complexes prepared in the presence of molybdate ions dissociated during high pressure liquid chromatography (HPLC) gel filtration analysis performed in 0.4 M KCl (RS (Stokes radius) = 3.9 +/- 0.5 nm (n = 3) versus 7.3 +/- 0.2 nm (n = 3) in the presence of 20 mM molybdate ions), whereas complexes prepared in the presence of tungstate ions did not dissociate (RS = 6.9 +/- 0.2 nm (n = 3]. As observed for the tungstate-stabilized receptor, the cross-linked receptor dissociated neither on gradient containing 0.4 M KCl (9.5 +/- 0.1 S (n = 3] nor during HPLC performed in 0.4 M KCl (RS = 6.5 +/- 0.3 (n = 4]. Furthermore, the cross-linked receptor was more resistant to the inactivating effect of urea on aldosterone binding than the noncross-linked receptor prepared in the presence of either molybdate or tungstate ions.  相似文献   

2.
In order to determine if different physicochemical properties exist among antihormone-receptor complexes, we have compared the interaction of the antiprogestin RU486 with progesterone receptor (PR) versus the triphenylethylene antiestrogen H1285 (4-(N,N-diethyl-aminoethoxy)-4'-methoxy-alpha-(p-hydroxyphenyl-alp ha'- ethylstilbene] with estrogen receptor (ER) from rabbit uterine tissue. Contrary to other reports, we observed no difference in the sedimentation properties of transformed PR (4S) when bound by the antagonist RU486 versus the progesterone agonist R5020 in either cytosol or DEAE partially-purified receptor preparations analyzed on sucrose gradients containing 0.3 M KCl. In addition, we found no difference in the sedimentation properties of these receptor preparations in the presence of 10 mM sodium molybdate: the nontransformed RU486-PR and nontransformed R5020-PR both sedimented as a 6S species. These same results were obtained when the receptor preparation and gradient analysis were performed in the absence of monothioglycerol. Likewise, there was no change in the sedimentation properties of the transformed PR when the receptor, partially purified in the absence of molybdate, was analyzed on sucrose gradients containing 10 mM sodium molybdate to prevent receptor alteration during centrifugation. From DNA-cellulose assays performed with partially purified PR in the absence of molybdate we determined that the 4S form of R5020-PR and RU486-PR is transformed receptor; whereas in the presence of molybdate, the 6S species is nontransformed. In contrast, we found a different pattern of sedimentation when comparing transformed antiestrogen-receptor complexes with transformed estrogen-receptor complexes. In this case, transformed H1285-ER sedimented as 6S and estradiol-ER sedimented as 4S. We conclude from these experiments that these two antihormones, RU486 and H1285, may have different mechanisms of action in their antagonism of steroid hormone action. Antiestrogen stabilizes the salt-transformed ER as a dimer while antiprogestin appears to permit dissociation of the oligomeric form of the receptor to the monomeric form.  相似文献   

3.
The high affinity antiestrogen [3H]H1285 bound to the cytosol calf uterine estrogen receptor dissociated very slowly (t 1/2 approx 30 h at 20 degrees C) and did not demonstrate a change in dissociation rate in the presence of molybdate, which is characteristic of [3H]estradiol-receptor complexes. [3H]H1285-Receptor complexes sediment at approx 6S on 5-20% sucrose density gradients containing 0.3M KCl with or without 10 mM molybdate. This is in contrast to [3H]estradiol-receptor complexes which sedimented at approx 4.5S without molybdate and at approx 6S with molybdate. These results suggest a physicochemical difference in the estrogen receptor when occupied by antiestrogens versus estrogens. We recently reported that the cytoplasmic uterine estrogen receptor, when bound by estradiol and prepared in 10 mM molybdate, eluted from DEAE-Sephadex columns as Peak I (0.21 M KCl) & Peak II (0.25 M KCl). However, [3H]H1285 bound to the estrogen receptor eluted only as one peak at 0.21 M KCl, also suggesting that the initial interaction of antiestrogens with the estrogen receptor is different. We have extended these studies and report that H1285 can compete with [3H]estradiol for binding to both forms of the estrogen receptor and [3H]H1285 can bind to both forms if the unoccupied receptor is first separated by DEAE-Sephadex chromatography. However, if the receptor is first bound by unlabeled H1285, eluted from the column and post-labeled by exchange with [3H]estradiol, only one peak is measured. Thus, it appears that H1285 binding alters the properties of the receptor such that all receptor components seem to elute as one form. These partially purified [3H]H1285-receptor complexes obtained from DEAE-Sephadex columns sedimented as 5.5S in sucrose density gradients in contrast to the sedimentation values for the [3H]estradiol-receptor components eluting as Peak I (4.5S) and Peak II (6.3S). These differences in the physicochemical characteristics of the estrogen receptor when bound by estrogen versus antiestrogens may be related to some of the biological response differences induced by these ligands.  相似文献   

