首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To identify novel genes involved in DNA double-strand break (DSB) repair, we previously isolated Schizosaccharomyces pombe mutants which are hypersensitive to methyl methanesulfonate (MMS) and synthetic lethals with rad2. This study characterizes one of these mutants, rad60-1. The gene that complements the MMS sensitivity of this mutant was cloned and designated rad60. rad60 encodes a protein with 406 amino acids which has the conserved ubiquitin-2 motif found in ubiquitin family proteins. rad60-1 is hypersensitive to UV and gamma rays, epistatic to rhp51, and defective in the repair of DSBs caused by gamma-irradiation. The rad60-1 mutant is also temperature sensitive for growth. At the restrictive temperature (37 degrees C), rad60-1 cells grow for several divisions and then arrest with 2C DNA content; the arrested cells accumulate DSBs and have a diffuse and often aberrantly shaped nuclear chromosomal domain. The rad60-1 mutant is a synthetic lethal with rad18-X, and expression of wild-type rad60 from a multicopy plasmid partially suppresses the MMS sensitivity of rad18-X cells. rad18 encodes a conserved protein of the structural maintenance of chromosomes (SMC) family (A. R. Lehmann, M. Walicka, D. J. Griffiths, J. M. Murray, F. Z. Watts, S. McCready, and A. M. Carr, Mol. Cell. Biol. 15:7067-7080, 1995). These results suggest that S. pombe Rad60 is required to repair DSBs, which accumulate during replication, by recombination between sister chromatids. Rad60 may perform this function in concert with the SMC protein Rad18.  相似文献   

3.
Caspase-8 plays an essential role in apoptosis induced by Fas activation. Moreover, caspase-8 can be processed also in response to exposure to genotoxic agents. To decipher the role of caspase-8 in DNA damaging agent (DDA)-induced apoptosis as well as the pathway(s) leading to its activation in response to genotoxic stress, we investigated caspase-8 processing induced by ionizing radiation (IR) or mitomycin C (MMC) treatment in human B-lymphoblasts. Altogether, our observations establish that caspase-8 is actively processed in both receptor-mediated and DDA-induced cell death. However, while Fas-dependent apoptosis absolutely required caspase-8 activity, it is not necessary for completion of the apoptotic program induced by IR and MMC. Experiments performed to understand the molecular pathway(s) of the caspase-8 activation after DDA demonstrated that for both IR and MMC, the Fas/Fas-L interaction is dispensable. Data obtained from caspase inhibitors and from lymphoblasts carrying mutations in ATM and FANCC proteins, involved in DDA response, clearly showed that distinct mechanisms are responsible for caspase-8 activation by IR and MMC in B-lymphoblasts. IR-dependent processing of caspase-8 involves ATM, mitochondrial collapse, FANCC, and caspase-3 activation. Caspase-8 activation by MMC evokes the mitochondrial pathways involving FANCC but not ATM. Collectively, our data indicate that caspase-8 activation is essentially a bystander effect and not a major determinant of the behavior of DDA-exposed cells.  相似文献   

4.
5.
DNA ligase III     
DNA ligases are crucial for most DNA transactions, including DNA replication, repair, and recombination. Recently, DNA ligase III (Lig3) has been demonstrated to be crucial for cell survival due to its catalytic function in mitochondria. This review summarizes these recent results and reports on a hitherto unappreciated widespread phylogenetic presence of Lig3 in eukaryotes, including in some organisms before the divergence of metazoa. Analysis of these putative Lig3 homologs suggests that many of them are likely to be found in mitochondria and to be critical for mitochondrial function.  相似文献   

6.
Proteins induced by DNA-damaging agents in cultured Drosophila cells   总被引:1,自引:0,他引:1  
In Drosophila cultured cells, the effects of several DNA-damaging agents on the expression of proteins were investigated. Poly(A+) RNA prepared from both untreated cells and cells treated with DNA-damaging agents was translated in vitro. The translation products were analyzed by two-dimensional electrophoresis. Methyl methanesulfonate, the most potent agent used, induced about 25 proteins, some new and some enhanced pre-existing proteins. Angelicin plus near UV irradiation, 4-nitroquinoline N-oxide and ethyl methanesulfonate were efficient inducers. Mitomycin C, UV irradiation and hydrogen peroxide were poor inducers, inducing only a few proteins at low levels. A tumor promoter, 12-O-tetradecanoylphorbol-13-acetate, and a DNA gyrase inhibitor, nalidixic acid, also were used. In this system they were weak inducers of new proteins. Several of the new or enhanced proteins were common to several agents, but others were agent specific. The distribution of mutagen-induced proteins was compared with that of proteins induced in cells heated at 37 degrees C. Some of the proteins induced by DNA-damaging agents were found to overlap heat-shock proteins. These results suggest that there are sets of induced genes that are regulated differently.  相似文献   

