首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Beta‐lactamase‐mediated bacterial drug resistance exacerbates the prognosis of infectious diseases, which are sometimes treated with co‐administration of beta‐lactam type antibiotics and beta‐lactamase inhibitors. Antimicrobial peptides are promising broad‐spectrum alternatives to conventional antibiotics in this era of evolving bacterial resistance. Peptides based on the Ala46–Tyr51 beta‐hairpin loop of beta‐lactamase inhibitory protein (BLIP) have been previously shown to inhibit beta‐lactamase. Here, our goal was to modify this peptide for improved beta‐lactamase inhibition and cellular uptake. Motivated by the cell‐penetrating pVEC sequence, which includes a hydrophobic stretch at its N‐terminus, our approach involved the addition of LLIIL residues to the inhibitory peptide N‐terminus to facilitate uptake. Activity measurements of the peptide based on the 45–53 loop of BLIP for enhanced inhibition verified that the peptide was a competitive beta‐lactamase inhibitor with a Ki value of 58 μM. Incubation of beta‐lactam‐resistant cells with peptide decreased the number of viable cells, while it had no effect on beta‐lactamase‐free cells, indicating that this peptide had antimicrobial activity via beta‐lactamase inhibition. To elucidate the molecular mechanism by which this peptide moves across the membrane, steered molecular dynamics simulations were carried out. We propose that addition of hydrophobic residues to the N‐terminus of the peptide affords a promising strategy in the design of novel antimicrobial peptides not only against beta‐lactamase but also for other intracellular targets. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Cell‐penetrating peptides (CPPs) are commonly defined by their shared ability to be internalized into eukaryotic cells, without inducing permanent membrane damage, and to improve cargo delivery. Many CPPs also possess antimicrobial action strong enough to selectively lyse microbes in infected mammalian cultures. pVEC, a CPP derived from cadherin, is able to translocate into mammalian cells, and it is also antimicrobial. Structure‐activity relationship and sequence alignment studies have suggested that the hydrophobic N‐terminus (LLIIL) of pVEC is essential for this peptide's uptake into eukaryotic cells. In this study, our aim was to examine the contribution of these residues to the antimicrobial action and the translocation mechanism of pVEC. We performed antimicrobial activity and microscopy experiments with pVEC and with del5 pVEC (N‐terminal truncated variant of pVEC) and showed that pVEC loses its antimicrobial effect upon deletion of the LLIIL residues, even though both peptides induce membrane permeability. We also calculated the free energy of the transport process using steered molecular dynamic simulations and replica exchange umbrella sampling simulations to compare the difference in uptake mechanism of the 2 peptides in atomistic detail. Despite the difference in experimentally observed antimicrobial activity, the simulations on the 2 peptides showed similar characteristics and the energetic cost of translocation of pVEC was higher than that of del5 pVEC, suggesting that pVEC uptake mechanism cannot be explained by simple passive transport. Our results suggest that LLIIL residues are key contributors to pVEC antibacterial activity because of irreversible membrane disruption.  相似文献   

3.
β‐lactam antibiotics are crucial to the management of bacterial infections in the medical community. Due to overuse and misuse, clinically significant bacteria are now resistant to many commercially available antibiotics. The most widespread resistance mechanism to β‐lactams is the expression of β‐lactamase enzymes. To overcome β‐lactamase mediated resistance, inhibitors were designed to inactivate these enzymes. However, current inhibitors (clavulanic acid, tazobactam, and sulbactam) for β‐lactamases also contain the characteristic β‐lactam ring, making them susceptible to resistance mechanisms employed by bacteria. This presents a critical need for novel, non‐β‐lactam inhibitors that can circumvent these resistance mechanisms. The carbapenem‐hydrolyzing class D β‐lactamases (CHDLs) are of particular concern, given that they efficiently hydrolyze potent carbapenem antibiotics. Unfortunately, these enzymes are not inhibited by clinically available β‐lactamase inhibitors, nor are they effectively inhibited by the newest, non‐β‐lactam inhibitor, avibactam. Boronic acids are known transition state analog inhibitors of class A and C β‐lactamases, and are not extensively characterized as inhibitors of class D β‐lactamases. Importantly, boronic acids provide a novel way to potentially inhibit class D β‐lactamases. Sixteen boronic acids were selected and tested for inhibition of the CHDL OXA‐24/40. Several compounds were identified as effective inhibitors of OXA‐24/40, with Ki values as low as 5 μM. The X‐ray crystal structures of OXA‐24/40 in complex with BA3, BA4, BA8, and BA16 were determined and revealed the importance of interactions with hydrophobic residues Tyr112 and Trp115. These boronic acids serve as progenitors in optimization efforts of a novel series of inhibitors for class D β‐lactamases.  相似文献   

