首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT. Using a preparation of the stick insect it is possible to record activity from the neuropile of the mesotheoracic ganglion during sequences of walking behaviour lasting several minutes. The animal walks on two lightweight wheels, counterbalanced to give an upthrust of 0.4 g against the legs. Each wheel may be rotated independently during turning behaviour. The walking behaviour of the operated preparation is compared with the results obtained for free-walking animals, and intact or partially operated preparations, walking on heavier wheels and mercury. Records from several identified retractor motor neurones show the stability and reproducibility obtainable with this preparation.  相似文献   

2.
Walking and symmetrical running gaits of 26 genera of primates are analyzed using numerical and graphical methods described previously. The raw data are 1701 feet of 16 mm motion picture film mostly exposed at 64 frames per second. Adult monkeys and apes usually use the walking trot or diagonal-sequence walks. Individual monkeys occasionally use lateral-sequence walks resembling those that are usual for human infants. Human children moving on hands and feet use gaits ranging from the walking pace through the lateral-sequence walks to the walking trot. An infant macaque studied from age 17 hours to 96 days first walked with a lateral-sequence, diagonal-couplets gait and then gradually shifted to the diagonal-sequence, diagonal-couplets gait of the adult. Few non-primates use the diagonal-sequence walks which are typical of primates. Typical support sequences are figured. Relative placement of feet and consequent slight asymmetry are described.  相似文献   

3.
1.  The function of the legs of a free walking mature stick insect (Carausius morosus) is investigated in four different walking situations: walks on a horizontal path, walks on a horizontal plane, walks on a horizontal beam with the body hanging from the beam and walks up a vertical path.
2.  The geometrical data, which are necessary to describe the movement of the legs, are determined (Tables 1, 2, 3, 4; Figs. 2, 3, 4, 5).
3.  The forces, by which the leg of a free walking animal acts on the walking surface, are measured (Table 5). Typical results are shown in Figures 6, 7, 8, 9 for each walking situation. From these forces and the known geometrical relationships the torques, which are produced by the antagonistic muscle systems at each leg joint, can be calculated (Fig. 10). Those torques calculated for different typical leg positions are shown in Table 6, 7, 8, 9 for each walking situation.
4.  The results show that many things change depending upon the particular walking situation: the angular range in which the leg is moved (Table 2, Fig. 4), the activation and the kind of predominance of the antagonistic muscles (Table 6, 7, 8, 9), and especially the function of the single legs. Additionally, when looking at the direction of movement of a limb one cannot say which of the antagonistic muscles is predominating. Sometimes just the muscle opposite to the actual movement predominates (Table 7).
5.  For two walking situations the function of the legs can be demonstrated in a simple way. In a walk on the horizontal plane: the forelegs mainly have feeler function, the middlelegs have only supporting function, while the hindlegs have supporting as well as propulsive function. In a walk with the body hanging from the horizontal beam: forelegs and hindlegs are used mainly to support the body, while the middlelegs additionally provide the propulsive forces.
6.  In walking up the vertical path all legs provide support and propulsive forces. When walking on the horizontal path fore- and middlelegs on the
one hand and hindlegs on the other form the static construction of a three centered arch (Fig. 11). In the same way when the insect walks hanging from the horizontal beam, a hanging three centered arch is assumed. The importance of this construction is discussed.  相似文献   

4.

Background

Sleep disturbance is a major health issue in Japan. This before-after study aimed to evaluate the immediate effects of forest walking in a community-based population with sleep complaints.

Methods

Participants were 71 healthy volunteers (43 men and 28 women). Two-hour forest-walking sessions were conducted on 8 different weekend days from September through December 2005. Sleep conditions were compared between the nights before and after walking in a forest by self-administered questionnaire and actigraphy data.

Results

Two hours of forest walking improved sleep characteristics; impacting actual sleep time, immobile minutes, self-rated depth of sleep, and sleep quality. Mean actual sleep time estimated by actigraphy on the night after forest walking was 419.8 ± 128.7 (S.D.) minutes whereas that the night before was 365.9 ± 89.4 minutes (n = 42). Forest walking in the afternoon improved actual sleep time and immobile minutes compared with forest walking in the forenoon. Mean actual sleep times did not increase after forenoon walks (n = 26) (the night before and after forenoon walks, 380.0 ± 99.6 and 385.6 ± 101.7 minutes, respectively), whereas afternoon walks (n = 16) increased mean actual sleep times from 342.9 ± 66.2 to 475.4 ± 150.5 minutes. The trend of mean immobile minutes was similar to the abovementioned trend of mean actual sleep times.