4.
Rat submandibular gland cytosol contained androgen receptor which had a single class of specific binding and an apparent dissociation constant of (1.1-1.2) X 10(-9) M. The process of transformation was investigated by a slightly modified minicolumn method in which the transformed receptor complexes were separated from the nontransformed receptor and meroreceptor. 10 mM ATP or pyrophosphate at 0 degrees C induced transformation of androgen receptor as did heat or salt treatment. 20 mM of sodium molybdate completely inhibited transformation that resulted from ATP, heat or salt treatment. The nontransformed androgen receptor complexes sedimented at 8 S and eluted at 250-260 mM KCl from DEAE-Sephacel, and its molecular weight was found to be 220 000 on Sephacryl S300 gel chromatography. On the other hand, the transformed androgen receptor complexes sedimented at 4.1-4.3 S (ATP or KCl treatment) or 3.5-3.8 S (heat treatment) and eluted at 60-80 mM KCl from DEAE-Sephacel. The molecular weight of the transformed androgen receptor complexes was 80 000-85 000 (ATP or KCl treatment) or 70 000-80 000 (heat treatment). These results suggest that the transformation of androgen-receptor complexes from rat submandibular gland was induced by the subunit dissociation and that salt bridges may be involved in the subunit interaction.  相似文献   

5.
V K Moudgil  C Hurd 《Biochemistry》1987,26(16):4993-5001
Effects of different transforming agents were examined on the sedimentation characteristics of calf uterine progesterone receptor (PR) bound to the synthetic progestin [3H]R5020 or the known progesterone antagonist [3H]RU38486 (RU486). [3H]R5020-receptor complexes [progesterone-receptor complexes (PRc)] sedimented as fast migrating 8S moieties in 8-30% linear glycerol gradients containing 0.15 M KCl and 20 mM Na2MoO4. Incubation of cytosol containing [3H]PRc at 23 degrees C for 10-60 min, or at 0 degrees C with 0.15-0.3 M KCl or 1-10 mM ATP, caused a gradual transformation of PRc to a slow sedimenting 4S form. This 8S to 4S transformation was molybdate sensitive. In contrast, the [3H]RU486-receptor complex exhibited only the 8S form. Treatment with all three activation agents caused a decrease in the 8S form but no concomitant transformation of the [3H]RU486-receptor complex into the 4S form. PR in the calf uterine cytosol incubated at 23 or at 0 degrees C with 0.3 M KCl or 10 mM ATP could be subsequently complexed with [3H]R5020 to yield the 4S form of PR. However, the cytosol PR transformed in the absence of any added ligand failed to bind [3H]RU486. Heat treatment of both [3H]R5020- and [3H]RU486-receptor complexes caused an increase in DNA-cellulose binding, although the extent of this binding was lower when RU486 was bound to receptors. An aqueous two-phase partitioning analysis revealed a significant change in the surface properties of PR following both binding to ligand and subsequent transformation. The partition coefficient (Kobsd) of the heat-transformed [3H]R5020-receptor complex increased about 5-fold over that observed with PR at 0 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Male and female rat thymic cytosol contained specific androgen receptor. The apparent dissociation constants (Kd) were 2.4 nM in males and 2.5 nM in females, and the number of binding sites (NBS) were 23.7 fmol/mg protein in males and 34.2 fmol/mg protein in females. Transformation of receptor to the DNA binding state was achieved by heat or KCl treatment of [3H]R1881-receptor complex, and the characteristics of transformed and nontransformed receptors were investigated. The nontransformed androgen-receptor complex eluted at 0.20-0.25 M KCl from DEAE-Sephacel and sedimented at 9.1 S and its molecular weight was 255,000 on agarose gel chromatography, while the transformed receptor complex eluted at 0.03-0.15 M KCl with a broad peak and sedimented at 4.5 S and its molecular weight was 80,000-85,000. The minicolumn binding assay revealed that approximately 57% of the total receptor complexes bound to DNA-cellulose following heat treatment (20 degrees C, 1 h). Castration exerted no effect on the physicochemical properties of cytosol androgen receptor, but it increased the number of binding site to the female level.  相似文献   