7.
Calpain 10 is ubiquitously expressed and is one of four mitochondrial matrix proteases. We determined that over-expression or knock-down of mitochondrial calpain 10 results in cell death, demonstrating that mitochondrial calpain 10 is required for viability. Thus, we studied calpain 10 degradation in isolated mitochondrial matrix, mitochondria and in renal proximal tubular cells (RPTC) under control and toxic conditions. Using isolated renal cortical mitochondria and mitochondrial matrix, calpain 10 underwent rapid degradation at 37°C that was blocked with Lon inhibitors but not by calpain or proteasome inhibitors. While exogenous Ca(2+) addition, Ca(2+) chelation or exogenous ATP addition had no effect on calpain 10 degradation, the oxidants tert-butyl hydroperoxide (TBHP) or H(2)O(2) increased the rate of degradation. Using RPTC, mitochondrial and cytosolic calpain 10 increased in the presence of MG132 (Lon/proteasome inhibitor) but only cytosolic calpain 10 increased in the presence of epoxomicin (proteasome inhibitor). Furthermore, TBHP and H(2)O(2) oxidized mitochondrial calpain 10, decreased mitochondrial, but not cytosolic calpain 10, and pretreatment with MG132 blocked TBHP-induced degradation of calpain 10. In summary, mitochondrial calpain 10 is selectively degraded by Lon protease under basal conditions and is enhanced under and oxidizing conditions, while cytosolic calpain 10 is degraded by the proteasome.  相似文献   

8.
9.
The synthesis of L-serine deaminase in Escherichia coli K-12 was induced after exposure of cells to a variety of DNA-damaging agents, including UV irradiation, nalidixic acid, and mitomycin C. Synthesis was also induced during growth at high temperature. A mutant constitutive for SOS functions showed an elevated level of L-serine deaminase activity. The response to DNA-damaging agents thus may be mediated via the SOS system.  相似文献   

10.
Hill JW  Hu JJ  Evans MK 《DNA Repair》2008,7(4):648-654
Deficient repair activity for 8-hydroxy-2'-deoxyguanine (8-oxoguanine), a premutagenic oxidative DNA damage, has been observed in affected tissues in neurodegenerative diseases of aging, such as Alzheimer's disease, and in ischemia/reperfusion injury, type 2 diabetes mellitus, and cancer. These conditions have in common the accumulation of oxidative DNA damage, which is believed to play a role in disease progression, and loss of intracellular calcium regulation. These observations suggest that oxidative DNA damage repair capacity may be influenced by fluctuations in cellular calcium. We have identified human 8-oxoguanine-DNA glycosylase 1 (OGG1), the major 8-oxoguanine repair activity, as a specific target of the Ca(2+)-dependent protease Calpain I. Protein sequencing of a truncated partially calpain-digested OGG1 revealed that calpain recognizes OGG1 for degradation at a putative PEST (proline, glutamic acid, serine, threonine) sequence in the C-terminus of the enzyme. Co-immunoprecipitation experiments showed that OGG1 and Calpain I are associated in human cells. Exposure of HeLa cells to hydrogen peroxide or cisplatin resulted in the degradation of OGG1. Pretreatment of cells with the calpain inhibitor calpeptin resulted in inhibition of OGG1 proteolysis and suggests that OGG1 is a target for calpain-mediated degradation in vivo during oxidative stress- and cisplatin-induced apoptosis. Polymorphic OGG1 S326C was comparatively resistant to calpain digestion in vitro, yet was also degraded by a calpain-dependent pathway in vivo following DNA damaging agent exposure. The degradation of OGG1 by calpain may contribute to decreased 8-oxoguanine repair activity and elevated levels of 8-oxoguanine reported in tissues undergoing chronic oxidative stress, ischemia/reperfusion, and other cellular stressors known to produce perturbations of intracellular calcium homeostasis which activate calpain.  相似文献   

11.
Mitochondrial DNA ligase III function is independent of Xrcc1   总被引:2,自引:1,他引:1       下载免费PDF全文
Hamster EM9 cells, which lack Xrcc1 protein, have reduced levels of DNA ligase III and are defective in nuclear base excision repair. The Xrcc1 protein stabilizes DNA ligase III and may even play a direct role in catalyzing base excision repair. Since DNA ligase III is also thought to function in mitochondrial base excision repair, it seemed likely that mitochondrial DNA ligase III function would also be dependent upon Xrcc1. However, several lines of evidence indicate that this is not the case. First, western blot analysis failed to detect Xrcc1 protein in mitochondrial extracts. Second, DNA ligase III levels present in mitochondrial protein extracts from EM9 cells were indistinguishable from those seen in similar extracts from wild-type (AA8) cells. Third, the mitochondrial DNA content of both cell lines was identical. Fourth, EM9 cells displayed no defect in their ability to repair spontaneous mitochondrial DNA damage. Fifth, while EM9 cells were far more sensitive to the cytotoxic effects of ionizing radiation due to a defect in nuclear DNA repair, there was no apparent difference in the ability of EM9 and AA8 cells to restore their mitochondrial DNA to pre-irradiation levels. Thus, mitochondrial DNA ligase III function is independent of the Xrcc1 protein.  相似文献   

