首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
While the concept of the Neurovascular Unit (NVU) is increasingly considered for exploring mechanisms of tissue damage in ischemic stroke, immunohistochemical analyses are of interest to specifically visualize constituents like the endothelium. Changes in immunoreactivity have also been discussed to reflect functional aspects, e.g., the integrity of the blood-brain barrier (BBB). This study aimed to characterize the endothelial barrier antigen (EBA) as addressed by the antibody SMI-71 in a rat model of embolic stroke, considering FITC-albumin as BBB leakage marker and serum levels of BBB-associated matrix metalloproteinases (MMPs) to explore its functional significance. Five and 25 h after ischemia onset, regions with decreased BBB integrity exhibited a reduction in number and area of EBA-immunopositive vessels, while the stained area per vessel was not affected. Surprisingly, EBA content of remaining vessels tended to be increased in areas of BBB dysfunction. Analyses addressing this interrelation resulted in a significant and inverse correlation between the vessels’ EBA content and degree of BBB permeability. In conclusion, these data provide evidence for a functional relationship between EBA-immunoreactivity and BBB dysfunction in experimental ischemic stroke. Further studies are required to explore the underlying mechanisms of altered EBA-immunoreactivity, which might help to identify novel neuroprotective strategies.Key words: ischemic stroke, embolic model, EBA, blood-brain barrier, matrix metalloproteinase  相似文献   

3.
Abstract: Senescent squirrel monkey is a valuable model to study pathogenesis of cerebrovascular amyloid angiopathy (CAA). Cerebrovascular sequestration and blood-brain barrier (BBB) permeability to 125I-amyloid β(1-40) synthetic peptide (sAβ1-40) were studied in adult versus aged squirrel monkey 1 h after a single intravenous injection. In aged monkey, the half-time of elimination of sAβ1-40, t e1/2, was prolonged by 0.6 h, the systemic clearance, Cl SS, was reduced from 1.8 to 1.1 ml/min/kg, and the mean residence time of intact peptide in the circulation was increased by 1 h (45%). In adult monkey, cerebrovascular sequestration of intact sAβ1-40 was significant, and the BBB permeability was 18.6-fold higher than for inulin. In aged monkey, the sequestration of intact sAβ1-40 by cortical and leptomeningeal microvessels and the BBB permeability were increased by 5.9, 1.8-, and 2.1-fold, respectively, in the presence of an unchanged barrier to inulin. In brain parenchyma of aged animals, 76.1% of circulating sAβ1-40 remained intact versus 45.7% in adult. We conclude that multiple age-related systemic effects, i.e., reduced body elimination and systemic clearance of sAβ1-40, and reduced peripheral metabolism, may act in concert with BBB mechanisms, i.e., increased transendothelial transport and microvascular accumulation of blood-borne sAβ1-40, and reduced brain metabolism to enhance the development of CAA.  相似文献   

4.
Nutritional iron deficiency induced in rats causes a significant reduction in level of brain nonheme iron and is accompanied by selective reduction of dopamine D2 receptor Bmax. Our previous studies have clearly demonstrated that these alterations can be restored to normal by supplementation with ferrous sulfate; however, neither brain nonheme iron level nor dopamine D2 receptor Bmax can be increased beyond control values even after long-term iron therapy. The possibility that iron deficiency can induce the breakdown of the blood-brain barrier (BBB) was examined. A 70 and 100% increase in brain uptake index (BUI) for L-glucose and insulin, respectively, were noted in iron-deficient rats. However, the BUI for valine was decreased by 40%, and those for L-norepinephrine and glycine were unchanged. In addition, it was demonstrated that in normal rats insulin is transported into the brain. The data show that iron deficiency selectively affects the integrity of the BBB for insulin, glucose, and valine transport. Whether the effect of iron deficiency on the BBB is at the level of the capillary endothelial cell tight junction is not yet known. However, this study has shown that an important nutritional disorder (iron-deficiency anemia) has a profound effect on the BBB and brain function.  相似文献   

