首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We attached peptides corresponding to the seventh transmembrane domain (TMD7) of the alpha-mating factor receptor (Ste2p) of Saccharomyces cerevisiae to a hydrophilic, 40-residue fragment of the carboxyl terminus of this G protein-coupled receptor. Peptides corresponding to (a) the 40-residue portion of the carboxyl tail (T-40), (b) the tail plus a part of TMD7 (M7-12-T40), and (c) to the tail plus the full TMD7 (M7-24-T40) were chemically synthesized and purified. The molecular mass and primary sequence of these peptides were confirmed by mass spectrometry and tandem mass spectrometry procedures. Circular dichroism (CD) revealed that T-40 was disordered in phosphate buffer and in the presence of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-racemic-(1-glycerol)] bilayers. In contrast, M7-12-T40 and M7-24-T40 peptides were partially helical in the presence of vesicles, and difference CD spectroscopy showed that the transmembrane regions of these peptides were 42 and 94% helical, respectively. CD analysis also demonstrated that M7-24-T40 retained its secondary structure in the presence of 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-racemic-(1-glycerol)] micelles at 0.5 mm concentration. Thus, the tail and the transmembrane domain of the multidomain 64-amino acid residue peptide manifest individual conformational preferences. Measurement of tryptophan fluorescence indicated that the transmembrane domain integrated into bilayers in a manner similar to that expected for this region in the native state of the receptor. This study demonstrated that the tail of Ste2p can be used as a hydrophilic template to study transmembrane domain structure using techniques such as CD and NMR spectroscopy.  相似文献   

2.
The structure and dynamics of a large segment of Ste2p, the G-protein-coupled alpha-factor receptor from yeast, were studied in dodecylphosphocholine (DPC) micelles using solution NMR spectroscopy. We investigated the 73-residue peptide EL3-TM7-CT40 consisting of the third extracellular loop 3 (EL3), the seventh transmembrane helix (TM7), and 40 residues from the cytosolic C-terminal domain (CT40). The structure reveals the presence of an alpha-helix in the segment encompassing residues 10-30, which is perturbed around the internal Pro-24 residue. Root mean-square deviation values of individually superimposed helical segments 10-20 and 25-30 were 0.91 +/- 0.33 A and 0.76 +/- 0.37 A, respectively. 15N-relaxation and residual dipolar coupling data support a rather stable fold for the TM7 part of EL3-TM7-CT40, whereas the EL3 and CT40 segments are more flexible. Spin-label data indicate that the TM7 helix integrates into DPC micelles but is flexible around the internal Pro-24 site, exposing residues 22-26 to solution and reveal a second site of interaction with the micelle within a region comprising residues 43-58, which forms part of a less well-defined nascent helix. These findings are discussed in light of previous studies in organic-aqueous solvent systems.  相似文献   

