首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Emotional stress in rats resulted in blood-brain barrier increased permeability and brain parenchymal vessel disruptions. Stress induced microvascular damages were mainly observed in midbrain reticular formation. In this article the components of midbrain reticular formation were studied 1, 2, 4 and 6 weeks after immobilization stress. The destructive changes in some neurons, glia cells and myelin fibers were shown up to 6 weeks after immobilization. The signs of the recovery were also observed. It was supposed that the brain parenchymal vessel damages under emotional stress were due to the stress induced locus coeruleus dysfunctions.  相似文献   

2.
Neurotoxic metals have been implicated in the pathogenesis of multiple sclerosis, neurodegenerative disorders and brain tumours but studies of the location of heavy metals in human brains are rare. In a man who injected himself with metallic mercury the cellular location of mercury in his brain was studied after 5 months of continuous exposure to inorganic mercury arising from metallic mercury deposits in his organs. Paraffin sections from the primary motor and sensory cortices and the locus ceruleus in the pons were stained with autometallography to detect inorganic mercury and combined with glial fibrillary acidic protein immunohistochemistry to identify astrocytes. Inorganic mercury was found in grey matter subpial, interlaminar, protoplasmic and varicose astrocytes, white matter fibrous astrocytes, grey but not white matter oligodendrocytes, corticomotoneurons and some locus ceruleus neurons. In summary, inorganic mercury is taken up by five types of human brain astrocytes, as well as by cortical oligodendrocytes, corticomotoneurons and locus ceruleus neurons. Mercury can induce oxidative stress, stimulate autoimmunity and damage DNA, mitochondria and lipid membranes, so its location in these CNS cells suggests it could play a role in the pathogenesis of multiple sclerosis, neurodegenerative conditions such as Alzheimer’s disease and amyotrophic lateral sclerosis, and glial tumours.  相似文献   

3.
Oztaş B  Akgül S  Arslan FB 《Life sciences》2004,74(16):1973-1979
Effect of surgical pain stress on the blood-brain barrier permeability was investigated in rats. The animals were divided into four groups: Group 1: control, Group 2: immobilization stress, Group 3: acute hypertension, Group 4: immobilization stress + surgical pain stress.Bilateral hid paw surgical wounds for cannulations were applied in animals' inguinal regions under diethyl-ether anesthesia, then the animals were awaken from anesthesia to produce surgical pain stress. Evans-blue was used as a blood-brain barrier tracer. There is no significantly blood-brain barrier breakdown after short-time immobilization stress, but after adrenalin hypertension blood-brain barrier permeability was increased especially on frontal and occipital cortices in 50% of the animals. Surgical pain stress increased blood-brain barrier permeabiliy in comparison to acute adrenalin-induced hypertension (p < 0.01). In surgical pain stress-induced animals distinct Evans-blue leakage was observed in the occipital, frontal and parieto-temporal cortices.  相似文献   

4.
Exposure to environmental mercury has been proposed to play a part in autism. Mercury is selectively taken up by the human locus ceruleus, a region of the brain that has been implicated in autism. We therefore looked for the presence of mercury in the locus ceruleus of people who had autism, using the histochemical technique of autometallography which can detect nanogram amounts of mercury in tissues. In addition, we sought evidence of damage to locus ceruleus neurons in autism by immunostaining for hyperphosphorylated tau. No mercury was found in any neurons of the locus ceruleus of 6 individuals with autism (5 male, 1 female, age range 16–48 years). Mercury was present in locus ceruleus neurons in 7 of 11 (64 %) age-matched control individuals who did not have autism, which is significantly more than in individuals with autism. No increase in numbers of locus ceruleus neurons containing hyperphosphorylated tau was detected in people with autism. In conclusion, most people with autism have not been exposed early in life to quantities of mercury large enough to be found later in adult locus ceruleus neurons. Human locus ceruleus neurons are sensitive indicators of mercury exposure, and mercury appears to remain in these neurons indefinitely, so these findings do not support the hypothesis that mercury neurotoxicity plays a role in autism.  相似文献   