7.
8.
D S Colvard  E M Wilson 《Biochemistry》1984,23(15):3479-3486
The partially purified 4.5S [3H]dihydrotestosterone receptor binds to nuclear matrix isolated from rat Dunning prostate tumor with properties similar to those reported for androgen receptor binding in intact nuclei [Colvard, D.S., & Wilson, E.M. (1984) Biochemistry (preceding paper in this issue)] in that it requires Zn2+ and mercaptoethanol, is saturable, and is temperature dependent and of high affinity (Ka approximately 10(13) M-1). On a milligrams of DNA equivalent basis, the extent of matrix binding of androgen receptor (700 fmol of receptor bound/mg of matrix protein) is similar to that of intact nuclei, corresponding to approximately 1400 sites/nucleus. Association rate constants (ka) for 4.5S androgen receptor binding to matrix at 0, 15, and 25 degrees C are 2.7 X 10(5), 1.2 X 10(6), and 2.4 X 10(6) M-1 min-1, respectively, indicating an energy of activation of 15 kcal/mol. Up to 50% of matrix-bound receptor is extractable in buffer containing 3 mM ethylenediaminetetraacetic acid plus either 0.4 M KCl or 5 mM pyridoxal 5'-phosphate. A protein fraction designated 8S androgen receptor promoting factor that promotes conversion of the 4.5S androgen receptor to 8 S [Colvard, D. S., & Wilson, E. M. (1981) Endocrinology (Baltimore) 109, 496-504] has been further purified and found to inhibit the binding of the 4.5S androgen receptor to isolated nuclei and nuclear matrix in a concentration-dependent manner. The results support the hypothesis that the 8S steroid receptor is a complex of the activated 4.5S androgen receptor with a non-steroid binding protein that renders the receptor incapable of binding in nuclei.  相似文献   

9.
In order to evaluate the importance of PRL in the regulation of its own receptors, characteristics of specific binding for PRL were studied in membrane preparations from liver and testis of a new hypoprolactinemic male rat, the IPL nude male rat, and this was compared to those found for normal male rats. Under basal conditions, hepatic specific binding of PRL in IPL nude rats, as in normal rats was not detectable. Following castration, it became detectable in both groups, and was 6.99 +/- 0.78% and 6.34 +/- 0.87% for IPL nude and normal rats respectively. Under such conditions, the apparent affinity constant (Ka) and the binding capacity (Nmax) obtained were also similar for both groups (Ka) = 1.36 +/- 0.14.10(9) M-1, Nmax = 102 +/- 14 fmol/mg protein in IPL and Ka = 1.34 +/- 0.28.10(9) M-1, Nmax = 97 +/- 11 fmol/mg protein in normal rats) although a decrease in serum levels of PRL was observed in both groups. This decrease was greater for IPL nude rats. As already reported, estradiol injection following castration was able to further increase the percentage of PRL hepatic specific binding (4 times). Furthermore, our results demonstrated that the affinity constant was significantly increased by estradiol injection in both groups. On the other hand, for testicular PRL binding characteristics, a statistically significant difference was found between IPL nude and normal rats. The PRL specific binding percentage was 7.01 +/- 0.85% for the IPL nude rat and 10.07 +/- 0.64% for the normal rat. By Scatchard analysis, the Ka of testicular membranes for labelled oPRL was similar in both groups, while the capacity differed (Nmax = 9.82 +/- 1.25 fmol/mg protein for IPL nude rat and Nmax = 26.06 +/- 4.39 fmol/mg protein for normal rats). These data established the fact that IPL nude male rats presented characteristics of hepatic PRL receptors similar to those of normal rats, while their testicular oPRL binding significantly differed. These findings therefore suggest that in genetic hypoprolactinemic rats (IPL nude rats), PRL might be more involved in the regulation of testicular PRL receptors than in that of hepatic receptors.  相似文献   