3.
Xie H  Ding FX  Schreiber D  Eng G  Liu SF  Arshava B  Arevalo E  Becker JM  Naider F 《Biochemistry》2000,39(50):15462-15474
The Ste2p receptor for alpha-factor, a tridecapeptide mating pheromone of the yeast Saccharomyces cerevisiae, belongs to the G protein-coupled family of receptors. In this paper we report on the synthesis of peptides corresponding to five of the seven transmembrane domains (M1-M5) and two homologues of the sixth transmembrane domain corresponding to the wild-type sequence and a mutant sequence found in a constitutively active receptor. The secondary structures of all new transmembrane peptides and previously synthesized peptides corresponding to domains 6 and 7 were assessed using a detailed CD analysis in trifluoroethanol, trifluoroethanol-water mixtures, sodium dodecyl sulfate micelles, and dimyristoyl phosphatidyl choline bilayers. Tryptophan fluorescence quenching experiments were used to assess the penetration of the membrane peptides into lipid bilayers. All peptides were predominantly (40-80%) helical in trifluoroethanol and most trifluoroethanol-water mixtures. In contrast, two of the peptides M3-35 (KKKNIIQVLLVASIETSLVFQIKVIFTGDNFKKKG) and M6-31 (KQFDSFHILLINleSAQSLLVPSIIFILAYSLK) formed stable beta-sheet structures in both sodium dodecyl sulfate micelles and DMPC bilayers. Polyacrylamide gel electrophoresis showed that these two peptides formed high molecular aggregates in the presence of SDS whereas all other peptides moved as monomeric species. The peptide (KKKFDSFHILLIMSAQSLLVLSIIFILAYSLKKKS) corresponding to the sequence in the constitutive mutant was predominantly helical under a variety of conditions, whereas the homologous wild-type sequence (KKKFDSFHILLIMSAQSLLVPSIIFILAYSLKKKS) retained a tendency to form beta-structures. These results demonstrate a connection between a conformational shift in secondary structure, as detected by biophysical techniques, and receptor function. The aggregation of particular transmembrane domains may also reflect a tendency for intermolecular interactions that occur in the membrane environment facilitating formation of receptor dimers or multimers.  相似文献   

4.
Fragments of G protein-coupled receptors (GPCRs) are widely used as models to investigate these polytopic integral-membrane, signal-transducing molecules, but have proven difficult to prepare in quantities necessary for NMR analyses. We report on the biosynthesis of two double transmembrane (TM) containing fragments of Ste2p, the alpha-factor GPCR from the yeast Saccharomyces cerevisiae. Ste2p(G31-T110) [TM1-TM2] and Ste2p(R231-S339) [TM6-TM7-CT40] were expressed as TrpDeltaLE fusion proteins in Escherichia coli and released by CNBr cleavage. Expression yields were optimized using different strains and induction parameters, and by performing CNBr cleavage directly on inclusion bodies. Nonlabeled and uniformly labeled [15N]-TM1-TM2 and TM6-TM7-CT40, as well as uniformly labeled [15N,13C]-TM1-TM2 and TM1-TM2 selectively labeled with [15N-Ala], [15N-Phe], [15N-Leu], [15N-Ile], and [15N-Val] were prepared. Yields of target peptides with >95% homogeneity varied from 3 mg/L of fermentation ([15N]-TM6-TM7-CT40) to 20 mg/L (selectively labeled TM1-TM2). The high level biosynthesis and the efficient CNBr processing and purification yields allowed the initiation of a comprehensive biophysical analysis of TM1-TM2 and TM6-TM7-CT40. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis showed that TM1-TM2 was monomeric in this micellar environment, whereas TM6-TM7-CT40 migrated as a dimer. CD analysis indicated that TM1-TM2 was highly helical in SDS and 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-RAC-(1-glycerol)], but had a tendency to aggregate in dodecylphosphocholine micelles. Similar results were found with TM6-TM7-CT40. Conditions for NMR measurements were optimized, and both TM1-TM2 and TM6-TM7-CT40 exhibited more than 90% of the expected crosspeaks in the [15N,1H]-HSQC spectrum. These findings set the stage for the determination of the 3D structure of these large domains of a GPCR in micelles using high-resolution NMR.  相似文献   

5.
Fragments of integral membrane proteins have been used to study the physical chemical properties of regions of transporters and receptors. Ste2p(G31-T110) is an 80-residue polypeptide which contains a portion of the N-terminal domain, transmembrane domain 1 (TM1), intracellular loop 1, TM2 and part of extracellular loop 1 of the α-factor receptor (Ste2p) from Saccharomyces cerevisiae. The structure of this peptide was previously determined to form a helical hairpin in lyso-palmitoylphosphatidyl-glycerol micelles (LPPG) [1]. Herein, we perform a systematic comparison of the structure of this protein fragment in micelles and trifluoroethanol (TFE):water in order to understand whether spectra recorded in organic:aqueous medium can facilitate the structure determination in a micellar environment. Using uniformly labeled peptide and peptide selectively protonated on Ile, Val and Leu methyl groups in a perdeuterated background and a broad set of 3D NMR experiments we assigned 89% of the observable atoms. NOEs and chemical shift analysis were used to define the helical regions of the fragment. Together with constraints from paramagnetic spin labeling, NOEs were used to calculate a transiently folded helical hairpin structure for this peptide in TFE:water. Correlation of chemical shifts was insufficient to transfer assignments from TFE:water to LPPG spectra in the absence of further information.  相似文献   