4.
Cell‐penetrating peptides (CPPs) are peptides that cross cell membranes, either alone or while carrying molecular cargo. Although their interactions with mammalian cells have been widely studied, much less is known about their interactions with fungal cells, particularly at the biophysical level. We analyzed the interactions of seven CPPs (penetratin, Pep‐1, MPG, pVEC, TP‐10, MAP, and cecropin B) with the fungal pathogen Candida albicans using experiments and molecular simulations. Circular dichroism (CD) of the peptides revealed a structural transition from a random coil or weak helix to an α‐helix occurs for all peptides when the solvent is changed from aqueous to hydrophobic. However, CD performed in the presence of C. albicans cells showed that proximity to the cell membrane is not necessarily sufficient to induce this structural transition, as penetratin, Pep‐1, and MPG did not display a structural shift in the presence of cells. Monte Carlo simulations were performed to further probe the molecular‐level interaction with the cell membrane, and these simulations suggested that pVEC, TP‐10, MAP, and cecropin B strongly penetrate into the hydrophobic domain of the membrane lipid bilayer, inducing a transition to an α‐helical conformation. In contrast, penetratin, Pep‐1 and MPG remained in the hydrophilic region without a shift in conformation. The experimental data and MC simulations combine to explain how peptide structure affects their interaction with cells and their mechanism of translocation into cells (direct translocation vs. endocytosis). Our work also highlights the utility of combining biophysical experiments, biological experiments, and molecular modeling to understand biological phenomena.  相似文献   

5.
EeCentrocin 1 is a potent antimicrobial peptide isolated from the marine sea urchin Echinus esculentus. The peptide has a hetero‐dimeric structure with the antimicrobial activity confined in its largest monomer, the heavy chain (HC), encompassing 30 amino acid residues. The aim of the present study was to develop a shorter drug lead peptide using the heavy chain of EeCentrocin 1 as a starting scaffold and to perform a structure‐activity relationship study with sequence modifications to optimize antimicrobial activity. The experiments consisted of 1) truncation of the heavy chain, 2) replacement of amino acids unfavourable for in vitro antimicrobial activity, and 3) an alanine scan experiment on the truncated and modified heavy chain sequence to identify essential residues for antimicrobial activity. The heavy chain of EeCentrocin 1 was truncated to less than half its initial size, retaining most of its original antimicrobial activity. The truncated and optimized lead peptide ( P6 ) consisted of the 12 N‐terminal amino acid residues from the original EeCentrocin 1 HC sequence and was modified by two amino acid replacements and a C‐terminal amidation. Results from the alanine scan indicated that the generated lead peptide ( P6 ) contained the optimal sequence for antibacterial activity, in which none of the alanine scan peptides could surpass its antimicrobial activity. The lead peptide ( P6 ) was also superior in antifungal activity compared to the other peptides prepared and showed minimal inhibitory concentrations (MICs) in the low micromolar range. In addition, the lead peptide ( P6 ) displayed minor haemolytic and no cytotoxic activity, making it a promising lead for further antimicrobial drug development.  相似文献   

