首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the presence of carbamate moiety, twenty salicylanilide N-monosubstituted carbamates concomitantly with their parent salicylanilides and five newly prepared 4-chlorophenyl carbamates obtained from isocyanates were investigated using Ellman’s method for their in vitro inhibitory activity against acetylcholinesterase (AChE) from electric eel and butyrylcholinesterase (BChE) from equine serum. The carbamates and salicylanilides exhibited mostly a moderate inhibition of both cholinesterase enzymes with IC50 values ranging from 5 to 235 µM. IC50 values for AChE were in a narrower concentration range when compared to BChE, but many of the compounds produced a balanced inhibition of both cholinesterases. The derivatives were comparable or superior to rivastigmine for AChE inhibition, but only a few of carbamates also for BChE. Several structure-activity relationships were identified, e.g., N-phenethylcarbamates produce clearly favourable BChE inhibition. The compounds also share convenient physicochemical properties for CNS penetration.  相似文献   

2.
A series of new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring were designed, synthesized and evaluated for their ability to inhibit both cholinesterase enzymes. In addition, a series of carboxamide and propanamide derivatives bearing biphenyl instead of phenylpyridazine were also synthesized to examine the inhibitory effect of pyridazine moiety on both cholinesterase enzymes. The inhibitory activity results revealed that compounds 5b, 5f, 5h, 5j, 5l pyridazine-3-carboxamide derivative, exhibited selective acetylcholinesterase (AChE) inhibition with IC50 values ranging from 0.11 to 2.69 µM. Among them, compound 5h was the most active one (IC50 = 0.11 µM) without cytotoxic effect at its effective concentration against AChE. Additionally, pyridazine-3-carboxamide derivative 5d (IC50 for AChE = 0.16 µM and IC50 for BChE = 9.80 µM) and biphenyl-4-carboxamide derivative 6d (IC50 for AChE = 0.59 µM and IC50 for BChE = 1.48 µM) displayed dual cholinesterase inhibitory activity. Besides, active compounds were also tested for their ability to inhibit Aβ aggregation. Theoretical physicochemical properties of the compounds were calculated by using Molinspiration Program as well. The Lineweaver-Burk plot and docking study showed that compound 5 h targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE.  相似文献   

3.
Due to the immense importance of aryl indole nucleus, herein we report the palladium-catalyzed arylation of N-substituted 2-aryl indole utilizing Suzuki-Miyaura cross coupling methodology. The biological screening for cholinesterase inhibition of the resulted biaryl indole moieties was carried out to evaluate their pharmacological potential, expecting to involve the development of new therapeutics for various inflammatory, cardiovascular, gastrointestinal and neurological diseases. This research work also involved the use of utilization of microwave-assisted organic synthesis (MAOS) for the synthesis of Bischler-Möhlau indole which is further biarylated via palladium-catalyzed cross coupling reaction. All the synthetic compounds (3a-n) were tested for cholinesterase inhibition and exhibited high level of AChE inhibitory activities. Interestingly, compounds 3m and 3n were found to be dual inhibitors, however, remaining compound exhibited no inhibitory activity against BChE. The biological potential of the resulted compounds was explained on the basis of molecular docking studies, performed against AChE and BChE, exploring the probable binding modes of most potent inhibitors.  相似文献   

4.
Cholinesterase inhibitors find application in the combat and care of several diseases, especially AD. Jellyfish venoms are the most promising sources of potent cholinesterase inhibitors. Therefore, it is of interest to study cholinesterases inhibiting compounds from the Cassiopea andromeda venom. We report bioactive compounds using the GC-MC method followed by molecular modeling and docking data analysis. The GC-MS analysis of the crude venom led to the identification of seven bioactive compounds (C1-C7), comprising the steroidal alkaloids, phenolic and carotenoid derivatives. The venom exhibited inhibitory activities against the cholinesterase enzymes. The compound C2, a Dioxolane steroid, displayed the strongest inhibition on both AChE and BChE activities for further consideration.  相似文献   

