首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Denture stomatitis is often treated with antifungal agents but recurrences or new episodes are common, and certain episodes can be resistant. New triazoles, such as posaconazole and voriconazole, may represent useful alternatives for management. In vitro activities of amphotericin B, nystatin, miconazole, fluconazole, itraconazole, posaconazole and voriconazole against 150 oral Candida (101 C. albicans, 18 C. tropicalis, 12 C. glabrata, 11 C. guilliermondii, 4 C. parapsilosis, 2 Saccharomyces cerevisiae, 1 C. dubliniensis and 1 C. krusei) from 100 denture wearers were tested by the CLSI M27-A3 method. Resistant isolates were retested by Sensititre YeastOne and Etest. Most antifungal agents were very active. However, 4 C. glabrata (33.3%), 2 C. tropicalis (11.1%), 6 C. albicans (5.6%) and 1 C. krusei were resistant to itraconazole. Posaconazole was active against 143 yeast isolates (95.3%): 6 C. albicans (5.9%) and 1 C. tropicalis (5.6%) were resistant. Geometric mean MICs were 0.036 μg/ml for C. parapsilosis, 0.062 μg/ml for C. albicans, 0.085 μg/ml for C. tropicalis, 0.387 μg/ml for C. guilliermondii and 0.498 μg/ml for C. glabrata. Voriconazole was active against 148 isolates (98.7%) with geometric mean MICs ranging from 0.030 μg/ml for C. parapsilosis, 0.042 μg/ml for C. albicans, 0.048 μg/ml for C. tropicalis, 0.082 μg/ml for C. guilliermondii, to 0.137 μg/ml for C. glabrata. Only 2 C. albicans (2%) were resistant to voriconazole showing cross-resistance to other azoles. Posaconazole and voriconazole have excellent in vitro activities against all Candida isolates and could represent useful alternatives for recalcitrant or recurrent candidiasis.  相似文献   

2.
Candida albicans and C. tropicalis obtained from whole saliva of patients presenting signs of oral candidosis were assayed for quantification of colony forming units, exoenzyme activity (phospholipase and proteinase) and antifungal drug sensitivity (amphotericin B, fluconazole and itraconazole) by the reference method of the Clinical and Laboratory Standards Institute. The number of colony forming units per milliliter varied according to the Candida species involved and whether a single or mixed infection was present. Proteinase activity was observed in both Calbicans and Ctropicalis, but phospholipase activity was noted only in Calbicans. In vitro resistance to antifungals was verified in both species, but Ctropicalis appears to be more resistant to the tested antifungals than Calbicans.  相似文献   

3.
As the occurrence of Candida species infections increases, so does resistance against commonly-used antifungal agents. It is therefore necessary to look for new antifungal drugs. This study investigated the antifungal activity of recently isolated, synthesized and characterized antimicrobial α-helical amphipathic peptides (12–18 amino acids long) from the venom of hymenoptera (melectin, lasioglossins I, II, and III, halictines I and II) as well as a whole series of synthetic analogs. The minimal inhibitory concentrations (MICs) against different Candida species (C. albicans, C. krusei, C. glabrata, C. tropicalis and C. parapsilosis) of the natural peptides amounted to 4–20 μM (7–40 mg/l). The most active were the synthetic analog all-D-lasioglossin III and lasioglossin III analog KNWKK-Aib-LGK-Aib-IK-Aib-VK-NH2. As shown using a) colony forming unit determination on agar plates, b) the efflux of the dye from rhodamine 6B-loaded cells, c) propidium iodide and DAPI staining, and d) fluorescently labeled antimicrobial peptide (5(6)-carboxyfluorescein lasioglossin-III), the killing of fungi by the peptides studied occurs within minutes and might be accompanied by a disturbance of all membrane barriers. The peptides represent a promising lead for the development of new, effective antifungal drugs.  相似文献   