6.
Discovery of cargo carrying cell-penetrating peptides has opened a new gate in the development of peptide-based drugs that can effectively target intracellular enzymes. Success in application and development of cell-penetrating peptides in drug design depends on understanding their translocation mechanisms. In this study, our aim was to examine the bacterial translocation mechanism of the cell-penetrating pVEC peptide (LLIILRRRIRKQAHAHSK) using steered molecular dynamics (SMD) simulations. The significance of specific residues or regions for translocation was studied by performing SMD simulations on the alanine mutants and other variants of pVEC. Residue-based analysis showed that positively charged residues contribute to adsorption to the lipid bilayer and to electrostatic interactions with the lipid bilayer as peptides are translocated. Translocation takes place in three main stages; the insertion of the N-terminus into the bilayer, the inclusion of the whole peptide inside the membrane and the exit of the N-terminus from the bilayer. These three stages mirror the three regions on pVEC; namely, the hydrophobic N-terminus, the cationic midsection, and the hydrophilic C-terminus. The N-terminal truncated pVEC, I3A, L5A, R7A mutants and scramble-pVEC make weaker interactions with the lipids during translocation highlighting the contribution of the N-terminal residues and the sequence of the structural regions to the translocation mechanism. This study provides atomistic detail about the mechanism of pVEC peptide translocation and can guide future peptide-based drug design efforts.  相似文献   

7.
NagZ is an N‐acetyl‐β‐d ‐glucosaminidase that participates in the peptidoglycan (PG) recycling pathway of Gram‐negative bacteria by removing N‐acetyl‐glucosamine (GlcNAc) from PG fragments that have been excised from the cell wall during growth. The 1,6‐anhydromuramoyl‐peptide products generated by NagZ activate β‐lactam resistance in many Gram‐negative bacteria by inducing the expression of AmpC β‐lactamase. Blocking NagZ activity can thereby suppress β‐lactam antibiotic resistance in these bacteria. The NagZ active site is dynamic and it accommodates distortion of the glycan substrate during catalysis using a mobile catalytic loop that carries a histidine residue which serves as the active site general acid/base catalyst. Here, we show that flexibility of this catalytic loop also accommodates structural differences in small molecule inhibitors of NagZ, which could be exploited to improve inhibitor specificity. X‐ray structures of NagZ bound to the potent yet non‐selective N‐acetyl‐β‐glucosaminidase inhibitor PUGNAc (O‐(2‐acetamido‐2‐deoxy‐d ‐glucopyranosylidene) amino‐N‐phenylcarbamate), and two NagZ‐selective inhibitors – EtBuPUG, a PUGNAc derivative bearing a 2‐N‐ethylbutyryl group, and MM‐156, a 3‐N‐butyryl trihydroxyazepane, revealed that the phenylcarbamate moiety of PUGNAc and EtBuPUG completely displaces the catalytic loop from the NagZ active site to yield a catalytically incompetent form of the enzyme. In contrast, the catalytic loop was found positioned in the catalytically active conformation within the NagZ active site when bound to MM‐156, which lacks the phenylcarbamate extension. Displacement of the catalytic loop by PUGNAc and its N‐acyl derivative EtBuPUG alters the active site conformation of NagZ, which presents an additional strategy to improve the potency and specificity of NagZ inhibitors.  相似文献   