6.
The yeast Saccharomyces cerevisiae undergoes cell fusion during sexual conjugation to form diploid cells. The haploids participating in this process signal each other through secreted peptide-mating factors (alpha-factor and a-factor) that are recognized by G-protein-coupled receptors. The receptor (Ste2p) recognizing the tridecapeptide alpha-factor is used as a model system in our laboratory to understand various aspects of peptide-receptor interactions and receptor structure. Using chemical procedures we have synthesized peptides corresponding to the seven transmembrane domains of Ste2p and studied their structures in membrane mimetic environments. Extension of these studies requires preparation of longer fragments of Ste2p. This article discusses strategies used in our laboratory to prepare peptides containing multiple domains of Ste2p. Data are presented on the use of chemical synthesis, biosynthesis, and native chemical ligation. Using biosynthetic approaches fusion proteins have been expressed that contain single receptor domains, two transmembrane domains connected by the contiguous loop, and the tail connected to the seventh transmembrane domain. Tens of milligrams of fusion protein were obtained per liter, and multimilligram quantities of the isotopically labeled target peptides were isolated using such biosynthetic approaches. Initial circular dichroism results on a chemically synthesized 64-residue peptide containing a portion of the cytosolic tail and the complete seventh transmembrane domain showed that the tail portion and the hydrophobic core of this peptide maintained individual conformational preferences. Moreover, this peptide could be studied at near millimolar concentrations in the presence of micelles and did not aggregate under these conditions. Thus, these constructs can be investigated using high-resolution nuclear magnetic resonance techniques, and the cytosolic tail of Ste2p can be used as a hydrophilic template to improve solubility of transmembrane peptides for structural analysis.  相似文献   

7.
The wild-type (wt) N-terminal 23-residue fusion peptide (FP) of the human immunodeficiency virus (HIV) fusion protein gp41 and its V2E mutant have been studied by nuclear magnetic resonance (NMR) spectroscopy in dodecylphosphocholine (DPC) micelles as membrane mimics. A number of NMR techniques have been used. Pulsed field-gradient diffusion measurements in DPC and in 4:1 DPC/sodium dodecylsulfate mixed micelles showed that there is no major difference between the partition coefficients of the fusogenic wt peptide and the V2E mutant in these micelles, indicating that there is no correlation between the activity of the fusion peptides and their membrane affinities. The nuclear Overhauser enhancement (NOE) patterns and the chemical shift index for these two peptides indicated that both FP are in an alpha helical conformation between the Ile4 to Leu12 or to Ala15 region. Simulated annealing showed that the helical region extends from Ile4 to Met19. The two FPs share similar conformational characteristics, indicating that the conformation of the FP is not an important factor determining its activity. The spin-label studies, utilizing spin labels 5- and 16-doxystearic acids in the DPC micelles, provided clear indication that the wt FP inserts its N-terminus into the micelles while the V2E mutant does not insert into the micelles. The conclusion from the spin-label results is corroborated by deuterium amide proton exchange experiments. The correlation between the oblique insertion of the FP and its fusogenic activity is in excellent agreement with results from our molecular dynamics simulation and from other previous studies.  相似文献   