4.
The endophytic fungal community associated with the ethnomedicinal plant Echinacea purpurea was investigated as well as its potential for providing antifungal compounds against plant pathogenic fungi. A total of 233 endophytic fungal isolates were obtained and classified into 42 different taxa of 16 genera, of which Alternaria alternata, Colletotrichum dematium, and Stagonosporopsis sp. 2 are the most frequent colonizers. The extracts of 29 endophytic fungi displayed activities against important phytopathogenic fungi. Eight antifungal extracts were selected for chemical analysis. Forty fatty acids were identified by gas chromatography‐flame‐ionization detection (GC‐FID) analysis. The compounds (–)‐5‐methylmellein and (–)‐(3R)‐8‐hydroxy‐6‐methoxy‐3,5‐dimethyl‐3,4‐dihydroisocoumarin were isolated from Biscogniauxia mediterraneaEPU38CA crude extract. (–)‐5‐Methylmellein showed weak activity against Phomopsis obscurans, Pviticola, and Fusarium oxysporum, and caused growth stimulation of C. fragariae, C. acutatum, C. gloeosporioides, and Botrytis cinerea. (–)‐(3R)‐8‐Hydroxy‐6‐methoxy‐3,5‐dimethyl‐3,4‐dihydroisocoumarin appeared slightly more active in the microtiter environment than 5‐methylmellein. Our results indicate that E. purpurea lives symbiotically with different endophytic fungi, which are able to produce bioactive fatty acids and aromatic compounds active against important phytopathogenic fungi. The detection of the different fatty acids and aromatic compounds produced by the endophytic community associated with wild E. purpurea suggests that it may have intrinsic mutualistic resistance against phytopathogen attacks in its natural environment.  相似文献   

5.

Antimicrobial peptides (AMPs) are molecules present in several life forms, possess broad-spectrum of inhibitory activity against pathogenic microorganisms, and are a promising alternative to combat the multidrug resistant pathogens. The aim of this work was to identify and characterize AMPs from Capsicum chinense fruits and to evaluate their inhibitory activities against yeasts of the genus Candida and α-amylases. Initially, after protein extraction from fruits, the extract was submitted to anion exchange chromatography resulting two fractions. Fraction D1 was further fractionated by molecular exclusion chromatography, and three fractions were obtained. These fractions showed low molecular mass peptides, and in fraction F3, only two protein bands of approximately 6.5 kDa were observed. Through mass spectrometry, we identified that the lowest molecular mass protein band of fraction F3 showed similarity with AMPs from plant defensin family. We named this peptide CcDef3 (Capsicum chinense defensin 3). The antifungal activity of these fractions was analyzed against yeasts of the genus Candida. At 200 μg/mL, fraction F1 inhibited the growth of C. tropicalis by 26%, fraction F2 inhibited 35% of the growth of C. buinensis, and fraction F3 inhibited all tested yeasts, exhibiting greater inhibition activity on the growth of the yeast C. albicans (86%) followed by C. buinensis (69%) and C. tropicalis (21%). Fractions F1 and F2 promoted membrane permeabilization of all tested yeasts and increased the endogenous induction of reactive oxygen species (ROS) in C. buinensis and C. tropicalis, respectively. We also observed that fraction F3 at a concentration of 50 µg/mL inhibited the α-amylase activities of Tenebrio molitor larvae by 96% and human salivary by 100%. Thus, our results show that fraction F3, which contains CcDef3, is a very promising protein fraction because it has antifungal potential and is able to inhibit the activity of different α-amylase enzymes.

  相似文献   

6.
Antifungal susceptibility testing of Candida against fluconazole has been standardized by both the Clinical and Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Both CLSI and EUCAST have developed clinical breakpoint (CBP) criteria for fluconazole, but these differ in both magnitude and target species. Studies using the EUCAST method have also defined wild-type minimum inhibitory concentration (MIC) distributions and epidemiologic cutoff values (ECVs or ECOFFs) for the common species of Candida. The ECVs serve as a sensitive means of discriminating wild-type strains from those with acquired resistance mechanisms and include MICs of 1 μg/mL for C. albicans, 2 μg/mL for C. tropicalis and C. parapsilosis, 32 μg/mL for C. glabrata, and 128 μg/mL for C. krusei. Because the CLSI CBPs may be too insensitive to detect emerging resistance among strains of C. albicans, C. tropicalis, and C. parapsilosis, and bisect the WT MIC distribution of C. glabrata, we sought to establish the wild-type MIC distribution and ECVs for fluconazole and Candida spp. The establishment of the wild-type MIC distributions and ECVs for fluconazole using CLSI methods will be useful in resistance surveillance and may prove to be an important step in the development of species-specific CBPs for this important antifungal agent.  相似文献   