5.
In this work, a novel series of arylisoxazole‐phenylpiperazines were designed, synthesized, and evaluated toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Our results revealed that [5‐(2‐chlorophenyl)‐1,2‐oxazol‐3‐yl](4‐phenylpiperazin‐1‐yl)methanone ( 5c ) was the most potent AChE inhibitor with IC50 of 21.85 μm . It should be noted that most of synthesized compounds showed no BChE inhibitory activity and [5‐(2‐fluorophenyl)‐1,2‐oxazol‐3‐yl](4‐phenylpiperazin‐1‐yl)methanone ( 5a ) was the most active anti‐BChE derivative (IC50=51.66 μm ). Also, kinetic studies for the AChE and BChE inhibitory activity of compounds 5c and 5a confirmed that they have simultaneously bound to the catalytic site (CS) and peripheral anionic site (PAS) of both AChE and BChE. Furthermore, docking study of compound 5c showed desired interactions of that compound with amino acid residues located in the active and peripheral anionic sites. Compound 5c was also evaluated for its BACE1 inhibitory activity and demonstrated IC50=76.78 μm . Finally, neuroprotectivity of compound 5c on Aβ‐treated neurotoxicity in PC12 cells depicted low activity.  相似文献   

6.
Flavonoids are one of the largest classes of plant secondary metabolites and are known to possess a number of significant biological activities for human health. In this study, we examined in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of four flavonoid derivatives - quercetin, rutin, kaempferol 3-O-β-d-galactoside and macluraxanthone. The in vitro results showed that quercetin and macluraxanthone displayed a concentration-dependant inhibition of AChE and BChE. Macluraxanthone showed to be the most potent and specific inhibitor of both the enzymes having the IC50 values of 8.47 and 29.8 μM, respectively. The enzyme kinetic studies revealed that quercetin inhibited both the enzymes in competitive manner, whereas the mode of inhibition of macluraxanthone was non-competitive against AChE and competitive against BChE. The inhibitory profiles of the compounds have been compared with standard AChE inhibitor galanthamine. To get insight of the intermolecular interactions, the molecular docking studies of these two compounds were performed at the active site 3D space of both the enzymes, using ICM-Dock™ module. Docking studies exhibited that macluraxanthone binds much more tightly with both the enzymes than quercetin. The calculated docking and binding energies also supported the in vitro inhibitory profiles (IC50 values). Both the compounds showed several strong hydrogen bonds to several important amino acid residues of both the enzymes. A number of hydrophobic interactions could also explain the potency of the compounds to inhibit AChE and BChE.  相似文献   

7.
Indanone derivatives containing meta/para-substituted aminopropoxy benzyl/benzylidene moieties were designed based on the structures of donepezil and ebselen analogs as the cholinesterase inhibitors. The designed compounds were synthesized and their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were measured. Inhibitory potencies (IC50 values) for the synthesized compounds ranged from 0.12 to 11.92 μM and 0.04 to 24.36 μM against AChE and BChE, respectively. Compound 5 c showed the highest AChE inhibitory potency with IC50 value of 0.12 μM, whereas the highest BChE inhibition was achieved by structure 7 b (IC50=0.04 μM). Structure-activity relationship (SAR) analysis revealed that there is no significant difference between meta and para-substituted derivatives in AChE and BChE inhibition. However, the most potent AChE inhibitor 5 c belongs to meta-substituted compounds, while the most active BChE inhibitor is para-substituted derivative 7 b . The order of enzyme inhibition potency based on the substituted amine group is dimethyl amine>piperidine>morpholine. Compounds containing C=C linkage are more potent AChE inhibitors than the corresponding saturated structures. Molecular docking studies indicated that 5 c interacts with AChE in a very similar way to that observed experimentally for donepezil. The introduced indanone-aminopropoxy benzylidenes could be used in drug-discovery against Alzheimer's disease.  相似文献   

8.
Reversible inhibitors (e.g., pyridostigmine bromide, neostigmine bromide) of carbamate origin are used in the early treatment of Myasthenia gravis (MG) to block acetylcholinesterase (AChE) native function and conserve efficient amount of acetylcholine for decreasing number of nicotinic receptors. Carbamate inhibitors are known for many undesirable side effects related to the reversible inhibition of AChE. In contrast, this paper describes 20 newly prepared bispyridinium inhibitors of potential concern for MG. Although some compounds from this series have been known before, they were not assayed for cholinesterase inhibition yet.The newly prepared compounds were evaluated in vitro on human erythrocyte AChE and human plasmatic butyrylcholinesterase (BChE). Their inhibitory ability was expressed as IC50 and compared to standard carbamate drugs. Three compounds presented promising inhibition (in μM range) of both enzymes in vitro similar to the used standards. The novel inhibitors did not present selectivity between AChE and BChE. Two newly prepared compounds were chosen for docking studies and confirmed apparent π–π or π–cationic interactions aside enzyme’s catalytic sites. The kinetics assay confirmed non-competitive inhibition of AChE by two best newly prepared compounds.  相似文献   