8.
The wild-type (wt) N-terminal 23-residue fusion peptide (FP) of the human immunodeficiency virus (HIV) fusion protein gp41 and its V2E mutant have been studied by nuclear magnetic resonance (NMR) spectroscopy in dodecylphosphocholine (DPC) micelles as membrane mimics. A number of NMR techniques have been used. Pulsed field-gradient diffusion measurements in DPC and in 4:1 DPC/sodium dodecylsulfate mixed micelles showed that there is no major difference between the partition coefficients of the fusogenic wt peptide and the V2E mutant in these micelles, indicating that there is no correlation between the activity of the fusion peptides and their membrane affinities. The nuclear Overhauser enhancement (NOE) patterns and the chemical shift index for these two peptides indicated that both FP are in an α helical conformation between the Ile4 to Leu12 or to Ala15 region. Simulated annealing showed that the helical region extends from Ile4 to Met19. The two FPs share similar conformational characteristics, indicating that the conformation of the FP is not an important factor determining its activity. The spin-label studies, utilizing spin labels 5- and 16-doxystearic acids in the DPC micelles, provided clear indication that the wt FP inserts its N-terminus into the micelles while the V2E mutant does not insert into the micelles. The conclusion from the spin-label results is corroborated by deuterium amide proton exchange experiments. The correlation between the oblique insertion of the FP and its fusogenic activity is in excellent agreement with results from our molecular dynamics simulation and from other previous studies.  相似文献   

9.
Activation of G protein-coupled receptors (GPCRs) originates in ligand-induced protein conformational changes that are transmitted to the cytosolic receptor surface. In the photoreceptor rhodopsin, and possibly other rhodopsin-like GPCRs, protonation of a carboxylic acid in the conserved E(D)RY motif at the cytosolic end of transmembrane helix 3 (TM3) is coupled to receptor activation. Here, we have investigated the structure of synthetic peptides derived from rhodopsin TM3. Polarized FTIR spectroscopy reveals a helical structure of a 31-mer TM3 peptide reconstituted into PC vesicles with a large tilt of 40-50 degrees of the helical axis relative to the membrane normal. Helical structure is also observed for the TM3 peptide in detergent micelles and depends on pH, especially in the C-terminal sequence. In addition, the fluorescence emission of the single tyrosine of the D(E)RY motif in the TM3 peptide exhibits a pronounced pH sensitivity that is abolished when Glu is replaced by Gln, demonstrating that protonation of the conserved Glu side chain affects the structure in the environment of the D(E)RY motif of TM3. The pH regulation of the C-terminal TM3 structure may be an intrinsic feature of the E(D)RY motif in other class I receptors, allowing the coupling of protonation and conformation of membrane-exposed residues in full-length GPCRs.  相似文献   

10.
Henry LK  Khare S  Son C  Babu VV  Naider F  Becker JM 《Biochemistry》2002,41(19):6128-6139
Saccharomyces cerevisiae haploid cells communicate with their opposite mating type through peptide pheromones (alpha-factor and a-factor) that activate G protein-coupled receptors (GPCRs). S. cerevisiaewas used as a model system for the study of peptide-responsive GPCRs. Here, we detail the synthesis and characterization of a number of alpha-factor (Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr) pheromone analogues containing the photo-cross-linkable group 4-benzoyl-L-phenylalanine (Bpa). Following characterization, one analogue, [Bpa(1), Tyr(3), Arg(7), Phe(13)]alpha-factor, was radioiodinated and used as a probe for Ste2p, the GPCR for alpha-factor. Binding of the di-iodinated probe was saturable (K(d) = 200 nM) and competable by alpha-factor. Cross-linking into Ste2p was specific for this receptor and reversed by the wild-type pheromone. Chemical and enzymatic cleavage of the receptor/radioprobe complex indicated that cross-linking occurred on a portion of Ste2p spanning residues 251-294 which encompasses transmembrane domain 6, the extracellular loop between transmembrane domains 6 and 7, and transmembrane domain 7. This fragment was verified using T7-epitope-tagged Ste2p and a biotinylated, photoactivatable alpha-factor. After cross-linking with the biotinylated photoprobe and trypsin cleavage, the cross-linked receptor fragment was revealed by both an anti T7-epitope antibody and a biotin probe. This is the first determination of a specific contact region between a Class IV GPCR and its ligand. The results demonstrate that Bpa alpha-factor probes are useful in determining contacts between alpha-factor and Ste2p and initiate mapping of the ligand binding site of this GPCR.  相似文献   