7.
Volatiles produced by mycelia of mushrooms with aromatic odour were investigated for their antifungal activity against plant‐pathogenic fungi. The results of the screening of 23 species of basidiomycetes revealed that volatile substances from mycelia of Mycoleptodonoides aitchisonii (TUFC10099), an edible mushroom, strongly inhibited the mycelial growth, spore germination and lesion formation on host leaves of some plant‐pathogenic fungi including Alternaria alternata, A. brassicicola, A. brassicae, Colletotrichum orbiculare and Corynespora cassiicola. The volatile compounds were isolated from the culture filtrate of M. aitchisonii, and 1‐phenyl‐3‐pentanone was identified as a major antifungal volatile. The compound had significantly inhibitory activity against plant‐pathogenic fungi at 35 ppm. This is the first report that the volatile compound produced by mycelia of M. aitchisonii has antifungal activity against plant‐pathogenic fungi.  相似文献   

8.
Abstract

This study aimed to evaluate the effect of diclofenac on minimum inhibitory concentrations of antifungals against planktonic cells and biofilms of Candida tropicalis. Susceptibility testing of planktonic cells was evaluated using the broth microdilution assay and checkerboard method. Biofilm formation by C. tropicalis in the presence of diclofenac, alone or in combination with antifungals, was also evaluated, and scanning electron microscope (SEM) and confocal microscope (CLSM) analyses were performed. Diclofenac showed an MIC of 1024?μg?ml?1 against planktonic cells. The MICs of fluconazole and voriconazole against azole-resistant isolates were reduced 8- to 32-fold and 16- to 256-fold, respectively, when in combination with diclofenac. When in combination with fluconazole or voriconazole, diclofenac reduced the antifungal concentration necessary to inhibit C. tropicalis biofilm formation. In conclusion, diclofenac presents synergism with fluconazole and voriconazole against resistant C. tropicalis strains and improves the activity of these azole drugs against biofilm formation.  相似文献   

9.
Histatin 5 (Hst‐5) is an antimicrobial peptide with strong antifungal activity against Candida albicans, an opportunistic pathogen that is a common cause of oral thrush. The peptide is natively secreted by human salivary glands and shows promise as an alternative therapeutic against infections caused by C. albicans. However, Hst‐5 can be cleaved and inactivated by a family of secreted aspartic proteases (Saps) produced by C. albicans. Single‐residue substitutions can significantly affect the proteolytic resistance of Hst‐5 to Saps and its antifungal activity; the K17R substitution increases resistance to proteolysis, while the K11R substitution enhances antifungal activity. In this work, we showed that the positive effects of these two single‐residue modifications can be combined in a single peptide, K11R–K17R, with improved proteolytic resistance and antifungal activity. We also investigated the effect of additional single‐residue substitutions, with a focus on the effect of addition or removal of negatively charged residues, and found Sap‐dependent effects on degradation. Both single‐ and double‐substitutions affected the kinetics of proteolytic degradation of the intact peptide and of the fragments formed during degradation. Our results demonstrate the importance of considering proteolytic stability and not just antimicrobial activity when designing peptides for potential therapeutic applications.  相似文献   