Conclusions

Forest walking improved nocturnal sleep conditions for individuals with sleep complaints, possibly as a result of exercise and emotional improvement. Furthermore, extension of sleep duration was greater after an afternoon walk compared to a forenoon walk. Further study of a forest-walking program in a randomized controlled trial is warranted to clarify its effect on people with insomnia.  相似文献   

5.
Hermit crabs are decapod crustaceans that have adapted to life in gastropod shells. Among their adaptations are modifications to their thoracic appendages or pereopods. The 4th and 5th pairs are adapted for shell support; walking is performed with the 2nd and 3rd pereopods, with an alternation of diagonal pairs. During stance, the walking legs are rotated backwards in the pitch plane. Two patterns of walking were studied to compare them with walking patterns described for other decapods, a lateral gait, similar to that in many brachyurans, and a forward gait resembling macruran walking.Video sequences of free walking and restrained animals were used to obtain leg segment positions from which joint angles were calculated. Leading legs in a lateral walk generated a power stroke by flexion of MC and PD joints; CB angles often did not change during slow walks. Trailing legs exhibited extension of MC and PD with a slight levation of CB. The two joints, B/IM and CP, are aligned at 90° angles to CB, MC and PD, moving dorso-anteriorly during swing and ventro-posteriorly during stance. A forward step was more complex; during swing the leg was rotated forward (yaw) and vertically (pitch), due to the action of TC. At the beginning of stance, TC started to rotate posteriorly and laterally, CB was depressed, and MC flexed. As stance progressed and the leg was directed laterally, PD and MC extended, so that at the end of stance the dactyl tip was quite posterior. During walks of the animal out of its shell, the legs were extended more anterior-laterally and the animal often toppled over, indicating that during walking in a shell its weight stabilized the animal.An open chain kinematic model in which each segment was approximated as a rectangular solid, the dimensions of which were derived from measurements on animals, was developed to estimate the CM of the animal under different load conditions. CM was normally quite anterior; removal of the chelipeds shifted it caudally. Application of forces simulating the weight of the shell on the 5th pereopods moved CM just anterior to the thoracic-abdominal junction. However, lateral and vertical coordinates were not altered under these different load conditions. The interaction of the shell aperture with proximal leg joints and with the CM indicates that the oblique angles of the legs, due primarily to the rotation of the TC joints, is an adaptation that confers stability during walking.  相似文献   

6.
Wu Y  Gao YQ  Karplus M 《Biochemistry》2007,46(21):6318-6330
We present a kinetic model for the walking of myosin V on actin under conditions of zero external force. The model includes three pathways and the termination of the processivity. Experimentally measured kinetic parameters are used in the model to obtain quantitative results. Using the model and associated parameters, we compute the proportion of the pathway containing an intermediate state, as well as the walking velocities and run lengths at various concentrations of ATP and ADP. The resulting trends agree with experimental data. The model explains the surprising experimental finding that myosin walks at a faster speed but for a shorter distance as the ATP concentration increases in the absence of ADP. It also suggests that under physiological condition ([ADP] approximately 12-50 microM), myosin walks with a higher speed and for longer distances when ATP is more abundant.  相似文献   

7.
Osteoarthritis (OA) is a chronic disorder resulting in degenerative changes to the knee joint. Three-dimensional gait analysis provides a unique method of measuring knee dynamics during activities of daily living such as walking. The purpose of this study was to identify biomechanical features characterizing the gait of patients with mild-to-moderate knee OA and to determine if the biomechanical differences become more pronounced as the locomotor system is stressed by walking faster. Principal component analysis was used to compare the gait patterns of a moderate knee OA group (n=41) and a control group (n=43). The subjects walked at their self-selected speed as well as at 150% of that speed. The two subject groups did not differ in knee joint angles, stride length, and stride time or walking speed. Differences in the magnitude and shape of the knee joint moment waveforms were found between the two groups. The OA group had larger adduction moment magnitudes during stance and this higher magnitude was sustained for a longer portion of the gait cycle. The OA group also had a reduced flexion moment and a reduced external rotation moment during early stance. Increasing speed was associated with an increase in the magnitude of all joint moments. The fast walks did not, however, increase or bring out any biomechanical differences between the OA and control groups that did not exist at the self-selected walks.  相似文献   