10.
Two forms of rat liver aryl hydrocarbon receptor were separated by chromatography on DEAE-cellulose in the presence of molybdate. After labeling for 2 h at 0 degrees C, the receptor separated on the DEAE column into a flow-through peak (peak I) and a peak eluting at 80 mM KCl (peak II). It had been reported previously that exposure to high salt in the presence of molybdate caused the appearance of both 9 and 5-6 S receptor forms. After confirming this, I examined the relationship of the peak I and peak II receptors to these receptor forms. In high salt buffer containing molybdate, the peak I receptor sedimented in the 5-6 S region and the peak II receptor at 9 S. High salt buffer lacking molybdate converted both peak I and peak II receptors to forms sedimenting in the 5-6 S region. In low salt buffer containing molybdate, the peak I receptor sedimented at slightly more than 7 S and the peak II receptor at 9-10 S. Thus, the peak II receptor could be stabilized by molybdate as a 9 S form, and the peak I receptor was converted by high salt from a 7 to a 5-6 S form, despite the presence of molybdate. Most of the peak I receptor bound to a DNA-cellulose column and was eluted by high salt. The peak II receptor showed very little DNA binding.  相似文献   

11.
A receptor for aldosterone was studied in the cytosol of rectal mucosa of two sisters (M.A., M.B.) with the clinical manifestations of pseudohypoaldosteronism (PHA). Compared to age matched controls the patients showed a decreased affinity for aldosterone (M.A. Kd1: 0.18 nM, Kd2: 4.55 nM; Nmax1: 0.185 fmol/mg cytosol protein (CP), Nmax2: 3.12 fmol/mg CP, respectively). In an attempt to find an explanation for the phenomenon of stress-induced electrolyte imbalance in PHA patients an experimental set up was designed, using aldosterone antibody material as artificial aldosterone receptor. Specific binding was evaluated in addition with and without a 25-100-fold molar excess of dexamethasone (DEX) in order to overcome the glucocorticoid affinity of the aldosterone receptor, a phenomenon proposed to be the cause for the severe consequences of stress in some patients with PHA. The aldosterone antiserum showed two binding sites, similar to the natural receptor (Kd1: 0.15 nM, Kd2: 1.30 nM; Nmax: 30 fmol/mg CP and 130 fmol/mg CP, respectively). Under the influence of DEX the high affinity binding site (Kd1) was occupied by the glucocorticoidanalogon (Kd: 1.30 nM; Nmax: 125 fmol/mg CP). In conclusion, in stress situations, with increased quantities of glucocorticoid circulating, the high affinity binding site of the aldosterone receptor might be occupied by the glucocorticoids, while the low affinity binding site in PHA patients might not have sufficient binding capacity to maintain the electrolyte balance.  相似文献   

12.
Androgen, estrogen and progesterone receptors have been characterized with anion exchange Fast Protein Liquid Chromatography (FPLC) on a Mono Q column (Pharmacia). In the presence of sodium molybdate androgen receptors in cytosols from rat prostate, rat epididymis and calf uterus eluted as a single sharp peak at 0.32 M NaCl with recoveries of approx 90%. The molybdate-stabilized form of the androgen receptor from rat prostate was purified about 75-fold. The receptor containing FPLC-peak fractions sedimented in high salt (0.4 M KCl) linear sucrose gradients at 3.6 S (prostate) and at 4.6 S (epididymis and calf uterus) respectively. Multiple forms of the androgen receptor were present in cytosols from rat prostate prepared in the absence of sodium molybdate, probably due to proteolytic breakdown of the native form. Calf uterine estradiol and progesterone receptors prepared in the presence of sodium molybdate (20 mM) eluted from the Mono Q column at 0.32 M NaCl. The molybdate-stabilized forms of the oestradiol and progesterone receptors were purified approx 70-fold and 30-fold respectively. In the absence of molybdate the estradiol receptor dissociated into two major forms eluting at 0.23 M NaCl and 0.37 M NaCl. After heat induced transformation (30 min at 25 degrees C) of the estradiol receptor one major peak was eluted at 0.42 M NaCl, indicating a change in the surface charge of the estradiol receptor as a result of the 4 S to 5 S transformation. It is concluded that the FPLC anion exchange system is a powerful, fast tool for characterization and partial purification of steroid receptors. In addition this technique could be applied as a rapid procedure for the quantitative estimation of steroid receptors in small biological samples.  相似文献   

