首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Qi D  Chao Y  Guo S  Zhao L  Li T  Wei F  Zhao X 《PloS one》2012,7(3):e34070
Schizothoracine fishes distributed in the water system of the Qinghai-Tibetan plateau (QTP) and adjacent areas are characterized by being highly adaptive to the cold and hypoxic environment of the plateau, as well as by a high degree of diversity in trophic morphology due to resource polymorphisms. Although convergent and parallel evolution are prevalent in the organisms of the QTP, it remains unknown whether similar evolutionary patterns have occurred in the schizothoracine fishes. Here, we constructed for the first time a tentative molecular phylogeny of the schizothoracine fishes based on the complete sequences of the cytochrome b gene. We employed this molecular phylogenetic framework to examine the evolution of trophic morphologies. We used Pagel's maximum likelihood method to estimate the evolutionary associations of trophic morphologies and food resource use. Our results showed that the molecular and published morphological phylogenies of Schizothoracinae are partially incongruent with respect to some intergeneric relationships. The phylogenetic results revealed that four character states of five trophic morphologies and of food resource use evolved at least twice during the diversification of the subfamily. State transitions are the result of evolutionary patterns including either convergence or parallelism or both. Furthermore, our analyses indicate that some characters of trophic morphologies in the Schizothoracinae have undergone correlated evolution, which are somewhat correlated with different food resource uses. Collectively, our results reveal new examples of convergent and parallel evolution in the organisms of the QTP. The adaptation to different trophic niches through the modification of trophic morphologies and feeding behaviour as found in the schizothoracine fishes may account for the formation and maintenance of the high degree of diversity and radiations in fish communities endemic to QTP.  相似文献   

2.
Background and AimsUnderstanding the population genetics and evolutionary history of endangered species is urgently needed in an era of accelerated biodiversity loss. This knowledge is most important for regions with high endemism that are ecologically vulnerable, such as the Qinghai–Tibet Plateau (QTP).MethodsThe genetic variation of 84 juniper trees from six populations of Juniperus microsperma and one population of Juniperus erectopatens, two narrow-endemic junipers from the QTP that are sister to each other, was surveyed using RNA-sequencing data. Coalescent-based analyses were used to test speciation, migration and demographic scenarios. Furthermore, positively selected and climate-associated genes were identified, and the genetic load was assessed for both species.Key ResultsAnalyses of 149 052 single nucleotide polymorphisms showed that the two species are well differentiated and monophyletic. They diverged around the late Pliocene, but interspecific gene flow continued until the Last Glacial Maximum. Demographic reconstruction by Stairway Plot detected two severe bottlenecks for J. microsperma but only one for J. erectopatens. The identified positively selected genes and climate-associated genes revealed habitat adaptation of the two species. Furthermore, although J. microsperma had a much wider geographical distribution than J. erectopatens, the former possesses lower genetic diversity and a higher genetic load than the latter.ConclusionsThis study sheds light on the evolution of two endemic juniper species from the QTP and their responses to Quaternary climate fluctuations. Our findings emphasize the importance of speciation and demographic history reconstructions in understanding the current distribution pattern and genetic diversity of threatened species in mountainous regions.  相似文献   

3.
4.
Wild castor grows in the high-altitude tropical desert of the African Plateau,a region known for high ultraviolet radiation,strong light,and extremely dry condition.To investigate the potential genetic basis of adaptation to both highland and tropical deserts,we generated a chromosome-level genome sequence assembly of the wild castor accession WT05,with a genome size of 316 Mb,a scaffold N50 of 31.93 Mb,and a contig N50 of 8.96 Mb,respectively.Compared with cultivated castor and other Euphorbiac...  相似文献   

5.
《Genomics》2022,114(3):110359
Tibetan Mastiff has adapted to the extreme environment of the Qinghai-Tibetan Plateau. Yet, the underlying mechanisms of its high-altitude-adaptation and origin remains elusive. Here, we generated the draft genomes of Mongolia Mastiff, Tibetan Mastiff, and Canis Lupus. The phylogenetic tree uncovered that Tibetan Mastiff and Mongolia Mastiff were derived from Canis Lupus species. The comparative genomic analyses identified that the expansion of gene families related to DNA repair and damage response, and contraction related to ATPase activity revealed the genetic adaptations of Tibetan Mastiff and Canis Lupus to high altitude. In addition, the Tibetan Mastiff and Canis Lupus had signals of positive selection for genes involved in fatty-acid α/β- oxidation for highland adaptation. Notably, the positively selected TERT of Tibetan Mastiff should be an adaptive trait for correcting DNA damage. These findings suggested that the Tibetan Mastiff and Canis Lupus evolves basic strategies for adaptation to high altitude.  相似文献   