8.
The development of bipedal walking robots is inspired by human walking. A way of implementing walking could be performed by mimicking human leg dynamics. A fundamental model, representing human leg dynamics during walking and running, is the bipedal spring-mass model which is the basis for this paper. The aim of this study is the identification of leg parameters leading to a compromise between robustness and energy efficiency in walking. It is found that, compared to asymmetric walking, symmetric walking with flatter angles of attack reveals such a compromise. With increasing leg stiffness, energy efficiency increases continuously. However, robustness is the maximum at moderate leg stiffness and decreases slightly with increasing stiffness. Hence, an adjustable leg compliance would be preferred, which is adaptable to the environment. If the ground is even, a high leg stiffness leads to energy efficient walking. However, if external perturbations are expected, e.g. when the robot walks on uneven terrain, the leg should be softer and the angle of attack flatter. In the case of underactuated robots with constant physical springs, the leg stiffness should be larger than k = 14 in order to use the most robust gait. Soft legs, however, lack in both robustness and efficiency.  相似文献   

9.
The coordination of adult stick insects walking on a light double wheel system with a fixed axle is examined as a function of friction loads applied to the wheels. Four parameters are influenced by loads parallel to the body axis in the range 0.08–1.0 p. Protraction duration at low stepping frequency falls to a value equal to that used in high speed walking and is therefore independent of step period for loads >0.4p. Above 0.4p the step period is significantly increased producing coordination patterns similar to those reported for free walking mature adults. Both the anterior (AEP) and posterior (PEP) extreme positions move forward with increasing load for all legs.  相似文献   

10.
One of the challenges in collecting ground reaction force (GRF) and moment data for gait analysis is to obtain “good hits” when the subject walks past the forceplates. We examined whether centerline-guided walking would significantly increase the chance of good hits and alter gait characteristics. Thirty-five healthy individuals (age: 37±13 yrs) walked on a walkway with five embedded forceplates at comfortable self-selected speeds under two conditions: (1) free walking and (2) walking along a centerline and avoiding stepping on it. Gait kinematics and GRF were collected using an 8-camera optoelectronic system and five forceplates, respectively. Surface electromyographic (EMG) activity of the rectus femoris, hamstring, gastrocnemius (GAS), and tibialis anterior (TA) were monitored bilaterally. The probability of good hits significantly increased with the centerline-guided walking (p=0.008). Repeated measures MANOVA and follow-up univariate tests revealed no significant differences between the two conditions in any of the spatiotemporal parameters except for a significant increase in step width with centerline walking (p<0.001). Centerline guiding significantly increased peak mediolateral GRF (p<0.001) and hip adduction/abduction and ankle internal/external rotation ranges of motion (p<0.01). In addition, the average EMG activity in GAS and TA during the stance phase significantly increased with the centerline walking (p<0.001). In general, the centerline walking tended to impact women more than men. Centerline-guided walking increases the chance of good hits but biomechanical characteristics of gait in the frontal and transverse planes and EMG activity should be interpreted with caution, especially in women.  相似文献   

11.
Rapid double 8-nm steps by a kinesin mutant   总被引:2,自引:0,他引:2       下载免费PDF全文
The mechanism by which conventional kinesin walks along microtubules is poorly understood, but may involve alternate binding to the microtubule and hydrolysis of ATP by the two heads. Here we report a single amino-acid change that affects stepping by the motor. Under low force or low ATP concentration, the motor moves by successive 8-nm steps in single-motor laser-trap assays, indicating that the mutation does not alter the basic mechanism of kinesin walking. Remarkably, under high force, the mutant motor takes successive 16-nm displacements that can be resolved into rapid double 8-nm steps with a short dwell between steps, followed by a longer dwell. The alternating short and long dwells under high force demonstrate that the motor stepping mechanism is inherently asymmetric, revealing an asymmetric phase in the kinesin walking cycle. Our findings support an asymmetric two-headed walking model for kinesin, with cooperative interactions between the two heads. The sensitivity of the 16-nm displacements to nucleotide and load raises the possibility that ADP release is a force-producing event of the kinesin cycle.  相似文献   