10.
Three linear peptides incorporating d ‐Phe‐2‐Abz as the turn motif are reported. Peptide 1 , a hydrophobic β‐hairpin, served as a proof of principle for the design strategy with both NMR and CD spectra strongly suggesting a β‐hairpin conformation. Peptides 2 and 3, designed as amphipathic antimicrobials, exhibited broad spectrum antimicrobial activity, with potency in the nanomolar range against Staphylococcus aureus. Both compounds possess a high degree of selectivity, proving non‐haemolytic at concentrations 500 to 800 times higher than their respective minimal inhibitory concentrations (MICs) against S. aureus. Peptide 2 induced cell membrane and cell wall disintegration in both S. aureus and Pseudomonas aeruginosa as observed by transmission electron microscopy. Peptide 2 also demonstrated moderate antifungal activity against Candida albicans with an MIC of 50 μM. Synergism was observed with sub‐MIC levels of amphotericin B (AmB), leading to nanomolar MICs against C. albicans for peptide 2 . Based on circular dichroism spectra, both peptides 2 and 3 appear to exist as a mixture of conformers with the β‐hairpin as a minor conformer in aqueous solution, and a slight increase in hairpin population in 50% trifluoroethanol, which was more pronounced for peptide 3 . NMR spectra of peptide 2 in a 1:1 CD3CN/H2O mixture and 30 mM deuterated sodium dodecyl sulfate showed evidence of an extended backbone conformation of the β‐strand residues. However, inter‐strand rotating frame Overhauser effects (ROE) could not be detected and a loosely defined divergent hairpin structure resulted from ROE structure calculation in CD3CN/H2O. The loosely defined hairpin conformation is most likely a result of the electrostatic repulsions between cationic strand residues which also probably contribute towards maintaining low haemolytic activity.  相似文献   

11.
Two series of carbazole analogs of 8‐methoxy‐N‐substituted‐9H‐carbazole‐3‐carboxamides (series 1) and carbazolyl substituted rhodanines (series 2) were synthesized through facile synthetic routes. All the final compounds from these two series were evaluated for their preliminary in vitro antifungal and antibacterial activity against four fungal (Candida albicans, Cryptococcus neoformans, Cryptococcus tropicalis and Aspergillus niger) and four bacterial (Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa) strains, respectively. Among the tested compounds, three compounds of series 1 displayed promising antifungal and antibacterial activity, especially against C. neoformans and S. aureus. In addition, one compound of series 1 displayed notable antimicrobial activity (MIC: 6.25 μg/mL) against clinical isolates of C. albicans and C. neoformans (MIC: 12.5 μg/mL). From the second series, four compounds exhibited significant antifungal and antibacterial activity, especially against C. neoformans and S. aureus. The most active compound of series 2 displayed a prominent antimicrobial activity against C. neoformans (MIC: 3.125 μg/mL) and S. aureus (MIC: 1.56 μg/mL), respectively.  相似文献   

12.
In continuation of our efforts to find new antimicrobial compounds, series of fatty N-acyldiamines were prepared from fatty methyl esters and 1,2-ethylenediamine, 1,3-propanediamine or 1,4-butanediamine. The synthesized compounds were screened for their antibacterial activity against Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis), Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) and for their antifungal activity against four species of Candida (C. albicans, C. tropicalis, C. glabrata and C. parapsilosis). Compounds 5a (N-(2-aminoethyl)dodecanamide), 5b (N-(2-aminoethyl)tetracanamide) and 6d (N-(3-aminopropyl)oleamide) were the most active against Gram-positive bacteria, with MIC values ranging from 1 to 16 μg/mL and were evaluated for their activity against 21 clinical isolates of methicillin-resistant S. aureus. All the compounds exhibited good to moderate antifungal activity. Compared to chloramphenicol, compound 6b displayed a similar activity (MIC50 = 16 μg/mL). A positive correlation could be established between lipophilicity and biological activity.  相似文献   

13.
With the aim to find new compounds with high antifungal activity, 21 4‐amino‐5‐substituted‐1,2,4‐triazole Schiff bases ( 2a  –  2g , 3a  –  3g , and 4a  –  4g ) were designed and synthesized. Their antifungal activities against Pythium solani, Gibberlla nicotiancola, Fusarium oxysporium f. sp. niveum, Gibberlla saubinetii, Alternaria iycopersici, Phytophthora capsici, Physalospora piricola, Cercospora arachidicola hori, and Fusarium oxysporium f. sp. cucumber were tested, parts of the compounds exhibited excellent antifungal activity. This research provides useful information for further study of antifungal agents.  相似文献   