12.
While caspases have been strongly implicated in delayed neuronal death in a variety of experimental paradigms, other proteases such as calpain can also contribute to neuronal death. To evaluate the relative roles of caspase and calpain, we used a model system wherein UV treatment induced moderate or severe delayed cortical neuronal death, as quantified by propidium iodide and calcein AM. UV treatment led to increases in both caspase and calpain activation. Calpain inhibitor III (MDL-28170) reduced caspase activation, suggesting that caspase activation was mediated by calpain. Calpain contributed to neuronal death, as indicated by strong neuroprotection provided by calpain inhibitor III, calpeptin, or Ca2+-free medium. In contrast, caspase inhibitors were not neuroprotective. These results suggest that UV neurotoxicity is mediated by a loss of Ca2+ homeostasis which leads to a calpain-dependent, caspase-independent cell death. That calpain, but not caspase, may mediate death in instances involving the activation of both proteases may have relevance to other neuronal death models.  相似文献   

13.
Soh Y  Shin MH  Lee JS  Jang JH  Kim OH  Kang H  Surh YJ 《Mutation research》2003,544(2-3):129-142
A series of naturally occurring isoquinoline alkaloids, besides their distribution in the environment and presence in certain food stuffs, have been detected in human tissues including particular regions of brain. An example is salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) that not only induces neuronal cell death, but also causes DNA damage and genotoxicity. Tetrahydropapaveroline [THP; 6,7-dihydroxy-1-(3',4'-dihydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline], a dopamine-derived tetrahydroisoquinoline alkaloid, has been reported to inhibit mitochondrial respiration and is considered to contribute to neurodegeneration implicated in Parkinson's disease. Since THP bears two catechol moieties, the compound may readily undergo redox cycling to produce reactive oxygen species (ROS) as well as toxic quinoids. In the present study, we have examined the capability of THP to cause oxidative DNA damage and cell death. Incubation of THP with phiX174 supercoiled DNA or calf thymus DNA in the presence of cupric ion caused substantial DNA damage as determined by strand scission or formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), respectively. THP plus copper-induced DNA damage was ameliorated by some ROS scavengers/antioxidants and catalase. Treatment of C6 glioma cells with THP led to a concentration-dependent reduction in cell viability, which was prevented by the antioxidant N-acetyl-L-cysteine. When these cells were treated with 10microM THP, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) were rapidly activated via phosphorylation, whereas activation of extracellular signal-regulated protein kinase (ERK) was inhibited. Furthermore, pretreatment with inhibitors of JNK and p38 MAPK rescued the glioma cells from THP-induced cytotoxicity, suggestive of the involvement of these kinases in THP-induced C6 glioma cell damage.  相似文献   

14.
To elucidate mechanism of cell death in response to hypoxia, we attempted to compare hypoxia-induced cell death of HepG2 cells with cisplatin-induced cell death, which has been well characterized as a typical apoptosis. Cell death induced by hypoxia turned out to be different from cisplatin-mediated apoptosis in cell viability and cleavage patterns of caspases. Hypoxia-induced cell death was not associated with the activation of p53 while cisplatin-induced apoptosis is p53 dependent. In order to explain these differences, we tested involvement of μ-calpain and m-calpain in hypoxia-induced cell death. Calpains, especially μ-calpain, were initially cleaved by hypoxia, but not by cisplatin. Interestingly, the treatment of a calpain inhibitor restored PARP cleavage that was absent during hypoxia, indicating the recovery of activated caspase-3. The inhibition of calpains prevented proteolysis induced by hypoxia. In addition, hypoxia resulted in a necrosis-like morphology while cisplatin induced an apoptotic morphology. The calpain inhibitor prevented necrotic morphology induced by hypoxia and converted partially to apoptotic morphology with nuclear segmentation. Our result suggests that calpains are involved in hypoxia-induced cell death that is likely to be necrotic in nature and the inhibition of calpain switches hypoxia-induced cell death to apoptotic cell death without affecting cell viability.  相似文献   