6.
Species evolution depends on numerous and distinct forces, including demography and natural selection. For example, local adaptation and population structure affect the evolutionary history of species living along environmental clines. This is particularly relevant in plants, which are often characterized by limited dispersal ability and the need to respond to abiotic and biotic stress factors specific to the local environment. Here we study the demographic history and the possible existence of local adaptation in two related species of Brassicaceae, Cardamine impatiens and Cardamine resedifolia, which occupy separate habitats along the elevation gradient. Previous genome-wide analyses revealed the occurrence of distinct selective pressures in the two species, with genes involved in cold response evolving particularly fast in C. resedifolia. In this study we surveyed patterns of molecular evolution and genetic variability in a set of 19 genes, including neutral and candidate genes involved in cold response, across 10 populations each of C. resedifolia and C. impatiens from the Italian Alps (Trentino). We inferred the population structure and demographic history of the two species, and tested the occurrence of signatures of local adaptation in these genes. The results indicate that, despite a slightly higher population differentiation in C. resedifolia than in C. impatiens, both species are only weakly structured and that populations sampled at high altitude experience less gene flow than low-altitude ones. None of the genes showed signatures of positive selection, suggesting that they do not seem to play relevant roles in the current evolutionary processes of adaptation to alpine environments of these species.  相似文献   

7.
Understanding the genetic mechanism of highland adaptation is of great importance for breeding improvement of Tibetan chickens (TBC). Some studies of TBC have identified some candidate genes and pathways from multiple subgroups, but the related genetic mechanisms remain largely unknown. Different genetic backgrounds and the independent genetic basis of highland adaptation make it difficult to identity the selective region of highland adaptation with all TBC samples. In this study, we conducted pre-analysis in a large-scale population to select a TBC subgroup with the purest and highest level of highland-specific lineage for the further analysis. Finally, the 37 samples from a TBC subgroup and 19 Lahsa White chickens were used to represent the highland group for further analysis with 80 samples from five Chinese local lowland breeds as controls. Population structure analysis revealed that highland adaptation significantly affected population stratification in Chinese local chicken breeds. Genome-wide selection signal analysis identified 201 candidate genes associated with highland adaptation of TBC, and these genes were significantly enriched in calcium signaling, vascular smooth muscle contraction and the cellular response to oxidative stress pathways. Additionally, we identified a narrow 1.76 kb region containing an overlapping region between HBZ and an active enhancer, and our identified region showed a highly significant signal. The highland group selected the haplotype with high activity to improve the oxygen-carrying capacity, thus being adapted to a hypoxic environment. We also found that STX2 was significantly selected in the highland group, thus potentially reducing the oxidative stress caused by hypoxia, and that STX2 exhibited the opposite effects on highland adaptation and reproductive traits. Our findings advance our understanding of extreme environment adaptation of highland chickens, and provide some variants and genes beneficial to TBC genetic breeding improvement.  相似文献   

8.
9.
Gymnocypris przewalskii, a cyprinid fish endemic to the Qinghai-Tibetan Plateau, has evolved unique morphological, physiological and genetic characteristics to adapt to the highland environment. Herein, we assembled a high-quality G. przewalskii tetraploid genome with a size of 2.03 Gb and scaffold N50 of 44.93 Mb, which was anchored onto 46 chromosomes. The comparative analysis suggested that gene families related to highland adaptation were significantly expanded in G. przewalskii. According to the G. przewalskii genome, we evaluated the phylogenetic relationship of 13 schizothoracine fishes, and inferred that the demographic history of G. przewalskii was strongly associated with geographic and eco-environmental alterations. We noticed that G. przewalskii experienced whole-genome duplication, and genes preserved post duplication were functionally associated with adaptation to high salinity and alkalinity. In conclusion, a chromosome-scale G. przewalskii genome provides an important genomic resource for teleost fish, and will particularly promote our understanding of the molecular evolution and speciation of fish in the highland environment.  相似文献   