13.
A comparison of the physicochemical properties between pyridoxal 5'-phosphate- and 0.4 M KCl-extracted nuclear glucocorticoid receptors has been made utilizing HeLa S3 cells as a source of receptor. Both pyridoxal 5'-phosphate/NaBH4-reduced and 0.4 M KCl-extracted receptors sedimented as approximately 3.5-4.5 S species in 5-20% sucrose gradients containing 0, 0.15, and 0.4 M KCl. Under low-ionic-strength buffer conditions, pyridoxal 5'-phosphate-extracted receptor elutes close to the void volume of a Sephacryl S-300 gel-exclusion column. Increasing the [KCl] of the column to 0.4 M resulted in the elution of receptor with a Stokes radius of 58 A and calculated Mr = 96,000. Nuclear receptors extracted with 0.4 M KCl also formed a large-molecular-weight complex which eluted close to the void volume of the gel-exclusion column. Increasing the [KCl] to 0.4 M had the effect of shifting this receptor form to a species which had a Stokes radius of 62 A and calculated Mr = 89,700. Ion-exchange analysis of nuclear-extracted receptors revealed that 0.4 M KCl-extracted receptors exhibited considerable charge heterogeneity, whereas pyridoxal 5'-phosphate-extracted receptors did not. Pyridoxal 5'-phosphate-extracted receptors (approximately 86%) eluted from DEAE-cellulose at a [KCl] greater than 0.15 M; approximately 14% of the receptors had little affinity for DEAE-cellulose. Pyridoxal phosphate-treated receptors had little affinity for hydroxylapatite, phosphocellulose, and DNA-cellulose. The predominant form of 0.4 M KCl-extracted nuclear receptors (approximately 78%) eluted from DEAE-cellulose between 0.05 and 0.15 M KCl, a position coincident with "activated" glucocorticoid receptors. The remaining receptor fraction (approximately 22%) eluted from DEAE-cellulose at a [KCl] greater than 0.15 M, a position coincident with "unactivated" glucocorticoid receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
In cells exposed to glucocorticoids at 37 degrees C activated glucocorticoid-receptor complexes (complexes with affinity for nuclei and DNA) are formed after nonactivated complexes. Activation thus appears to be an obligatory physiological process. To investigate this process we have characterized cytoplasmic complexes formed in rat thymocytes at 0 and 37 degrees C. Complexes in cytosols stabilized with molybdate were analyzed by sucrose gradient centrifugation and by chromatography on DNA-cellulose, DEAE-cellulose, and agarose gels. Two major complexes were observed: the nonactivated complex, eluted from DEAE at approximately 200 mM KCl, was formed at 0 and 37 degrees C, gave S20,w = 9.2 S, Stokes radius = 8.3 nm, and calculated Mr = 330,000; the activated complex, eluted from DEAE at approximately 50 mM KCl, appeared only at 37 degrees C, gave S20,w = 4.8 S, Stokes radius = 5.0 nm, and Mr = 100,000. A third, minor complex, probably mero-receptor, which appeared mainly at 37 degrees C, bound to neither DNA nor DEAE, and gave S20,w = 2.9 S, Stokes radius = 2.3 nm, and Mr = 27,000. With three small columns in series (DNA-cellulose, DEAE-cellulose and hydroxylapatite), the three complexes can be separated in 5-10 min. By this method we have examined the stability of complexes under our conditions. We conclude that in intact thymus cells glucocorticoid-receptor complexes occur principally in two forms, nonactivated and activated, and that activation is accompanied by a large reduction in size. The origin of the mero-receptor complex remains uncertain.  相似文献   