11.
The transmission of the mating signal of the budding yeast Saccharomyces cerevisiae requires Ste20p, a member of the serine/threonine protein kinases of the Ste20p/PAK family, to link the Gbeta subunit of the heterotrimeric G protein to the mitogen-activated protein kinase cascades. The binding site of Ste20p to the Gbeta subunit was mapped to a consensus sequence of SSLphiPLI/VXphiphibeta (X for any residue; phi for A, I, L, S or T; beta for basic residues), which was shown to be a novel Gbeta binding (GBB) motif present only in the noncatalytic C-terminal domains of the Ste20p/PAK family of protein kinases (Leeuw, T., Wu, C., Schrag, J. D., Whiteway, M., Thomas, D. Y., and Leberer, E. (1998) Nature 391, 191-195; Leberer, E., Dignard, D., Thomas, D. Y., and Leeuw, T. (2000) Biol. Chem. 381, 427-431). Here, we report the results of an NMR study on two GBB motif peptides and the entire C-terminal domain derived from Ste20p. The NMR data show that the two peptide fragments are not uniquely structured in aqueous solution, but in the presence of 40% trifluoroethanol, the longer 37-residue peptide exhibited two well defined, but flexibly linked helical structure elements. Heteronuclear NMR data indicate that the fully functional 86-residue C-terminal domain of Ste20p is again unfolded in aqueous solution but has helical secondary structure preferences similar to those of the two peptide fragments. The NMR results on the two GBB peptides and the entire GBB domain all indicate that the two important binding residues, Ser(879) and Ser(880), are located at the junction between two helical segments. These experimental observations with the prototype GBB domain of a novel family of Gbeta-controlled effectors may have important implications in understanding the molecular mechanisms of the signal transduction from the heterotrimeric G protein to the mitogen-activated protein kinase cascade.  相似文献   

12.
Fundamental knowledge about how G protein-coupled receptors and their ligands interact is important for understanding receptor-ligand binding and the development of new drug discovery strategies. We have used cross-linking and tandem mass spectrometry analyses to investigate the interaction of the N terminus of the Saccharomyces cerevisiae tridecapeptide pheromone, α-factor (WHWLQLKPGQPMY), and Ste2p, its cognate G protein-coupled receptor. The Trp(1) residue of α-factor was replaced by 3,4-dihydroxyphenylalanine (DOPA) for periodate-mediated chemical cross-linking, and biotin was conjugated to Lys(7) for detection purposes to create the peptide [DOPA(1),Lys(7)(BioACA),Nle(12)]α-factor, called Bio-DOPA(1)-α-factor. This ligand analog was a potent agonist and bound to Ste2p with ~65 nanomolar affinity. Immunoblot analysis of purified Ste2p samples that were treated with Bio-DOPA(1)-α-factor showed that the peptide analog cross-linked efficiently to Ste2p. The cross-linking was inhibited by the presence of either native α-factor or an α-factor antagonist. MALDI-TOF and immunoblot analyses revealed that Bio-DOPA(1)-α-factor cross-linked to a fragment of Ste2p encompassing residues Ser(251)-Met(294). Fragmentation of the cross-linked fragment and Ste2p using tandem mass spectrometry pinpointed the cross-link point of the DOPA(1) of the α-factor analog to the Ste2p Lys(269) side chain near the extracellular surface of the TM6-TM7 bundle. This conclusion was confirmed by a greatly diminished cross-linking of Bio-DOPA(1)-α-factor into a Ste2p(K269A) mutant. Based on these and previously obtained binding contact data, a mechanism of α-factor binding to Ste2p is proposed. The model for bound α-factor shows how ligand binding leads to conformational changes resulting in receptor activation of the signal transduction pathway.  相似文献   