8.
Reversed‐phase high‐pressure liquid chromatography analysis and purification of three hydrophobic, aggregation‐prone peptides, composed mainly of the transmembrane (TM) sequence, were performed using elution systems containing 2,2,2‐trifluoroethanol (TFE). The addition of 10–16% TFE to a common mobile phase, such as a water/acetonitrile/propanol (PrOH) or a water/PrOH/formic acid system, markedly improved the chromatographic separation of these peptides. The superior performance of TFE‐containing systems in separating peptides over water/PrOH/formic acid systems [Bollhagen R. et al., J. Chromatogr. A, 1995; 711 : 181–186.] clearly demonstrated that adding TFE to the mobile phase is one of best methods for TM‐peptide purification. Characterization of the potential side reactions using MALDI and ESI‐LIT/Orbitrap mass spectrometry indicated that prolonged incubation of peptides in a mixture of TFE–formic acid possibly induces O‐formylation of the Ser residue and N‐formylation of the N‐terminus of peptides. The conditions for selective removal of the formyl groups from TM peptides were also screened. We believe that these results will expand our ability to analyze and prepare hydrophobic, aggregation‐prone TM peptides and proteins. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Antimicrobial peptides are valuable agents to fight antibiotic resistance. These amphipatic species display positively charged and hydrophobic amino acids. Here, we enhance the local hydrophobicity of a model peptide derived from human lysozyme (107RKWVWWRNR115) by arylation of its tryptophan (Trp) residues, which renders a positive effect on Staphylococcus aureus and Staphylococcus epidermidis growth inhibition. This site‐selective modification was accessed by solid‐phase peptide synthesis using the non‐proteinogenic amino acid 2‐aryltryptophan, generated by direct C‐H activation from protected Trp. The modification brought about a relevant increase in growth inhibition: S. aureus was fully inhibited by arylation of Trp 112 and by only 10% by arylation of Trp 109 or 111, respect to the non‐arylated peptide. On the other hand, S. epidermidis was fully inhibited by the three arylated peptides and the parent peptide. The minimum inhibitory concentration was significantly reduced for S. aureus depending on the arylation site. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Attachment of traditional anticancer drugs to cell penetrating peptides is an effective strategy to improve their application in cancer treatment. In this study, we designed and synthesized the conjugates TAT-CPT and TAT-2CPT by attaching camptothecin (CPT) to the N-terminus of the cell penetrating peptide TAT. Interestingly, we found that TAT-CPT and especially TAT-2CPT could kill cancer cells via membrane disruption, which is similar to antimicrobial peptides. This might be because that CPT could perform as a hydrophobic residue to increase the extent of membrane insertion of TAT and the stability of the pores. In addition, TAT-CPT and TAT-2CPT could also kill cancer cells by the released CPT after they entered cells. Taken together, attachment of CPT could turn cell penetrating peptide TAT into an antimicrobial peptide with a dual mechanism of anticancer action, which presents a new strategy to develop anticancer peptides based on cell penetrating peptides.  相似文献   