15.
The binding in vitro of tritiated aldosterone to domestic duck (Anas platyrhynchos) kidney tissue has been investigated. Using tissue from animals on a normal diet, tritiated aldosterone was specifically bound to kidney cytosol with an apparent equilibrium dissociation constant of about 9 nM and number of binding sites in the 20 fmol/mg protein range. These values did not show statistically significant changes when the cytosol originated from animals with salt activated nasal glands. Kidney cytosols labeled with tritiated aldosterone sedimented with a single peak at 8S in a linear sucrose gradient (10–30%) and this peak was quenched by excess, radioinert aldosterone. Following incubation of labeled cytosols with crude nuclei, the cytosols became depleted of the label and aldosterone was translocated to the Tris-soluble and Tris-insoluble, 0,4 M KCl soluble nuclear fractions. Kidney cytosols metabolized aldosterone extensively to a compound presumed to be 3α,5β-tetrahydroaldosterone. However, only unchanged aldosterone became receptor-bound. It was concluded that the duck kidney possesses aldosterone receptors, though competition studies indicated that the specificity of these receptors might be different from those described in the mammalian kidney.  相似文献   

16.
In cell-free systems androgen receptor (AR) labeled with (3H)DHT at 0 degrees C in the presence of 50mM molybdate remains unactivated (less than 3% binding to nuclei) and untransformed (7-8S on sucrose density gradients containing 0.4M KCl and 50mM molybdate). In the absence of molybdate, however, these complexes undergo activation and transformation even at 0 degrees C, albeit, very slowly. Incubation of unactivated, untransformed AR complexes at 18 degrees C, or at 0 degrees C in the presence of 0.4M KCl, greatly accelerated both activation and transformation. Activation and transformation are also associated with formation of high affinity (3H)DHT-receptor complexes as indicated by decreased rates of (3H)DHT dissociation from the receptor. Cytosolic AR complexes labeled with (3H)DHT in tissue slices at 37 degrees C, or in vivo, undergo rapid activation, transformation and nuclear translocation. The data suggest that activation and transformation of cytosolic AR in cell-free systems is associated with changes in the physicochemical properties of AR similar to those occurring upon hormone binding in intact cells and in vivo.  相似文献   

17.
Paraglucocorticoid- and paramineralocorticoid-binding cytosolic receptors (pGR, pMR) were demonstrated in the intestine and kidney of the frog, Rana catesbeiana and in the intestine of the turtle, Chrysemys picta, in the presence of sodium molybdate. These receptors were of high affinity and low capacity with the following binding parameters: pGR:Kd:frog intestine (FI), triamcinolone acetonide (TA): 3.3 nM, corticosterone (B): 3.4 nM; frog kidney (FK), TA:4.3 nM, B: 9.3 nM; turtle intestine (TI), TA: 4.8 nM; Nmax: FI, TA: 357, B: 371; FK, TA: 301, B: 157; TI, TA: 350 fmol/mg protein. pMR:Kd: FI, aldosterone: 0.9 and 90 nM (biphasic curves); FK, aldosterone: 0.6 and 36 nM (biphasic curves); Nmax: FI, 13 and 147 fmol/mg protein; FK, 78 and 109 fmol/mg protein. The receptor had the following ligand affinities: pGR: FI and FK: triamcinolone acetonide greater than DOC greater than 11 beta-hydroxyprogesterone greater than progesterone greater than corticosterone greater than cortisol greater than aldosterone greater than 11-dehydrocorticosterone greater than 17 alpha-hydroxyprogesterone greater than cortisone; TI: triamcinolone acetonide greater than corticosterone greater than progesterone greater than DOC greater than cortisol greater than aldosterone; pMR: FI and FK: corticosterone greater than 11 beta-hydroxyprogesterone greater than aldosterone greater than triamcinoline acetonide = cortisol greater than DOC greater than 11-dehydrocorticosterone greater than progesterone greater than 17 alpha-hydroxyprogesterone greater than cortisone. Androgens, estrogens or 18-hydroxycorticosterone did not compete for binding in either tissue. The heat activated frog receptors did not bind to naked DNA, though the turtle receptor did. It was possible to show that cytosol receptor-ligand complexes from all tissues were bound by nuclear acceptor sites. On linear sucrose gradients, the FI TA-receptor complex sediments with a single peak (7.5S), the FK TA-receptor complex gave two peaks (8.0 and 4.4S) and the TI TA-receptor complex showed a single peak (9.0S). The hydrodynamic parameters of the pGR's were determined by gel exclusion on Sephacel S-300. The following results were obtained: Mr: FI, 265, 80, 40 kDa (multiple proteins); FK, 280, 60, 20 kDa (multiple proteins); TI, 366 kDa; Rs: FI, 6.9, 3.9 nm; FK, 6.9, 2.9 nm; TI, 7.6 nm; f/f0: FI, 1.6; FK, 1.6; TI, 1.6. It is suggested on the basis of the binding and hydrodynamic parameters that non-mammalian epithelia corticosterone receptors have undergone biochemical evolution from one class of vertebrates to another.  相似文献   