13.
Kex2 protease (Kex2p) and Ste13 dipeptidyl aminopeptidase (Ste13p) are required in Saccharomyces cerevisiae for maturation of the alpha-mating factor in a late Golgi compartment, most likely the yeast trans-Golgi network (TGN). Previous studies identified a TGN localization signal (TLS) in the C-terminal cytosolic tail of Kex2p consisting of Tyr-713 and contextual sequences. Further analysis of the Kex2p TLS revealed similarity to the Ste13p TLS. Mutation of the Kex2p TLS results in transport of Kex2p to the vacuole by default. When expression of a GAL1 promoter-driven KEX2 gene is shut off in MAT(alpha) cells, the TGN becomes depleted of Kex2p, resulting in a gradual decline in mating competence which is greatly accelerated by TLS mutations. To identify the genes involved in localization of Kex2p, we isolated second-site suppressors of the rapid loss of mating competence observed upon shutting off expression of a TLS mutant form of Kex2p (Y713A). Seven of 58 suppressors were allele specific, suppressing point mutations at Tyr-713 but not deletions of the TLS or entire C-terminal cytosolic tail. By linkage analysis, the allele-specific suppressors defined three genetic loci, SOI1, S0I2, and S0I3. Pulse-chase analysis demonstrated that these suppressors increased net TGN retention of both Y713A Kex2p and a Ste13p-Pho8p fusion protein containing a point mutation in the Ste13p TLS. SOI1 suppressor alleles reduced the efficiency of localization of wild-type Kex2p to the TGN, implying an impaired ability to discriminate between the normal TLS and a mutant TLS. soi1 mutants also exhibited a recessive defect in vacuolar protein sorting. Suppressor alleles of S0I2 were dominant. These results suggest that the SOI1 and S0I2 genes encode regulators or components of the TLS recognition machinery.  相似文献   

14.
Structural characterization of G protein-coupled receptors (GPCRs) is hindered by the inherent hydrophobicity, flexibility, and large size of these signaling proteins. Insights into conformational preferences and the three-dimensional (3D) structure of domains of these receptors can be obtained using polypeptide fragments of these proteins. Herein, we report the expression, purification, and biophysical characterization of a three-transmembrane domain-containing 131-residue fragment of the yeast α-factor receptor, Ste2p. Ste2p TM1–TM3 (G31–R161) was expressed as a TrpΔLE fusion protein in Escherichia coli. The expressed protein was subject to CNBr cleavage to remove the fusion tag and TM1–TM3 was purified by reverse-phased HPLC. The cleavage product was isolated in yields of up to 20 mg per liter of culture in both unlabeled and uniformly [15N]-labeled and [15N, 13C, 2H]-labeled forms. The secondary structure of TM1–TM3 was determined to be helical in a number of membrane mimetic environments, including 2,2,2-trifluoroethanol (TFE):water and lysomyristoylphosphatidylglycerol (LMPG) detergent micelles by circular dichroism. Preliminary HSQC analysis in 50% TFE:water and LMPG micelles prepared in sodium phosphate and 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES) buffers revealed that this fragment is suitable for structural analysis by nuclear magnetic resonance (NMR). Complete backbone assignments and a detailed localization of the secondary structural elements of TM1–TM3 in 50% TFE:water have been achieved.  相似文献   