5.
目的探讨PTSD样大鼠蓝斑(locus ceruleus,LC)神经元盐皮质激素受体(mineralocorticoid receptors,MR)表达的变化。方法使用连续单一应激(SPS)方法建立PTSD大鼠模型,随机分为SPS处理后24h、4d、7d、14d和28d组,非SPS刺激大鼠作为对照,应用免疫组化、免疫印迹方法分别进行各组蓝斑神经元MR表达变化的观察及检测,进行图像分析和统计学处理。结果蓝斑神经元MR的表达呈现24h急剧下调,4d、7d,14d和28d恢复性上调。结论PTSD样大鼠蓝斑神经元MR的表达变化可能直接参与了PTSD持续性精神行为障碍的发生发展过程。  相似文献   

6.
The unidirectional influx of niacinamide across cerebral capillaries, the anatomical locus of the blood-brain barrier, was measured with an in situ rat brain perfusion technique employing [14C]niacinamide. Niacinamide was transported rapidly across the blood-brain barrier by a system that was not saturable with 10 mM niacinamide in the perfusate. However, with periods of perfusion longer than 30 seconds, there was substantial backflow of [14C]niacinamide into the perfusate. Niacinamide (1.7 M) transport through the blood-brain barrier was not significantly inhibited by 3-acetylpyridine. Thus, niacinamide is transported rapidly and bidirectionally through the blood-brain barrier by a high capacity transport system. Although involved in the transfer of niacinamide between blood and brain, this transport system does not play an important regulatory role in the synthesis of NMN, NAD, and NADP from niacinamide in brain.  相似文献   

7.
Brain ischemia is associated with an acute release of pro-inflammatory cytokines, notably TNF-alpha and IL-6 and failure of the blood-brain barrier. Shear stress, hypoxia-hypoglycemia, and blood leukocytes play a significant role in blood-brain barrier failure during transient or permanent ischemia. However, these mechanisms have not been studied as independent variables for in vitro ischemia. The present study, using a dynamic in vitro blood-brain barrier model, showed that flow cessation/reperfusion under normoxia-normoglycemia or hypoxia-hypoglycemia without blood leukocytes in the luminal perfusate had a modest, transient effect on cytokine release and blood-brain barrier permeability. By contrast, exposure to normoxic-normoglycemic flow cessation/reperfusion with blood leukocytes in the luminal perfusate led to a significant increase in TNF-alpha and IL-6, accompanied by biphasic blood-brain barrier opening. Enhanced permeability was partially prevented with an anti-TNF-alpha antibody. In leukocyte-free cartridges, the same levels of IL-6 had no effect, while TNF-alpha caused a moderate increase in blood-brain barrier permeability, suggesting that blood leukocytes are the prerequisite for cytokine release and blood-brain barrier failure during reduction or cessation of flow. These cells induce release of TNF-alpha early after ischemia/reperfusion; TNF-alpha triggers release of IL-6, since blockade of TNF-alpha prevents IL-6 release, whereas blockade of IL-6 induces TNF-alpha release. Pre-treatment of blood leukocytes with the cyclooxygenase (COX) inhibitor, ibuprofen, inhibited cytokine release and completely preserved blood-brain barrier permeability during the reperfusion period. In conclusion, loss of flow (flow cessation/reperfusion) independent of hypoxia-hypoglycemia plays a significant role in blood-brain barrier failure by stimulating leukocyte-mediated inflammatory mechanisms.  相似文献   

8.
Intravenous injection of trypan blue followed by treatment of the brain according to the Falc-Hillarp was used for morphological study of the blood-brain barrier in control rats and in animals exposed to the 6.5-hour stress. The density of the blood-brain barrier as regards the macromolecules in control animals was found to be liable to noticeable areal variations. The zones of primary increased barrier permeability were found near the basal surface of the brain. Prolonged single immobilization stress gave rise to destructive changes in the blood-brain barrier in the reticular formations of the midbrain and medulla oblongata. Besides, in control animals, there was a slight increase in permeability of the brain areas marked by the reduced barrier density.  相似文献   

9.
Cholinesterase activity in single nerve cell bodies isolated from the locus ceruleus and nucleus of the facial nerve of the rat was analyzed by the microgasometric method. Acetylcholinesterase activity is about the same in both types of cells. Nonspecific cholinesterase is present in noradrenergic cells of the locus ceruleus but not in the cholinergic cells of the nucleus of the facial nerve. The total activity of cholinesterases and the activity of acetylcholinesterase in nerve cell bodies isolated from the locus ceruleus remains practically unchanged from the tenth postnatal day until the age of 24 months. Depletion of noradrenaline by a high dose of reserpine does not influence the total activity of cholinesterases in nerve cell bodies of locus ceruleus.  相似文献   