9.
1,2,3-triazoles are pharmaceutically significant compounds that have attracted recent interest from medicinal chemists because of their important biological activities. Addressed herein, some 1,2,3-triazoles were synthesized to investigate the inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes, antioxidant capacity, and antimicrobial effect. The antioxidant profile of 1,2,3-triazoles determined by varied bioanalytical antioxidant methods, including 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS.+), 1,1-diphenyl-2-picrylhydrazil (DPPH·), cupric ion (Cu2+) and ferric ion (Fe3+) ascorbic acid, butylated hydroxyanisole (BHA), and butylated hydroxytoluene (BHT) were used as the standard compounds. In addition, the antibacterial and antifungal activities of these compounds were investigated against seven bacteria and three fungal species using the hollow agar method. As a result of these studies, it was determined that compound 4 showed the best antimicrobial activity and antioxidant activity close to the standards. Inhibitory effects and kinetic studies of these molecules on cholinesterase enzymes were performed. According to the results obtained, compound 4 showed stronger AChE inhibition and compound 3 stronger BChE inhibition compared to other compounds. In kinetic studies, it was found that AChE showed noncompetitive inhibition by compound 4, and BChE showed competitive inhibition by compound 3.  相似文献   

10.
Abstract

The series of symmetrical and unsymmetrical isoquinolinium-5-carbaldoximes was designed and prepared for cholinesterase reactivation purposes. The novel compounds were evaluated for intrinsic acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) inhibition, when the majority of novel compounds resulted with high inhibition of both enzymes and only weak inhibitors were selected for reactivation experiments on human AChE or BChE inhibited by sarin, VX, or paraoxon. The AChE reactivation for all used organophosphates was found negligible if compared to the reactivation ability of obidoxime. Importantly, two compounds were found to reactivate BChE inhibited by sarin or VX better to obidoxime at human attainable concentration. One compound resulted as better reactivator of NEMP (VX surrogate)-inhibited BChE than obidoxime. The in vitro results were further rationalized by molecular docking studies showing future directions on designing potent BChE reactivators.  相似文献   

11.
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder, which affected 35 million people in the world. The most practiced approach to improve the life expectancy of AD patients is to increase acetylcholine neurotransmitter level at cholinergic synapses by inhibition of cholinesterase enzymes. A series of unreported piperidone grafted spiropyrrolidines 8(a-p) were synthesized and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Therein, compounds 8h and 8l displayed more potent AChE enzyme inhibition than standard drug with IC50 values of 1.88 and 1.37 µM, respectively. Molecular docking simulations for 8l possessing the most potent AChE inhibitory activities, disclosed its interesting binding templates to the active site channel of AChE enzymes. These compounds are remarkable AChE inhibitors and have potential as AD drugs.  相似文献   

12.
In this work, we describe the preparation of some new Tacrine analogues modified with a pyranopyrazole moiety. A one-pot multicomponent reaction of 3-methyl-1H-pyrazol-5(4H)-one, aryl(or hetero)aldehydes, malononitrile and cyclohexanone involving a Friedländer condensation led to the title compounds. The synthesized heterocyclic analogues of this molecule were evaluated in vitro for their AChE and BChE inhibitory activities in search for potent cholinesterase enzyme inhibitors. Most of the synthesized compounds displayed remarkable AChE inhibitory activities with IC50 values ranging from 0.044 to 5.80?µM, wherein compounds 5e and 5j were found to be most active inhibitors against AChE with IC50 values of 0.058 and 0.044?µM respectively. Molecular modeling simulation on AChE and BChE receptors, showed good correlation between IC50 values and binding interaction template of the most active inhibitors docked into the active site of their relevant enzymes.  相似文献   

13.
Novel mono and bis spiropyrrolidine derivatives were synthesized via an efficient ionic liquid mediated, 1,3-dipolar cycloaddition methodology and evaluated in vitro for their AChE and BChE inhibitory activities in search for potent cholinesterase enzyme inhibitors. Most of the synthesized compounds displayed remarkable AChE inhibitory activities with IC50 values ranging from 1.68 to 21.85 μM, wherein compounds 8d and 8j were found to be most active inhibitors against AChE and BChE with IC50 values of 1.68 and 2.75 μM, respectively. Molecular modeling simulation on Torpedo californica AChE and human BChE receptors, showed good correlation between IC50 values and binding interaction template of the most active inhibitors docked into the active site of their relevant enzymes.  相似文献   