10.
Summary Unexpectedly large differences in the tissue patterns of lactate dehydrogenase-C (Ldh-C) gene regulation were observed among species of fish within the family Umbridae (Salmoniformes). Normally, all the species within a family or order of advanced fishes exhibit the same, tissue-restricted pattern ofl-latate dehydrogenase C4 isozyme synthesis—either eye- or liver-restricted expression, but not both. However, within the Umbridae the more anciently derived species had a more generalized (primitive) tissue expression, whereas the more recently derived species had a more tissue-restricted expression, predominating in the eye. Given the relative divergence times among the species estimated by genetic distance (using 51 protein-coding loci), divergence from the presumed primitive expression of the Ldh-C gene appears to have been proceeding more rapidly in some species lineages than others. This narrowing of Ldh-C gene tissue regulatory specificity within the family Umbridae is similar to the general trend observed over much greater evolutionary times within the class of bony fishes. The results support the hypothesis of repeated evolutionary canalizations of Ldh-C gene regulation from the generalized tissue expression in more primitive species to a predictable tissue-restricted expression (in either eye or liver) in advanced species. Furthermore, in the Umbridae, this progressive restriction of tissue expression of isozymes has taken place during the evolution of both the Ldh-C and Ldh-B genes. These evolutionary trends in the regulation of isozyme-locus tissue expression in the bony fishes are consistent with either an intrinsically conditioned trend of change in gene regulation or with a response to natural selection.  相似文献   

11.
12.
13.
14.
Adaptive divergence at the microgeographic scale has been generally disregarded because high gene flow is expected to disrupt local adaptation. Yet, growing number of studies reporting adaptive divergence at a small spatial scale highlight the importance of this process in evolutionary biology. To investigate the genetic basis of microgeographic local adaptation, we conducted a genome-wide scan among sets of continuously distributed populations of Arabidopsis halleri subsp. gemmifera that show altitudinal phenotypic divergence despite gene flow. Genomic comparisons were independently conducted in two distinct mountains where similar highland ecotypes are observed, presumably as a result of convergent evolution. Here, we established a de novo reference genome and employed an individual-based resequencing for a total of 56 individuals. Among 527,225 reliable SNP loci, we focused on those showing a unidirectional allele frequency shift across altitudes. Statistical tests on the screened genes showed that our microgeographic population genomic approach successfully retrieve genes with functional annotations that are in line with the known phenotypic and environmental differences between altitudes. Furthermore, comparison between the two distinct mountains enabled us to screen out those genes that are neutral or adaptive only in either mountain, and identify the genes involved in the convergent evolution. Our study demonstrates that the genomic comparison among a set of genetically connected populations, instead of the commonly-performed comparison between two isolated populations, can also offer an effective screening for the genetic basis of local adaptation.  相似文献   

15.
It is suggested that gene duplication plays an important role in adaptation and evolution of plants. In this study, we examined whether the genus Rheum, with extensive diversification in the Qinghai-Tibeten Plateau (QTP) and adjacent regions, possessed the duplication of the chalcone synthase (CHS) genes and whether it underwent positive evolution. Here we cloned CHS-like genes from 16 Rheum species. Phylogenetic analyses suggested that CHS-like genes from Rheum comprised two monophyletic lineages (subfamilies), both of which were sisters to another related genus. The results showed that a genus-specific duplication occurred after this genus originated. The comparison of non-synonymous/synonymous substitution ratios between the two lineages in Rheum further indicated that a few sites along the duplicate branch underwent positive selection. The findings indicate that the duplication of Rheum species could contribute to their adaptive ability to rapidly changing environments which was resulted from the large-scale uplifts stages of QTP.  相似文献   