14.
A new series of peptidomimetic N‐substituted Cbz‐4‐Hyp‐Hpa‐amides were designed, synthesized, and evaluated for inhibition of the Plasmodium falciparum. Substituents on the N‐atom of the amide group were selected alkyl‐, allyl‐, aryl‐, 2‐hydroxyethyl‐, 2‐cyanoethyl‐, cyanomethyl‐, 2‐hydroxyethyl‐, 2,2‐diethoxyethyl‐, or 2‐ethoxy‐2‐oxoethylamino groups, and about of 40 new compounds were synthesized and evaluated for antiplasmodial activity in vitro. Antimalarial activity has been investigated as for the final peptide mimetics, and their immediate predecessors, carrying TBDMS or TBDPS protecting groups on 4‐hydroxyproline residue and 18 derivatives exhibited toxicity against Pfalciparum. Of these agents, compound 23e was shown to have potent antimalarial activity with IC50 528 ng/ml.  相似文献   

15.
Candida tropicalis has been reported to be one of the Candida species which is most likely to cause bloodstream and urinary tract infections in hospitalized patients. Accordingly, the aim of this study was to characterize the virulence of C. tropicalis by assessing antifungal susceptibility and comparing the expression of several virulence factors. This study was conducted with seven isolates of C. tropicalis from urine and blood cultures and from central venous catheter. C. tropicalis ATCC 750 was used as reference strain. Yeasts adhered (2 h) to epithelial cells and silicone and 24 h biofilm biomass were determined by crystal violet staining. Pseudohyphae formation ability was determined after growth in fetal bovine serum. Enzymes production (hemolysins, proteases, phospholipases) was assessed by halo formation on agar plates. Susceptibility to antifungal agents was determined by E-test. Regarding adhesion, it can be highlighted that C. tropicalis strains adhered significantly more to epithelium than to silicone. Furthermore, all C. tropicalis strains were able to form biofilms and to express total hemolytic activity. However, protease was only produced by two isolates from urine and by the isolates from catheter and blood. Moreover, only one C. tropicalis (from catheter) was phospholipase positive. All isolates were susceptible to voriconazole, fluconazole and amphotericin B. Four strains were susceptible-dose dependent to itraconazole and one clinical isolate was found to be resistant.  相似文献   

16.
Vulvovaginal candidiasis/candidosis is a common fungal infection afflicting approximately 75% of women globally caused primarily by the yeast Candida albicans. Fluconazole is widely regarded as the antifungal drug of choice since its introduction in 1990 due to its high oral bioavailability, convenient dosing regimen and favourable safety profile. However, its widespread use has led to the emergence of fluconazole‐resistant C. albicans, posing a universal clinical concern. Coupled to the dearth of new antifungal drugs entering the market, it is imperative to introduce new drug classes to counter this threat. Antimicrobial peptides (AMPs) are potential candidates due to their membrane‐disrupting mechanism of action. By specifically targeting fungal membranes and being rapidly fungicidal, they can reduce the chances of resistance development and treatment duration. Towards this goal, we conducted a head‐to‐head comparison of 61 short linear AMPs from the literature to identify the peptide with the most potent activity against fluconazole‐resistant C. albicans. The 11‐residue peptide, P11‐6, was identified and assayed against a panel of clinical C. albicans isolates followed by fungicidal/static determination and a time‐kill assay to gauge its potential for further drug development. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
We explored the antifungal activity of thanatin, a 21 amino acid synthetic peptide from the hemipteran spined soldier bug Podisus maculiventris, against the mycotoxin‐producing plant pathogenic ascomycete Fusarium graminearum. In vitro germination assays showed complete inhibition of macroconidia germination and mycelia growth by >10 μm thanatin. Moreover, detached leaves of thanatin‐expressing Arabidopsis thaliana plants displayed enhanced resistance towards colonization with F. graminearum. Consistent with this, the plants showed also enhanced resistance of detached leaves to colonization with Botrytis cinerea. The results demonstrate a potential of thanatin for use in plant protection.  相似文献   