14.
The presented project started by screening a library consisting of natural and natural based compounds for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. Active compounds were chemically clustered into groups and further tested on the human cholinesterases isoforms. The aim of the presented study was to identify compounds that could be used as leads to target two key mechanisms associated with the AD’s pathogenesis simultaneously: cholinergic depletion and beta amyloid (Aβ) aggregation. Berberin, palmatine and chelerythrine, chemically clustered in the so-called isoquinoline group, showed promising cholinesterase inhibitory activity and were therefore further investigated. Moreover, the compounds demonstrated moderate to good inhibition of Aβ aggregation as well as the ability to disaggregate already preformed Aβ aggregates in an experimental set-up using HFIP as promotor of Aβ aggregates. Analysis of the kinetic mechanism of the AChE inhibition revealed chelerythrine as a mixed inhibitor. Using molecular docking studies, it was further proven that chelerythrine binds on both the catalytic site and the peripheral anionic site (PAS) of the AChE. In view of this, we went on to investigate its effect on inhibiting Aβ aggregation stimulated by AChE. Chelerythrine showed inhibition of fibril formation in the same range as propidium iodide. This approach enabled for the first time to identify a cholinesterase inhibitor of natural origin—chelerythrine—acting on AChE and BChE with a dual ability to inhibit Aβ aggregation as well as to disaggregate preformed Aβ aggregates. This compound could be an excellent starting point paving the way to develop more successful anti-AD drugs.  相似文献   

15.
Abstract

The enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are primary targets in attenuating the symptoms of neurodegenerative diseases. Their inhibition results in elevated concentrations of the neurotransmitter acetylcholine which supports communication among nerve cells. It was previously shown for trans-4/5-arylethenyloxazole compounds to have moderate AChE and BChE inhibitory properties. A preliminary docking study showed that elongating oxazole molecules and adding a new NH group could make them more prone to bind to the active site of both enzymes. Therefore, new trans-amino-4-/5-arylethenyl-oxazoles were designed and synthesised by the Buchwald-Hartwig amination of a previously synthesised trans-chloro-arylethenyloxazole derivative. Additionally, naphthoxazole benzylamine photoproducts were obtained by efficient photochemical electrocyclization reaction. Novel compounds were tested as inhibitors of both AChE and BChE. All of the compounds exhibited binding preference for BChE over AChE, especially for trans-amino-4-/5-arylethenyl-oxazole derivatives which inhibited BChE potently (IC50 in µM range) and AChE poorly (IC50?100?µM). Therefore, due to the selectivity of all of the tested compounds for binding to BChE, these compounds could be applied for further development of cholinesterase selective inhibitors.
  • HIGHLIGHTS
  • Series of oxazole benzylamines were designed and synthesised

  • The tested compounds showed binding selectivity for BChE

  • Naphthoxazoles were more potent AChE inhibitors

  相似文献   

16.
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors are used for the treatment of various disorders related to decline in acetylcholine levels in the brain by inhibiting the activity of the neurotransmitter AChE. The present study reports the potential of endophytic Alternaria spp. for their potential to produce cholinesterase inhibitors active against both acetylcholine and butyrylcholine. Twenty-nine isolates belonging to Alternaria spp. were isolated from different plants and screened. Variation with respect to inhibitor production was observed in different isolates. Out of 29 cultures screened, good cholinesterase (both AChE and BChE) inhibitory activity in range of 70–85% was observed in three isolates, whereas three showed only AChE inhibition. No correlation was observed in AChE and BChE inhibitor production. TLC bioautography for the inhibitor in the selected cultures evinced different Rf values of inhibitors indicating different nature of the compounds produced. In order to analyze evolutionary relationships between producer and non-producer strains, phylogenetic analysis of six producer and five non-producer strains was carried out using amplified ITS-I-5.8SrDNA-ITS-II region. Phylogenetic analysis revealed majority of the non-producer strains to be present on different clades indicating different evolutionary origins. The dual cholinesterase inhibitory activity and the diversity in the inhibitors produced by different isolates could prove to be novel sources of pharmaceutical as well as agriculturally important biomolecules after purification and characterization.  相似文献   