12.
The male silkworm moth, Bombyx mori, exhibits a zigzagging pattern as it walks upwind to pheromones. This species usually does not fly, but obvious wing-beating accompanies the pheromone-mediated walking. Males supported by a `sled', after having their legs removed, also moved upwind in a pheromone plume along zigzagging tracks, indicating that wing-generated thrust and torque result in locomotory paths similar to those observed from walking moths. Using a high-speed video system we investigated the correlation between the wing movements and zigzag walking. The wing ipsilateral to the direction of the turn showed a greater degree of retraction with respect to the contralateral wing. The timing of the wing retraction pattern was synchronized with changes of direction in the walking track. Coordination of wing movements and walking pattern was not dependent on visual feedback or sensory feedback generated from neck movements associated with turning. The results presented here, taken together with our previous studies of descending interneurons suggest that the coordination of wing movements with the walking pattern may result from the activity of a set of identified interneurons descending from the brain to the thoracic ganglia and/or may be coordinated by coupling of oscillating circuits for walking and wing beating. Accepted: 15 May 1997  相似文献   

13.
Kinesin, an essential motor protein that moves intracellular cargo along microtubules, walks like a person. When we walk, our feet exchange roles with each step, one moving and one remaining stationary. The moving foot travels twice as far as our torso during a single step, and our body alternates between two configurations (left vs. right leg leading). Recent work shows that kinesin shares all three of these hallmarks of bipedal walking. The challenge now is to determine how the gait of this lilliputian biped is coordinated.  相似文献   

14.
We evaluated the performance of a method developed to estimate colony densities of the army ant Eciton burchellii , a keystone species, based on raid crossings on trails, in Costa Rica. The method was compared with a census obtained by tracking ant-following birds, and the effect of walking distance and rainfall was evaluated. We found that the method performs well when at least 60 km of trail have been walked (replicated walks are permissible), and when rainfall is avoided.  相似文献   

15.
Myosin VI is a molecular motor that can walk processively on actin filaments with a 36-nm step size. The walking mechanism of myosin VI is controversial because it takes very large steps without an apparent lever arm of required length. Therefore, myosin VI is argued to be the first exception to the widely established lever arm theory. It is therefore critical to directly demonstrate whether this motor walks hand-over-hand along actin despite its short lever arm. Here, we follow the displacement of a single myosin VI head during the stepping process. A single head is displaced 72 nm during stepping, whereas the center of mass previously has been shown to move 36 nm. The most likely explanation for this result is a hand-over-hand walking mechanism. We hypothesize the existence of a flexible element that would allow the motor to bridge the observed 72-nm distance.  相似文献   

16.
The wind-orientation of carrion beetles (Necrophorus humator F.) was studied by use of a locomotion-compensator.
1.  Beetles walking on a horizontal surface for periods of several minutes in a dark environment without an air current and other orientational stimuli seldom keep straight paths. They walk along individually different circular paths (Fig. 1). The mean walking speed is 5.6±1.0 cm/s. The mean of the angular velocity reaches maximally 25 °/s for individual beetles (mean angular velocity of the analysed population of 152 beetles: 1.9±9.3 °/s). The distribution of the mean walking directions of the population shows that the beetles display no preference for one direction (Fig. 3 A). The instantaneous value of the individual angular velocity is independent of the instantaneous walking direction.
2.  During exposure to an air current the individual beetles keep straight and stable courses with any orientation relative to the direction of air flow (Fig. 4). The mean walking directions of 76 individuals point in all directions but there is a weak preference of windward tracks (Fig. 3B).
3.  Wind orientated walking starts at a threshold wind velocity of about 5 cm/s (Fig. 6). The walking tracks straighten with increasing air current velocity. This leads to a narrowing of the distribution of the instantaneous walking directions around the preferred walking direction (Fig. 7C). This narrowing is due to an increase in the slope of the characteristic curve (angular velocity as a function of walking direction) of the wind-orientation system.
4.  Twenty percent of the beetles show a spontaneous change of their anemotactic course during walks of 5 min duration. Neither the time of the change, its position on the track or the direction of the new course are predictable. There is, however, a slight preference for 90±20° changes in the walking direction (Fig. 8).
5.  The antennae (Fig. 9) act as the only sense organs responsible for the wind orientation. The capability for wind orientated walks is lost after ablation of both flagella (Fig. 10).
  相似文献   