11.
Antibiotic‐resistant bacteria, such as methicillin‐resistant Staphylococcus aureus and vancomycin‐resistant Enterococcus, pose serious threat to human health. The outbreak of antibiotic‐resistant pathogens in recent years emphasizes once again the urgent need for the development of new antimicrobial agents. Here, we discovered a novel antimicrobial peptide from the scorpion Opistophthalmus glabrifrons, which was referred to as Opisin. Opisin consists of 19 amino acid residues without disulfide bridges. It is a cationic, amphipathic, and α‐helical molecule. Protein sequence homology search revealed that Opisin shares 42.1–5.3% sequence identities to the 17/18‐mer antimicrobial peptides from scorpions. Antimicrobial assay showed that Opisin is able to potently inhibit the growth of the tested Gram‐positive bacteria with the minimal inhibitory concentration (MIC) values of 4.0–10.0 μM; in contrast, it possesses much lower activity against the tested Gram‐negative bacteria and a fungus. It is interesting to see that Opisin is able to strongly inhibit the growth of methicillin‐ and vancomycin‐resistant pathogens with the MICs ranging from 2.0 to 4.0 μM and from 4.0 to 6.0 μM, respectively. We found that at a concentration of 5 × MIC, Opisin completely killed all the cultured methicillin‐resistant Staphylococcus aureus. These results suggest that Opisin is a promising therapeutic candidate for the treatment of the antibiotic‐resistant bacterial infections. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Although the N‐terminal region in human apolipoprotein (apo) A‐I is thought to stabilize the lipid‐free structure of the protein, its role in lipid binding is unknown. Using synthetic fragment peptides, we examined the lipid‐binding properties of the first 43 residues (1–43) of apoA‐I in comparison with residues 44–65 and 220–241, which have strong lipid affinity in the molecule. Circular dichroism measurements demonstrated that peptides corresponding to each segment have potential propensity to form α‐helical structure in trifluoroethanol. Spectroscopic and thermodynamic measurements revealed that apoA‐I (1–43) peptide has the strong ability to bind to lipid vesicles and to form α‐helical structure comparable to apoA‐I (220–241) peptide. Substitution of Tyr‐18 located at the center of the most hydrophobic region in residues 1–43 with a helix‐breaking proline resulted in the impaired lipid binding, indicating that the α‐helical structure in this region is required to trigger the lipid binding. In contrast, apoA‐I (44–65) peptide exhibited a lower propensity to form α‐helical structure upon binding to lipid, and apoA‐I (44–65/S55P) peptide exhibited diminished, but not completely impaired, lipid binding, suggesting that the central region of residues 44–65 is not pivotally involved in the formation of the α‐helical structure and lipid binding. These results indicate that the most N‐terminal region of apoA‐I molecule, residues 1–43, contributes to the lipid interaction of apoA‐I through the hydrophobic helical residues. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
The overuse of antibiotics has resulted in the emergence of antibiotic‐resistant bacteria, which presents an urgent need for new antimicrobial agents. At present, antimicrobial peptides have attracted a great deal of attention from researchers. However, antimicrobial peptides often affect a broad range of microorganisms, including the normal flora in a host organism. In the present study, we designed a novel hybrid antimicrobial peptide, expressed the hybrid peptide, and studied its specific target. The hybrid peptide, named T‐catesbeianin‐1, which includes the FyuA‐binding domain of pesticin and the peptide catesbeianin‐1, was designed and expressed in Pichia pastoris X‐33. Then, we determined the antimicrobial activity, cytotoxicity, and specific target of the peptide. T‐catesbeianin‐1 has strong antimicrobial activity and binds to FyuA to inhibit or kill Escherichia coli present in clinical specimens and mixed‐species culture. In summary, these findings suggested that T‐catesbeianin‐1 might be promising and specific antibiotic agent for therapeutic application against fyuA+ E. coli.  相似文献   

14.
The discovery of cell‐penetrating peptides (CPPs) has facilitated delivery of peptides into cells to affect cellular behavior. Previously, we were successful at developing a phosphopeptide mimetic of the small heat shock‐like protein HSP20 . Building on this success we developed a cell‐permeant peptide inhibitor of mitogen‐activated protein kinase‐activated protein kinase 2 (MK2). It is well documented that inhibition of MK2 may be beneficial for a myriad of human diseases including those involving inflammation and fibrosis. During the optimization of the activity and specificity of the MK2 inhibitor (MK2i) we closely examined the effect of cell‐penetrating peptide identity. Surprisingly, the identity of the CPP dictated kinase specificity and functional activity to an extent that rivaled that of the therapeutic peptide. The results reported herein have wide implications for delivering therapeutics with CPPs and indicate that judicious choice of CPP is crucial to the ultimate therapeutic success. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