15.
Nonhomologous end-joining (NHEJ) is the primary DNA repair pathway thought to underlie chromosomal translocations and other genomic rearrangements in somatic cells. The canonical NHEJ pathway, including DNA ligase IV (Lig4), suppresses genomic instability and chromosomal translocations, leading to the notion that a poorly defined, alternative NHEJ (alt-NHEJ) pathway generates these rearrangements. Here, we investigate the DNA ligase requirement of chromosomal translocation formation in mouse cells. Mammals have two other DNA ligases, Lig1 and Lig3, in addition to Lig4. As deletion of Lig3 results in cellular lethality due to its requirement in mitochondria, we used recently developed cell lines deficient in nuclear Lig3 but rescued for mitochondrial DNA ligase activity. Further, zinc finger endonucleases were used to generate DNA breaks at endogenous loci to induce translocations. Unlike with Lig4 deficiency, which causes an increase in translocation frequency, translocations are reduced in frequency in the absence of Lig3. Residual translocations in Lig3-deficient cells do not show a bias toward use of pre-existing microhomology at the breakpoint junctions, unlike either wild-type or Lig4-deficient cells, consistent with the notion that alt-NHEJ is impaired with Lig3 loss. By contrast, Lig1 depletion in otherwise wild-type cells does not reduce translocations or affect microhomology use. However, translocations are further reduced in Lig3-deficient cells upon Lig1 knockdown, suggesting the existence of two alt-NHEJ pathways, one that is biased toward microhomology use and requires Lig3 and a back-up pathway which does not depend on microhomology and utilizes Lig1.  相似文献   

16.
Control of human leishmaniases relies on appropriate diagnosis and reliable methods for monitoring chemotherapy. The current method used for estimation of parasite burden during chemotherapy patient follow-up as well as in pharmacological studies performed in experimental models involves PCR-based assays. Compared to time-consuming conventional methods, this type of Leishmania DNA detection-based method is extremely sensitive, but could fail in distinguishing viable Leishmania from slowly degenerating ones. We have used an in vitro model to monitor the duration of Leishmania DNA persistence in mouse macrophages following exposure to l-leucine ester, a molecule otherwise known to rapidly kill intracellular Leishmania amazonensis amastigotes. At 1h of post l-leucine ester exposure, more than 98% of amastigote-loaded macrophages harbored killed parasites and parasite remnants, as assessed by microscopy. This dramatic decrease in parasite load and the microscopic parasite follow-up over the 120 h time period studied were correlated with Leishmania DNA as quantified by real-time PCR. Our results indicate that kinetoplast and nuclear parasite DNA degradation occurs very rapidly after amastigote death. These data add further weight to the argument that PCR assays represent not only a robust method for diagnosis but can also be reliable for monitoring parasite size reduction rate post any intervention (Leishmania-targeting molecules, immunomodulators...).  相似文献   

17.
Progression through the G2/M transition following DNA damage is linked to cytokinesis failure and mitotic death. In four different transformed cell lines and two human embryonic stem cell lines, we find that DNA damage triggers mitotic chromatin decondensation and global phosphorylation of histone H2AX, which has been associated with apoptosis. However, extended time-lapse studies in HCT116 colorectal cancer cells indicate that death does not take place during mitosis, but 72% of cells die within 3 days of mitotic exit. By contrast, only 11% of cells in the same cultures that remained in interphase died, suggesting that progression through mitosis enhances cell death following DNA damage. These time-lapse studies also confirmed that DNA damage leads to high rates of cytokinesis failure, but showed that cells that completed cytokinesis following damage died at higher rates than cells that failed to complete division. Therefore, post-mitotic cell death is not a response to cytokinesis failure or polyploidy. We also show that post-mitotic cell death is largely independent of p53 and is only partially suppressed by the apical caspase inhibitor Z-VAD-FMK. These findings suggest that progression through mitosis following DNA damage initiates a p53- and caspase-independent cell death response that prevents propagation of genetic lesions.  相似文献   

18.
19.
20.
DNA strand break repair is essential for the prevention of multiple human diseases, particularly those which feature neuropathology. To further understand the pathogenesis of these syndromes, we recently developed animal models in which the DNA single-strand break repair (SSBR) components, XRCC1 and DNA Ligase III (LIG3), were inactivated in the developing nervous system. Although biochemical evidence suggests that inactivation of XRCC1 and LIG3 should share common biological defects, we found profound phenotypic differences between these two models, implying distinct biological roles for XRCC1 and LIG3 during DNA repair. Rather than a key role in nuclear DNA repair, we found LIG3 function was central to mitochondrial DNA maintenance. Instead, our data indicate that DNA Ligase 1 is the main DNA ligase for XRCC1-mediated DNA repair. These studies refine our understanding of DNA SSBR and the etiology of neurological disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号