16.
The Mississippi Embayment is a prominent physiographic feature of eastern North America consisting of primarily lowland aquatic habitats and a fish fauna that is largely distinct from nearby highland regions. Numerous studies have demonstrated that both pre-Pleistocene and Pleistocene events have had a strong influence on the distributions and relationships of highland fishes in eastern North America. However, the extent to which these same events affected Embayment distributed taxa remains largely unexplored. The purpose of this study was to investigate the relative roles of pre-Pleistocene and Pleistocene events in shaping phylogeographic relationships of four stream dwelling fishes in the Mississippi Embayment. Molecular genetic analyses of the mitochondrial gene cytochrome b were performed for three ictalurid catfish species (Noturus miurus, n = 67; Noturus hildebrandi, n = 93, and Noturus phaeus, n = 44) and one minnow species (Cyprinella camura, n = 78), all distributed in tributary streams of the Mississippi Embayment. Phylogenetic relationships and divergence times among haplotypes for each species were estimated using maximum likelihood and Bayesian methods. Phylogenetic analyses recovered 6 major haplotype clades within N. miurus, 5 within N. hildbrandi, 8 within N. phaeus, and 8 within C. camura. All three Noturus species show a high degree of isolation by drainage, which is less evident in C. camura. A clade of haplotypes from tributaries in the southern portion of the Mississippi Embayment was consistently recovered in all four species. Divergence times among clades spanned the Pleistocene, Pliocene, and Miocene. Novel relationships presented here for C. camura and N. phaeus suggest the potential for cryptic species. Pre-Pleistocene and Pleistocene era sea level fluctuations coincide with some divergence events, but no single event explains any common divergence across all taxa. Like their highland relatives, a combination of both pre-Pleistocene and Pleistocene era events have driven divergences among Embayment lineages.  相似文献   

17.
The genus Oryzias contains nearly 20 species, including the Japanese medaka (Oryzias latipes). Because each species exhibits different adaptability to environmental salinity, Oryzias fishes offer unique opportunities for comparative studies. To understand the mechanisms of osmotic adaptation, we are studying the functional evolution of the natriuretic peptide (NP) family??a group of small peptide hormones involved in body fluid regulation??by using Oryzias fishes. Analysis of the Japanese medaka genome revealed that 7 NP subtypes, namely, Atrial NP (ANP), B-type NP (BNP), Ventricular NP (VNP), and 4?C-type NPs (CNP-1 through CNP-4) were generated from a CNP-4-like ancestral gene discovered in the cyclostomes before the ray-finned fish/lobe-finned fish divergence. This evolutionary history has been confirmed by the discovery of hidden NP genes in tetrapods. Through analyses of phylogenetic distribution of NP subtypes, we also found that specific losses of subtypes have occurred in each vertebrate lineage. For example, ANP is absent in the Japanese and Indian medaka and the flying fish, suggesting that loss of the ANP gene occurred after the divergence of Beloniformes from Cyprinodontiformes. This fact also supports the inclusion of Oryzias into Beloniformes as suggested by phylogenetic analysis using whole mitochondrial genome sequences. How Oryzias fishes have retained their euryhalinity with a reduced number of NPs is an interesting question. CNP-3, which is functionally flexible, may be a substitute for the lost cardiac NPs.  相似文献   

18.
19.
20.

Background

The Qinghai-Tibetan Plateau (QTP) is one of the most extensive habitats for alpine plants in the world. Climatic oscillations during the Quaternary ice age had a dramatic effect on species ranges on the QTP and the adjacent areas. However, how the distribution ranges of aquatic plant species shifted on the QTP in response to Quaternary climatic changes remains almost unknown.

Methodology and Principal Findings

We studied the phylogeography and demographic history of the widespread aquatic herb Hippuris vulgaris from the QTP and adjacent areas. Our sampling included 385 individuals from 47 natural populations of H. vulgaris. Using sequences from four chloroplast DNA (cpDNA) non-coding regions, we distinguished eight different cpDNA haplotypes. From the cpDNA variation in H. vulgaris, we found a very high level of population differentiation (G ST = 0.819) but the phylogeographical structure remained obscure (N ST = 0.853>G ST = 0.819, P>0.05). Phylogenetic analyses revealed two main cpDNA haplotype lineages. The split between these two haplotype groups can be dated back to the mid-to-late Pleistocene (ca. 0.480 Myr). Mismatch distribution analyses showed that each of these had experienced a recent range expansion. These two expansions (ca. 0.12 and 0.17 Myr) might have begun from the different refugees before the Last Glacial Maximum (LGM).

Conclusions/Significance

This study initiates a research on the phylogeography of aquatic herbs in the QTP and for the first time sheds light on the response of an alpine aquatic seed plant species in the QTP to Quaternary climate oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号