10.
Pantothenic Acid Transport Through the Blood-Brain Barrier   总被引:2,自引:2,他引:0  
The unidirectional influx of D-pantothenic acid (PA) across cerebral capillaries, the anatomical locus of the blood-brain barrier, was measured with an in situ rat brain perfusion technique using [3H]D-PA (1.1 Ci/mmol). PA was transported across the blood-brain barrier by a saturable system that could be described by a Michaelis-Menten transport model with a half-saturation concentration and maximal influx rate of 19 microM and 0.21 nmol/g of brain/min, respectively. PA (0.3 microM) transport through the blood-brain barrier was significantly inhibited by probenecid, nonanoic acid, and biotin (all less than or equal to 0.25 mM), but not by penicillin G, pyruvate, beta-hydroxybutyrate, L-leucine (all 1 mM), or poly-L-lysine HBr (1 mg/ml). Probenecid (0.25 mM), nonanoic acid (0.5 mM), and PA (1.0 mM) did not inhibit [3H]L-leucine transport through the blood-brain barrier, whereas 30 microM-L-leucine inhibited [3H]leucine transport to 23% of control values. Thus, PA is transported through the blood-brain barrier by a low-capacity, saturable transport system with a half-saturation concentration approximately 10 times the plasma PA concentration. Although involved in the transfer of PA from blood into brain, this system does not play an important regulatory role in the synthesis of CoA from PA in brain.  相似文献   

11.
Biotin Transport Through the Blood-Brain Barrier   总被引:6,自引:4,他引:2  
The unidirectional influx of biotin across cerebral capillaries, the anatomical locus of the blood-brain barrier, was measured with an in situ rat brain perfusion technique employing [3H]biotin. Biotin was transported across the blood-brain barrier by a saturable system with a one-half saturation concentration of approximately 100 microM. The permeability-surface area products were 10(-4) s-1 with a biotin concentration of 0.02 microM in the perfusate. Probenecid, pantothenic acid, and nonanoic acid but not biocytin or biotin methylester (all 250 microM) inhibited biotin transfer through the blood-brain barrier. The isolated rabbit choroid plexus was unable to concentrate [3H]biotin from medium containing 1 nM [3H]biotin. These observations provide evidence that: biotin is transported through the blood-brain barrier by a saturable transport system that depends on a free carboxylic acid group, and the choroid plexus is probably not involved in the transfer of biotin between blood and cerebrospinal fluid.  相似文献   

12.
The unidirectional transport of [3H]myo-inositol across cerebral capillaries, the anatomical locus of the blood-brain barrier, was measured using an in situ rat brain perfusion technique. Myo-inositol was transported across the blood-brain barrier by a low capacity, saturable system with a one-half saturation concentration of 0.1 mM. The permeability surface-area product was 6.2×10–5S–1 with a myo-inositol concentration of 0.02 mM in the perfusate. The myo-inositol stereoisomer scyllo-inositol but not (+)-chiro-inositol (both 1 mM) inhibited myo-inositol transfer through the blood-brain barrier. These observations provide evidence that myo-inositol is transferred through the blood-brain barrier by simple diffusion and a stereospecific, saturable transport system.  相似文献   

13.
The localization of GABA-like immunoreactivity in the locus ceruleus of rats was studied by the peroxidase-antiperoxidase (PAP) method using a purified antibody raised against GABA applied to paraffin sections, with counterstaining by cresylecht violet, and to floating sections for preembedding immunoelectron microscopy. A few medium-sized and some small neurons showed GABA-like immunoreactivity in both nuclei and perikarya. The preferential localization of these immunopositive neurons in the marginal parts of the locus ceruleus suggests that they are inhibitory local circuit neurons located between this center and the afferent fiber systems. Some of the immunoreactive neurons displayed homogeneous and heterogeneous "paired cells" patterns. Occurrence of the GABA-GABA interaction is indicated. Immunopositive bouton forms are located close to every positive and negative neuron. Electron microscopy confirms GABA-like immunoreactivity in both medium-sized and small neurons of the locus ceruleus and demonstrates that immunoreactive boutons are axosomatic and axosoma spine symmetric synapses on immunopositive and immunonegative cell bodies. These immunocytochemical results support the existence of inhibitory interneurons in the locus ceruleus.  相似文献   