18.
Testosterone binding protein from rat liver cytosol, which had been incubated with [3H]testosterone followed by treatment with dextran-coated charcoal, was analyzed by DEAE-cellulose and phosphocellulose chromatography. On DEAE-cellulose chromatography, two distinct peaks of radioactivity were eluted at 0.07 M and 0.19 M KCl, both sedimented in 4 S regions. Phosphocellulose chromatography resulted in a broad peak at 0.08 M KCl, with a shoulder at 0.04 M KCl, both sedimented at 4 S. These findings indicated that testosterone binding protein consists of two types of components each with 4 S.  相似文献   

19.
A C Evans  T G Muldoon 《Steroids》1991,56(2):59-65
Microsomes prepared from rat uterine homogenates harbor high-affinity (Ka = 10(10) M-1), low-capacity binding sites for estrogens. Previous work from our laboratory has demonstrated that these estrophiles are located on endoplasmic reticulum and are not cytosolic contaminants of the membrane preparation. Subfractionation of microsomes into granular and agranular membranes and polysomes revealed approximately equal distribution of estrogen-binding activity among each of these constituents. These binding sites were fully extractable with 0.6 M KCl. Microsomal estrophiles solubilized under conditions of low ionic strength and complexed with estradiol migrated as 8S forms on continuous sucrose gradients. In the presence of 0.4 M KCl, the solubilized binding sites exhibit a sedimentation coefficient of 4S. Extracted binding sites do not undergo heat-induced transformation from a 4S to 5S species. The monoclonal antibody JS34/32 interacted with the endoplasmic reticulum-associated estrogen-binding sites when present in 50-fold molar excess, but not at lower antibody to binding site ratios. In comparison, the rat uterine cytosolic estrogen receptor formed complexes with JS34/32 at antibody to receptor ratios as low as 2:1. These results suggest that the endoplasmic reticulum possesses estrogen-binding sites with biochemical properties that differ from those of the classically described cytosolic (loosely associated nuclear) estrogen receptor.  相似文献   

20.
Nuclear binding sites of T3 in human trophoblastic cells were biochemically characterized. Nuclei were isolated by a combination procedure with mild homogenization of the freshly obtained trophoblastic tissue aged term gestation, centrifugations and Triton X-100 treatment. The isolated nuclei were incubated with various concentrations of 125I-T3 at 20 degrees C for 3 h. The total number of T3 binding sites per nucleus was approximately 650. The apparent association constant (Ka) was 6.0 X 10(9)M-1. Nuclear proteins extracted from purified nuclei with 0.4M KCl were able to bind T3 giving rise to nuclear thyroid hormone binding protein-T3 complexes and they were precipitated with bovine IgG, as a carrier protein, by 12.5% polyethylene glycol. Binding was maximum in 3 h incubation at 20 degrees C or in 18 h at 0 degrees C, while it dropped quickly at 37 degrees C. The binding characteristics were analyzed by Scatchard plots. In nuclear proteins obtained from 8 term placentae there was a single set of high affinity-low capacity T3 binding sites with Ka of 7.0 X 10(9)M-1. The capacity is about 62.7 fmol T3/mg DNA. The binding sites were found to be specific for L-T3, while L-T4 was about 100-fold less effective, rT3 ineffective, and D-T3 and D-T4 were roughly 1/8 and 1/5 as active as L-T3 and L-T4, respectively in displacing 125I-T3 from the binding sites. These data confirmed that human placenta is a target organ of thyroid hormones; trophoblastic cells contain T3 nuclear receptors which are biochemically similar to those isolated from liver, although the capacity is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号