15.
Human β‐defensins (HBDs) are cationic antimicrobial peptides constrained by three disulfide bridges. They have diverse range of functions in the innate immune response. It is of interest to investigate whether linear analogs of defensins can be generated, which possess antimicrobial activity. In this study, we have designed linear peptides with potent antimicrobial activity from an inactive peptide spanning the N‐terminus of HBD4. Our results show that l ‐arginine to d ‐arginine substitution imparts considerable antimicrobial activity against both bacteria and Candida albicans. Increase in hydrophobicity by fatty acylation of the peptides with myristic acid further enhances their potency. In the presence of high concentrations of salt, antimicrobial activity of the myristoylated peptide with l ‐arginine is attenuated relatively to a lesser extent as compared with the linear active peptide with d ‐arginine. Substitution of cysteine with the hydrophobic helix‐promoting amino acid α‐aminoisobutyric acid favors candidacidal activity but not antibacterial activity. The mechanism of killing by d ‐arginine substituted unacylated analog involves transient interaction with the bacterial membrane followed by translocation into the cytoplasm without membrane permeabilization. Accumulation of peptides in the cytoplasm can affect various cellular processes that lead to cell death. However, the peptide causes membrane permeabilization in case of C. albicans. Myristoylation results in greater interaction of the peptide chain with the microbial cell surface and causes membrane permeabilization. Results described in the study demonstrate that it is possible to generate highly active linear analogs of defensins by selective introduction of d ‐amino acids and fatty acids, which could be attractive candidates for development as therapeutic agents. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
The molecular basis of resistance to β‐lactams and β‐lactam‐β‐lactamase inhibitor combinations in the KPC family of class A enzymes is of extreme importance to the future design of effective β‐lactam therapy. Recent crystal structures of KPC‐2 and other class A β‐lactamases suggest that Ambler position Trp105 may be of importance in binding β‐lactam compounds. Based on this notion, we explored the role of residue Trp105 in KPC‐2 by conducting site‐saturation mutagenesis at this position. Escherichia coli DH10B cells expressing the Trp105Phe, ‐Tyr, ‐Asn, and ‐His KPC‐2 variants possessed minimal inhibitory concentrations (MICs) similar to E. coli cells expressing wild type (WT) KPC‐2. Interestingly, most of the variants showed increased MICs to ampicillin‐clavulanic acid but not to ampicillin‐sulbactam or piperacillin‐tazobactam. To explain the biochemical basis of this behavior, four variants (Trp105Phe, ‐Asn, ‐Leu, and ‐Val) were studied in detail. Consistent with the MIC data, the Trp105Phe β‐lactamase displayed improved catalytic efficiencies, kcat/Km, toward piperacillin, cephalothin, and nitrocefin, but slightly decreased kcat/Km toward cefotaxime and imipenem when compared to WT β‐lactamase. The Trp105Asn variant exhibited increased Kms for all substrates. In contrast, the Trp105Leu and ‐Val substituted enzymes demonstrated notably decreased catalytic efficiencies (kcat/Km) for all substrates. With respect to clavulanic acid, the Kis and partition ratios were increased for the Trp105Phe, ‐Asn, and ‐Val variants. We conclude that interactions between Trp105 of KPC‐2 and the β‐lactam are essential for hydrolysis of substrates. Taken together, kinetic and molecular modeling studies define the role of Trp105 in β‐lactam and β‐lactamase inhibitor discrimination.  相似文献   

17.
Botulinum neurotoxins (BoNT) are the most potent of all toxins that cause flaccid muscle paralysis leading to death. They are also potential biothreat agents. A systematic investigation of various short peptide inhibitors of the BoNT protease domain with a 17-residue peptide substrate led to arginine-arginine-glycine-cysteine having a basic tetrapeptide structure as the most potent inhibitor. When assayed in the presence of dithiothreitol (DTT), the inhibitory effect was drastically reduced. Replacing the terminal cysteine with one hydrophobic residue eliminated the DTT effect but with two hydrophobic residues made the pentapeptide a poor inhibitor. Replacing the first arginine with cysteine or adding an additional cysteine at the N terminus did not improve inhibition. When assessed using mouse brain lysates, the tetrapeptides also inhibited BoNT/A cleavage of the endogenous SNAP-25. The peptides penetrated the neuronal cell lines, N2A and BE(2)-M17, without adversely affecting metabolic functions as measured by ATP production and P-38 phosphorylation. Biological activity of the peptides persisted within cultured chick motor neurons and rat and mouse cerebellar neurons for more than 40 h and inhibited BoNT/A protease action inside the neurons in a dose- and time-dependent fashion. Our results define a tetrapeptide as the smallest peptide inhibitor in the backdrop of a large substrate protein of 200+ amino acids having multiple interaction regions with its cognate enzyme. The inhibitors should also be valuable candidates for drug development.  相似文献   