17.
Coumarins of synthetic or natural origins are an important chemical class exerting diverse pharmacological activities. In the present study, 26 novel O-alkylcoumarin derivatives were synthesized and have been tested at 100 µM for their in vitro inhibitory potential against acetylcholinesterase (AChE) and butyrlcholinesterase (BChE) targets which are the key enzymes playing role in the pathogenesis of Alzheimer’s disease. Among the tested coumarins, none of them could inhibit AChE, whereas 12 of them exerted a marked and selective inhibition against BChE as compared to the reference (galanthamine, IC50 = 46.58 ± 0.91 µM). In fact, 10 of the active coumarins showed higher inhibition (IC50 = 7.01 ± 0.28 µM – 43.31 ± 3.63 µM) than that of galanthamine. The most active ones were revealed to be 7-styryloxycoumarin (IC50 = 7.01 ± 0.28 µM) and 7-isopentenyloxy-4-methylcoumarin (IC50 = 8.18 ± 0.74 µM). In addition to the in vitro tests, MetaCore/MetaDrug binary QSAR models and docking simulations were applied to evaluate the active compounds by ligand-based and target-driven approaches. The predicted pharmacokinetic profiles of the compounds suggested that the compounds reveal lipophilic character and permeate blood brain barrier (BBB) and the ADME models predict higher human serum protein binding percentages (>50%) for the compounds. The calculated docking scores indicated that the coumarins showing remarkable BChE inhibition possessed favorable free binding energies in interacting with the ligand-binding domain of the target. Therefore, our results disclose that O-alkylcoumarins are promising selective inhibitors of cholinesterase enzymes, particularly BChE in our case, which definitely deserve further studies.  相似文献   

18.
To explore new scaffolds for the treat of Alzheimer’s disease appears to be an inspiring goal. In this context, a series of varyingly substituted flavonols and 4-thioflavonols have been designed and synthesized efficiently. All the newly synthesized compounds were characterized unambiguously by common spectroscopic techniques (IR, 1H-, 13C NMR) and mass spectrometry (EI-MS). All the derivatives (124) were evaluated in vitro for their inhibitory potential against cholinesterase enzymes. The results exhibited that these derivatives were potent selective inhibitors of acetylcholinesterase (AChE), except the compound 11 which was selective inhibitor of butyrylcholinesterase (BChE), with varying degree of IC50 values. Remarkably, the compounds 20 and 23 have been found the most potent almost dual inhibitors of AChE and BChE amongst the series with IC50 values even less than the standard drug. The experimental results in silico were further validated by molecular docking studies in order to find their binding modes with the active pockets of AChE and BChE enzymes.  相似文献   

19.
A novel series of 7-aminoalkyl-substituted flavonoid derivatives 5a5r were designed, synthesized and evaluated as potential cholinesterase inhibitors. The results showed that most of the synthesized compounds exhibited potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities at the micromolar range. Compound 2-(naphthalen-1-yl)-7-(8-(pyrrolidin-1-yl)octyloxy)-4H-chromen-4-one (5q) showed the best inhibitory activity (IC50, 0.64 μM for AChE and 0.42 μM for BChE) which were better than our previously reported compounds and the commercially available cholinergic agent Rivastigmine. The results from a Lineweaver–Burk plot indicated a mixed-type inhibition for compound 5q with AChE and BChE. Furthermore, molecular modeling study showed that 5q targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, these compounds (5a5r) did not affect PC12 and HepG2 cell viability at the concentration of 10 μM. Consequently, these flavonoid derivatives should be further investigated as multipotent agents for the treatment of Alzheimer’s disease.  相似文献   

20.
Cholinergic therapy based on cholinesterase (ChE) inhibitory drugs is the mainstay for the treatment of Alzheimer's disease. Therefore, an extensive research has been continuing for the discovery of drug candidates as inhibitors of acetyl‐ and butyrylcholinesterase. In this study, two natural molecules, e. g. hyperforin and hyuganin C were tested in vitro for their AChE and BChE inhibitory activity. Both of the compounds were ineffective against AChE, whereas hyperforin (IC50=141.60±3.39 μm ) and hyuganin C (IC50=38.86±1.69 μm ) were found to be the highly active inhibitors of BChE as compared to galantamine (IC50=46.58±0.91 μm ) which was used as the reference. Then, these molecules were further proceeded to molecular docking experiments in order to establish their interactions at the active site of BChE. The molecular docking results indicated that both of them are able to block the access to key residues in the catalytic triad of the enzyme, while they complement some of the hydrophobic residues of the cavity, what is consistent with our in vitro data. While both compounds were predicted as mutagenic, only hyuganin C showed hepatotoxicity in in silico analysis. According to whole outcomes that we obtained, particularly hyuganin C besides hyperforin are the promising BChE inhibitors, which can be the promising compounds for AD therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号