18.
Volatile compounds with antifungal activity produced by edible mushrooms have potential as biological control agents to combat fungal diseases and reduce fungicide use in agriculture. Here we investigated the antifungal activity of volatile compounds produced by the edible mushroom Hypsizygus marmoreus (TUFC 11906) against eight phytopathogenic fungi. The results showed that volatile compounds from the mycelia and culture filtrates (CFs) of H. marmoreus had antifungal activity against some phytopathogenic fungi. Among them, the mycelial growth and conidial germination of Alternaria brassicicola were significantly inhibited by 60 and 100%, respectively. Moreover, the volatile compounds from CFs inhibited the lesion formation of A. brassicicola on detached cabbage leaves by 94%. The volatile compounds had higher antifungal activity against A. brassicicola than other fungi. With the removal of the volatile compounds from conidia of A. brassicicola, the conidia began to germinate, which indicates fungistatic activity of the compounds. The volatile compounds were isolated from the CFs of H. marmoreus, and the major volatile compound with antifungal activity was estimated to be 2‐methylpropanoic acid 2,2‐dimethyl‐1‐(2‐hydroxy‐1‐methylethyl)propyl ester. As the volatile compound produced by H. marmoreus is a product of an edible mushroom and has fungistatic activity against some phytopathogenic fungi, especially A. brassicicola, it may be possible to use the compounds as a novel safe agent for protecting crops in the field and during storage.  相似文献   

19.
P7, a peptide analogue derived from cell‐penetrating peptide ppTG20, possesses antibacterial and antitumor activities without significant hemolytic activity. In this study, we investigated the antifungal effect of P7 and its anti‐Candida acting mode in Candida albicans. P7 displayed antifungal activity against the reference C. albicans (MIC = 4 μM), Aspergilla niger (MIC = 32 μM), Aspergillus flavus (MIC = 8 μM), and Trichopyton rubrum (MIC = 16 μM). The effect of P7 on the C. albicans cell membrane was examined by investigating the calcein leakage from fungal membrane models made of egg yolk l ‐phosphatidylcholine/ergosterol (10 : 1, w/w) liposomes. P7 showed potent leakage effects against fungal liposomes similar to Melittin‐treated cells. C. albicans protoplast regeneration assay demonstrated that P7 interacted with the C. albicans plasma membrane. Flow cytometry of the plasma membrane potential and integrity of C. albicans showed that P7 caused 60.9 ± 1.8% depolarization of the membrane potential of intact C. albicans cells and caused 58.1 ± 3.2% C. albicans cell membrane damage. Confocal laser scanning microscopy demonstrated that part of FITC‐P7 accumulated in the cytoplasm. DNA retardation analysis was also performed, which showed that P7 interacted with C. albicans genomic DNA after penetrating the cell membrane, completely inhibiting the migration of genomic DNA above the weight ratio (peptide : DNA) of 6. Our results indicated that the plasma membrane was the primary target, and DNA was the secondary intracellular target of the mode of action of P7 against C. albicans. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Plants are known to produce a plethora of secondary metabolites which are recognized as a useful source of new drugs or drug leads. Extracts and fractions of Schinus terebinthifolius Raddi (Anacardiaceae), Piper regnellii C.D.C. (Piperaceae), Rumex acetosa L. (Polygonaceae), and Punica granatum L. (Punicaceae) were assessed for their antifungal activity against eight clinical isolates of C. albicans. They were also evaluated for their effect on the adhesion of these C. albicans isolates to buccal epithelial cells (BECs). The ethyl acetate fraction from the leaves of S. terebinthifolius showed promising activity, inhibiting the growth of three C. albicans isolates at 7.8 μg ml−1 and significantly inhibiting their adhesion to BEC at 15 μg ml−1 . In addition, this fraction did not show cytotoxic activity against murine macrophages. The results show the potential of the plant extracts studied as a source of new antifungal compounds. Further studies are necessary for isolation and characterization of the active compounds of these plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号