14.
It has been demonstrated that membrane-stabilizing agents, chlorpromazine and alpha-tocopherol, have no effect on the increased blood-brain barrier permeability for 14C-tyrosine, induced by a single injection of ethanol at a dose of 2 and 4 g/kg. Dopaminergic antagonist haloperidol prevented the increase of blood-brain barrier permeability induced by a single injection of 2 g/kg of ethanol and diminished the elevated barrier permeability caused by chronic 10-day alcoholization of animals, including abstinent ones. The role of membrane and neuromediator components in the mechanisms regulating blood-brain barrier functions is discussed.  相似文献   

15.
Rats were submitted to a series of 10 daily electroconvulsive shocks (ECS). A first group of animals was killed 1 day after the last seizure and a second group 30 days later. Tyrosine hydroxylase (TH) activity was measured using an in vitro assay in the nucleus caudatus, anterior cortex, amygdala, substantia nigra, ventral tegmental area, and locus ceruleus. The mRNA corresponding to this enzyme (TH-mRNA) was evaluated using a cDNA probe at the cellular level in the ventral tegmental area, substantia nigra, and locus ceruleus. Met-enkephalin (MET)-immunoreactivity and the mRNA coding for the preproenkephalin (PPE-mRNA) were assayed in striatum and the central nucleus of the amygdala. The day after the last ECS an increase of TH activity was observed in the ventral tegmental area, locus ceruleus, and substantia nigra in parallel with a similar increase in the amygdala and striatum; in the anterior cortex TH activity remained unchanged. TH-mRNA was increased in the locus ceruleus, evidencing the presence in this structure of a genomic activation. The amounts of MET and PPE-mRNA were unaffected in the striatum but increased in the amygdala. Thirty days after the last ECS we observed a decrease of TH activity in the amygdala and of TH-mRNA amount in the ventral tegmental area. In the locus ceruleus TH-mRNA remained higher in treated animals than in controls whereas TH activity returned to control levels. These results demonstrate that a series of ECS induces an initial increase of the activity of mesoamygdaloid catecholaminergic neurons followed by a sustained decrease through alterations of TH gene expression which could mediate the clinical effect of the treatment.  相似文献   

16.
The changes in DOPA and catecholamine (adrenaline, noradrenaline, dopamine) levels were investigated in noradrenaline- and dopamine-synthesizing brain nuclei of Wistar rats after prolonged immobilization stress on catecholamine analyzer (BAS, USA) using HPLC technique. Distinct DOPA and catecholamine changes were observed in locus ceruleus + nucleus subceruleus (1. c + n. sc) and substantia nigra at any stage after immobilization (right after immobilization and 15 and 30 days later). The most prominent alterations in noradrenaline content were detected in 1. c + n. sc. 30 days after immobilization NA level in these nuclei was 1.5 times higher, as compared to the control one. It is suggested that the increasing noradrenaline level in 1. c + n. sc. plays a defensive role in survival of rats after immobilization stress.  相似文献   

17.
Abstract: An on-line microdialysis approach was developed to estimate changes in tyrosine hydroxylase activity in the locus ceruleus noradrenergic neurons of anesthetized rats by measuring the 3,4-dihydroxyphenylalanine (DOPA) acumulation in the extracellular fluid during perfusion of an aromatic amino acid decarboxylase inhibitor through a dialysis probe. The aromatic amino acid decarboxylase inhibitor used was difluoromethyl-DOPA, which was shown to be more stable than NSD 1015 or Ro 4-4602 in the perfusion fluid. A 1-h perfusion of a 10−4 mol/L of difluoromethyl-DOPA solution induced a linear increase in DOPA concentration in the locus ceruleus dialysates that achieved a steady state within 1 h. The identity of DOPA accumulated in dialysates during aromatic amino acid decarboxylase inhibition was confirmed by the disappearance of the chromatographic peak when DOPA formation was blocked by the administration of α-methyl- p -tyrosine. Systemic administration of the α2-antagonist piperoxane before difluoromethyl-DOPA perfusion markedly increased the DOPA concentration during both the accumulation and the steady-state periods, showing that the present technique is a suitable in vivo approach to monitor changes in tyrosine hydroxylase activity occurring in the locus ceruleus neurons.  相似文献   