15.
Divalent metal transporter (DMT1) belongs to the family of Nramp proteins. The fourth transmembrane domain (TM4) housing the disease-causing mutations both in Nramp1 and Nramp2 at the conserved two adjacent glycine residues, was implicated to serve an important biological function. In the present study, we have characterized structurally and topologically a 32-mer synthetic peptide, corresponding to the sequence of the loop 3 and the fourth transmembrane domain of rat DMT1 in membrane-mimetic environments (e.g. TFE, SDS micelles) using both CD and NMR spectroscopic techniques. Solution structures derived from NMR and molecular dynamic/simulated annealing calculation demonstrated that the peptide exhibits a highly defined -helice in the middle portion of the peptide, flanked by a highly flexible N-terminus and a relatively ordered C-terminus. Paramagnetic broadening on peptide signals by spin-labels and Mn2+ suggested that both the N-terminus and helical core of the peptide were embedded into the SDS micelles. The peptide exhibited amphipathic characteristics, with hydrophilic residues (Thr189, Asp192, Thr193 and Asp200) lying in one side of the helix which provides a basis for the formation of water-filled channel architectures through self-associations. Diffusion-ordered spectroscopy (DOSY) indicated that the peptide exhibits mixtures of hexamers, trimers and monomers, in contrast to the fourth transmembrane peptide (24-mer) being aggregated as a trimer only. This appears to be the first report on the effects of loops on aggregation behavior of transmembrane domains in membrane-mimetic environments.  相似文献   

16.
The alpha-factor receptor(Ste2p) is required for the sexual conjugation of the yeast Saccharomyces cerevisiae. Ste2p belongs to the G protein-coupled receptor (GPCR) family sharing a common heptahelical transmembrane structure. Biological synthesis of regions of Ste2p fused to a leader protein in Escherichia coli yielded milligram quantities of polypeptides that corresponded to one or two transmembrane domains. Fusion proteins were characterized by polyacrylamide gel electrophoresis, high performance liquid chromatography, and mass spectrometry. CD studies on the fusion proteins in trifluoroethanol:water mixtures indicated the existence of alpha-helical structures in the single- and the double-transmembrane domains. NMR experiments were performed in CDCl(3):CD(3)OH:H(2)O (4:4:1) on the (15)N-labeled single-transmembrane peptide showing a clear dispersion of the nitrogen-amide proton correlation cross peaks indicative of a high-purity, uniformly labeled molecule. The results indicate that single- and double-transmembrane domains of a GPCR can be produced by biosynthetic methods in quantities and purity sufficient for biophysical studies.  相似文献   

17.
Ion channel-forming peptides enable us to study the conformational dynamics of a transmembrane helix as a function of sequence and environment. Molecular dynamics simulations are used to study the conformation and dynamics of three 22-residue peptides derived from the second transmembrane domain of the glycine receptor (NK4-M2GlyR-p22). Simulations are performed on the peptide in four different environments: trifluoroethanol/water; SDS micelles; DPC micelles; and a DMPC bilayer. A hierarchy of alpha-helix stabilization between the different environments is observed such that TFE/water < micelles < bilayers. Local clustering of trifluoroethanol molecules around the peptide appears to help stabilize an alpha-helical conformation. Single (S22W) and double (S22W,T19R) substitutions at the C-terminus of NK4-M2GlyR-p22 help to stabilize a helical conformation in the micelle and bilayer environments. This correlates with the ability of the W22 and R19 side chains to form H-bonds with the headgroups of lipid or detergent molecules. This study provides a first atomic resolution comparison of the structure and dynamics of NK4-M2GlyR-p22 peptides in membrane and membrane-mimetic environments, paralleling NMR and functional studies of these peptides.  相似文献   