17.
The co-ordination of the walking behaviour of decerebrate stick insects is examined and compared with normal behaviour. The walks are fully coordinated but undergo subtle changes in timing, have a longer average step period and show momentary pauses of 50 ms during the time course of protraction movements. In addition a new intersegmental reflex has been discovered. This tactile reflex is used to avoid errors in co-ordination that would be produced by posterior legs stepping onto the tarsi of the legs in front. The reflex has a latency of 100 ms and is easily observed in lesioned animals but is also active, although seldom seen, in slowly walking intact animals.  相似文献   

18.
Accurate step detection is crucial for the estimation of gait spatio-temporal parameters. Although several step detection methods based on the use of inertial measurement units (IMUs) have been successfully proposed, they may not perform adequately when the foot is dragged while walking, when walking aids are used, or when walking at low speed. The aim of this study was to test an original step-detection method, the inter-foot distance step counter (IFOD), based on the direct measurement of the distance between feet. Gait data were recorded using a wearable prototype system (SWING2DS), which integrates an IMU and two time-of-flight distance sensors (DSs). The system was attached to the medial side of the right foot with one DS positioned close to the forefoot (FOREDS) and the other close to the rearfoot (REARDS). Sixteen healthy adults were asked to walk over ground for two minutes along a loop, including both rectilinear and curvilinear portions, during two experimental sessions. The accuracy of the IFOD step counter was assessed using a stereo-photogrammetric system as gold standard. The best performance was obtained for REARDS with an accuracy higher than 99.8% for the instrumented foot step and 88.8% for the non-instrumented foot step during both rectilinear and curvilinear walks. Key features of the IFOD step counter are that it is possible to detect both right and left steps by instrumenting one foot only and that it does not rely on foot impact dynamics. The IFOD step counter can be combined with existing IMU-based methods for increasing step-detection accuracy.  相似文献   

19.
Reduced foot clearance when walking may increase the risk of trips and falls in people with Parkinson’s disease (PD). Changes in foot clearance in people with PD are likely to be associated with temporal-spatial characteristics of gait such as walking slowly which evokes alterations in the temporal-spatial control of stepping patterns. Enhancing our understanding of the temporal-spatial determinants of foot clearance may inform the design of falls prevention therapies.Thirty-six people with PD and 38 age-matched controls completed four intermittent walks under two conditions: self-selected and fast gait velocity. Temporal-spatial characteristics of gait and foot (heel and toe) clearance outcomes were obtained using an instrumented walkway and 3D motion capture, respectively. A general linear model was used to quantify the effect of PD and gait velocity on gait and foot clearance. Regression evaluated the temporal and spatial gait predictors of minimum toe clearance (MTC).PD walked slower regardless of condition (p = .016) and tended to increase their step length to achieve a faster gait velocity. Step length and the walk ratio consistently explained the greatest proportion of variance in MTC (>28% and >33%, respectively) regardless of group or walking condition (p < .001).Our results suggest step length is the primary determinant of MTC regardless of pathology. Interventions that focus on increasing step length may help to reduce the risk of trips and falls during gait, however, clinical trials are required for robust evaluation.  相似文献   

20.
Shao Q  Gao YQ 《Biochemistry》2007,46(31):9098-9106
Several lines of experimental evidence suggest that the conventional kinesin 1 walks by an asymmetric hand-over-hand mechanism, although it is a homodimer. In the previous study, we examined several important force-dependent features of the hand-over-hand mechanism of kinesin. In this study, we focus on the asymmetry in the hand-over-hand mechanism. We show that the experimentally observed kinesin limping can be explained in our model by the variation of the neck linker lengths in the kinesin stepping (which has also been suggested earlier by others). We also study the experimentally observed processive motion of a mutant heterodimer of kinesin, in which only one of the two heads has the capability of ATP hydrolysis, as well as the walking of wild-type kinesin in the presence of both ATP and its analogue AMPPNP. We show that the possible processive walking of the heterodimeric kinesin can be explained by introducing a force-generating intermediate, the kinesin-ATP complex, which is different from the posthydrolytic species, kinesin-ADP/Pi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号