18.
Abstract: To investigate the regulation of norepinephrine transporter mRNA in vivo, we analyzed the effects of reserpine on its expression in the rat adrenal medulla and locus ceruleus. First, PCR was used to clone a 0.5-kb rat cDNA fragment that exhibits 87% nucleotide identity to the corresponding human norepinephrine transporter cDNA sequence. In situ, the cDNA hybridizes specifically within norepinephrine-secreting cells, but in neither dopamine nor serotonin neurons, suggesting strongly it is a partial rat norepinephrine transporter cDNA. Reserpine, 10 mg/kg administered 24 h premortem, decreased steady-state levels of norepinephrine transporter mRNA in the adrenal medulla by ∼65% and in the locus ceruleus by ∼25%, as determined by quantitative in situ hybridization. Northern analysis confirmed the results of the in situ hybridization analysis in the adrenal medulla but did not detect the smaller changes observed in the locus ceruleus. Both analyses showed that reserpine increased tyrosine hydroxylase expression in the adrenal medulla and locus ceruleus. These results suggest that noradrenergic neurons and adrenal chromaffin cells can coordinate opposing changes in systems mediating catecholamine uptake and synthesis, to compensate for catecholamine depletion.  相似文献   

19.
Nicotine increases the permeability of the blood-brain barrier in vivo. This implies a possible role for nicotinic acetylcholine receptors in the regulation of cerebral microvascular permeability. Expression of nicotinic acetylcholine receptor subunits in cerebral microvessels was investigated with immunofluorescence microscopy. Positive immunoreactivity was found for receptor subunits alpha3, alpha5, alpha7, and beta2, but not subunits alpha4, beta3, or beta4. Blood-brain barrier permeability was assessed via in situ brain perfusion with [14C]sucrose. Nicotine increased the rate of sucrose entry into the brain from 0.3 +/- 0.1 to 1.1 +/- 0.2 microl.g(-1).min(-1), as previously described. This nicotine-induced increase in blood-brain barrier permeability was significantly attenuated by both the blood-brain barrier-permeant nicotinic antagonist mecamylamine and the blood-brain barrier-impermeant nicotinic antagonist hexamethonium to 0.5 +/- 0.2 and 0.3 +/- 0.2 microl.g(-1).min(-1), respectively. These data suggest that nicotinic acetylcholine receptors expressed on the cerebral microvascular endothelium mediate nicotine-induced changes in blood-brain barrier permeability.  相似文献   

20.
The blood-brain barrier, formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. Diabetes is known to compromise the blood-brain barrier, although the underlying mechanism remains unknown. The aim of this study was to elucidate the molecular mechanisms underlying disruption of the blood-brain barrier in diabetes and to determine whether activation of AMP-activated protein kinase prevents diabetes-induced blood-brain barrier dysfunction. Exposure of human brain microvascular endothelial cells to high glucose (25mmol/L d-glucose), but not to high osmotic conditions (20mmol/L l-glucose plus 5mmol/L d-glucose), for 2h to 1 week significantly increased the permeability of the blood-brain barrier in parallel with lowered expression levels of zonula occludens-1, occludin, and claudin-5, three proteins that are essential to maintaining endothelial cell tight junctions. In addition, high glucose significantly increased the generation of superoxide anions. Adenoviral overexpression of superoxide dismutase or catalase significantly attenuated the high-glucose-induced reduction of endothelial cell tight-junction proteins. Furthermore, administration of apocynin reversed the effects of high glucose on endothelial cell tight-junction proteins. Finally, activation of AMP-activated protein kinase with 5-amino-4-imidazole carboxamide riboside or adenoviral overexpression of constitutively active AMP-activated protein kinase mutants abolished both the induction of NAD(P)H oxidase-derived superoxide anions and the tight-junction protein degradation induced by high glucose. We conclude that high glucose increases blood-brain barrier dysfunction in diabetes through induction of superoxide anions and that the activation of AMP-activated protein kinase protects the integrity of the blood-brain barrier by suppressing the induction of NAD(P)H oxidase-derived superoxide anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号