18.
Human Jagged-1, one of the ligands of Notch receptors, is a transmembrane protein composed of a large extracellular region and a 125-residue cytoplasmic tail which bears a C-terminal PDZ recognition motif. To investigate the interaction between Jagged-1 cytoplasmic tail and the inner leaflet of the plasma membrane we determined, by solution NMR, the secondary structure and dynamics of the recombinant protein corresponding to the intracellular region of Jagged-1, J1_tmic, bound to negatively charged lysophospholipid micelles. NMR showed that the PDZ binding motif is preceded by four α-helical segments and that, despite the extensive interaction between J1_tmic and the micelle, the PDZ binding motif remains highly flexible. Binding of J1_tmic to negatively charged, but not to zwitterionic vesicles, was confirmed by surface plasmon resonance. To study the PDZ binding region in more detail, we prepared a peptide corresponding to the last 24 residues of Jagged-1, J1C24, and different phosphorylated variants of it. J1C24 displays a marked helical propensity and undergoes a coil-helix transition in the presence of negatively charged, but not zwitterionic, lysophospholipid micelles. Phosphorylation at different positions drastically decreases the helical propensity of the peptides and abolishes the coil-helix transition triggered by lysophospholipid micelles. We propose that phosphorylation of residues upstream of the PDZ binding motif may shift the equilibrium from an ordered, membrane-bound, interfacial form of Jagged-1 C-terminal region to a more disordered form with an increased accessibility of the PDZ recognition motif, thus playing an indirect role in the interaction between Jagged-1 and the PDZ-containing target protein.  相似文献   

19.
The folding and assembly of proteins in the endoplasmic reticulum (ER) lumen and membrane are monitored by ER quality control. Misfolded or unassembled proteins are retained in the ER and, if they cannot fold or assemble correctly, ultimately undergo ER-associated degradation (ERAD) mediated by the ubiquitin-proteasome system. Whereas luminal and integral membrane ERAD substrates both require the proteasome for their degradation, the ER quality control machinery for these two classes of proteins likely differs because of their distinct topologies. Here we establish the requirements for the ERAD of Ste6p*, a multispanning membrane protein with a cytosolic mutation, and compare them with those for mutant form of carboxypeptidase Y (CPY*), a soluble luminal protein. We show that turnover of Ste6p* is dependent on the ubiquitin-protein isopeptide ligase Doa10p and is largely independent of the ubiquitin-protein isopeptide ligase Hrd1p/Der3p, whereas the opposite is true for CPY*. Furthermore, the cytosolic Hsp70 chaperone Ssa1p and the Hsp40 co-chaperones Ydj1p and Hlj1p are important in ERAD of Ste6p*, whereas the ER luminal chaperone Kar2p is dispensable, again opposite their roles in CPY* turnover. Finally, degradation of Ste6p*, unlike CPY*, does not appear to require the Sec61p translocon pore but, like CPY*, could depend on the Sec61p homologue Ssh1p. The ERAD pathways for Ste6p* and CPY* converge at a post-ubiquitination, pre-proteasome step, as both require the ATPase Cdc48p. Our results demonstrate that ERAD of Ste6p* employs distinct machinery from that of the soluble luminal substrate CPY* and that Ste6p* is a valuable model substrate to dissect the cellular machinery required for the ERAD of multispanning membrane proteins with a cytosolic mutation.  相似文献   

20.
The alpha-factor tridecapeptide initiates mating in Saccharomyces cerevisiae upon interaction with Ste2p, its cognate G-protein coupled receptor (GPCR). This interaction is being used as a paradigm for understanding the structure and mechanism of activation of GPCRs by medium-sized peptides. In this article, the use of fragments of Ste2p to study its structure is reviewed. Methods of synthesis of peptides corresponding to both extramembranous and transmembrane domains of Ste2p are evaluated and problems that are encountered during synthesis and purification are described. The results from conformational analyses of the peptide fragments using fluorescence spectroscopy, CD, infrared spectroscopy, and NMR spectroscopy in organic-aqueous mixtures and in the presence of detergent micelles and lipid bilayers are critically reviewed. The data obtained to date provide biophysical evidence for the structure of different domains of Ste2p and indicate that peptides corresponding to these domains have unique biophysical tendencies. The studies carried out on Ste2p fragments indicate that valuable information concerning the structure of the intact receptor can be obtained by studying peptide fragments corresponding to domains of these polytopic integral membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号