18.
Antimicrobial peptides contribute to innate host defense against a number of bacteria and fungal pathogens. Some of antimicrobial synthetic peptides were systemically administered in vivo; however, effective protection has so far not been obtained because the effective dose of peptides in vivo seems to be very high, often close to the toxic level against the host. Alternatively, peptides administered in vivo may be degraded by certain proteases present in serum. In this study, D-amino acids were substituted for the L-amino acids of antimicrobial peptides to circumvent these problems. Initially a peptide (L-peptide) rich in five arginine residues and consisting of an 11-amino acid peptide (residues 32-42) of human granulysin was synthesized. Subsequently, the L-amino acids of the 11-amino acid peptide were replaced partially (D-peptide) or wholly (AD-peptide) with D-amino acids. Activity and stability to proteolysis, in particular, in the serum of antimicrobial peptides with D-amino acid substitutions were examined. Peptides with D-amino acid substitutions were found to lyse bacteria as efficiently as their all-L-amino acid parent, L-peptide. In addition, the peptide composed of L-amino acids was susceptible to trypsin, whereas peptides containing D-amino acid substitutions were highly stable to trypsin treatment. Similarly, the peptide consisting of L-amino acids alone was also susceptible to fetal calf serum (FCS), however, protease inhibitors restored the lowered antimicrobial activity of the FCS-incubated peptide. Thus, D-amino acid substitutions can make antimicrobial peptides resistant to proteolysis, suggesting that the antimicrobial peptides consisting of D-amino acids are potential candidates for clinical therapeutic use.  相似文献   

19.
With the accumulation of a large number and variety of molecules in the Protein Data Bank (PDB) comes the need on occasion to review and improve their representation. The Worldwide PDB (wwPDB) partners have periodically updated various aspects of structural data representation to improve the integrity and consistency of the archive. The remediation effort described here was focused on improving the representation of peptide‐like inhibitor and antibiotic molecules so that they can be easily identified and analyzed. Peptide‐like inhibitors or antibiotics were identified in over 1000 PDB entries, systematically reviewed and represented either as peptides with polymer sequence or as single components. For the majority of the single‐component molecules, their peptide‐like composition was captured in a new representation, called the subcomponent sequence. A novel concept called “group” was developed for representing complex peptide‐like antibiotics and inhibitors that are composed of multiple polymer and nonpolymer components. In addition, a reference dictionary was developed with detailed information about these peptide‐like molecules to aid in their annotation, identification and analysis. Based on the experience gained in this remediation, guidelines, procedures, and tools were developed to annotate new depositions containing peptide‐like inhibitors and antibiotics accurately and consistently. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 659–668, 2014.  相似文献   

20.
The relationship between the conformation and biological activity of the peptide allosteric modulator of the interleukin‐1 receptor 101.10 (D ‐Arg‐D ‐Tyr‐D ‐Thr‐D ‐Val‐D ‐Glu‐D ‐Leu‐D ‐Ala‐NH2) has been studied using (R)‐ and (S)‐Bgl residues. Twelve Bgl peptides were synthesized using (R)‐ and (S)‐cyclic sulfamidate reagents derived from L ‐ and D ‐aspartic acid in an optimized Fmoc‐compatible protocol for efficient lactam installment onto the supported peptide resin. Examination of these (R)‐ and (S)‐Bgl 101.10 analogs for their potential to inhibit IL‐1β‐induced thymocyte cell proliferation using a novel fluorescence assay revealed that certain analogs exhibited retained and improved potency relative to the parent peptide 101.10. In light of previous reports that Bgl residues may stabilize type II′β‐turn‐like conformations in peptides, CD spectroscopy was performed on selected compounds to identify secondary structure necessary for peptide biological activity. Results indicate that the presence of a fold about the central residues of the parent peptide may be important for activity. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号