5.
Uptake of the immunosuppressive lipophilic peptide cyclosporin A has been measured by a number of techniques. The brain uptake index (BUI) technique in the rat yields only a small BUI value that is not significantly different from that of sucrose and mannitol and is comparable to other published BUI values for this compound. Brain perfusion studies in the guinea pig produce a unidirectional cerebrovascular permeability constant (Kin) of 1.2 +/- 0.28 microliter g-1 min-1 for the hippocampus. Intravenous bolus injection techniques also in the guinea pig characteristically produce a larger Kin value of 2.53 +/- 0.38 microliter g-1 min-1 for the same brain region, even after a correction for the inulin space of the tissue has been made. Apparent penetration of cyclosporin A into the cerebrospinal fluid (CSF) determined with the intravenous bolus injection technique is small with a Kin of 0.79 +/- 0.07 microliter g-1 min-1. However it is suggested that the radioactivity present in CSF is largely tritiated water. Studies with cultured cerebral endothelial cells from the rat have also been carried out and show that the cultured cells take up and accumulate cyclosporin A in vitro, achieving a tissue-to-medium ratio of 20 after 25 min of incubation. It is suggested that cyclosporin A is primarily taken up from lipoprotein at the blood-brain interface but, because of tight junctions at the blood-brain and blood-CSF barriers, becomes effectively trapped in the cerebral endothelial cells and the choroid plexus.  相似文献   

6.
The passage of ions across biological membranes is regulated by passive and active mechanisms. Passive ion diffusion into organs depends on the ion-pairing properties of salts present in the serum. Potassium ions could affect brain activity by crossing the blood-brain barrier (BBB) and its accumulation in the extracellular cerebral space could precipitate seizures. In the present study, we analyze passive diffusion of a series of potassium salts in the in vitro isolated guinea pig brain preparation. Different potassium counter-anions confer ion-pairing and lipophilicity properties that modulate membrane diffusion of the salt. Extracellular recordings in different cortical areas demonstrated the presence of epileptiform activities that strongly relate to anion identity, following the qualitative order of the Hofmeister series. Indeed, highly lipophilic salts that easily cross the BBB enhanced extracellular potassium concentration measured by ion-selective electrodes and were the most effective pro-epileptic species. This study constitutes a novel contribution for the understanding of the potential epileptogenicity of potassium salts and, more generally, of the role of counter-anions in the passive passage of salts through biological membranes.  相似文献   

7.
The present studies measure the transport of retinol, retinoic acid, 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], and 25-hydroxyvitamin D3 [25-(OH)D3] through the rat brain capillary endothelial wall, i.e., the blood-brain barrier (BBB). The vitamin A and D derivatives bind both to albumin and to specific high-affinity binding proteins in plasma. In the presence of physiologic concentrations of plasma proteins, the extraction by brain of all four compounds was 5% or less.  相似文献   

8.
The blood-brain barrier (BBB) is formed by specialized tight junctions between endothelial cells that line brain capillaries to create a highly selective barrier between the brain and the rest of the body. A major problem to overcome in drug design is the ability of the compound in question to cross the BBB. Neuroactive drugs are required to cross the BBB to function. Conversely, drugs that target other parts of the body ideally should not cross the BBB to avoid possible psychotropic side effects. Thus, the task of predicting the BBB permeability of new compounds is of great importance. Two gold-standard experimental measures of BBB permeability are logBB (the concentration of drug in the brain divided by concentration in the blood) and logPS (permeability surface-area product). Both methods are time-consuming and expensive, and although logPS is considered the more informative measure, it is lower throughput and more resource intensive. With continual increases in computer power and improvements in molecular simulations, in silico methods may provide viable alternatives. Computational predictions of these two parameters for a sample of 12 small molecule compounds were performed. The potential of mean force for each compound through a 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer is determined by molecular dynamics simulations. This system setup is often used as a simple BBB mimetic. Additionally, one-dimensional position-dependent diffusion coefficients are calculated from the molecular dynamics trajectories. The diffusion coefficient is combined with the free energy landscape to calculate the effective permeability (Peff) for each sample compound. The relative values of these permeabilities are compared to experimentally determined logBB and logPS values. Our computational predictions correlate remarkably well with both logBB (R2 = 0.94) and logPS (R2 = 0.90). Thus, we have demonstrated that this approach may have the potential to provide reliable, quantitatively predictive BBB permeability, using a relatively quick, inexpensive method.  相似文献   

9.
The blood-brain barrier (BBB) is formed by specialized tight junctions between endothelial cells that line brain capillaries to create a highly selective barrier between the brain and the rest of the body. A major problem to overcome in drug design is the ability of the compound in question to cross the BBB. Neuroactive drugs are required to cross the BBB to function. Conversely, drugs that target other parts of the body ideally should not cross the BBB to avoid possible psychotropic side effects. Thus, the task of predicting the BBB permeability of new compounds is of great importance. Two gold-standard experimental measures of BBB permeability are logBB (the concentration of drug in the brain divided by concentration in the blood) and logPS (permeability surface-area product). Both methods are time-consuming and expensive, and although logPS is considered the more informative measure, it is lower throughput and more resource intensive. With continual increases in computer power and improvements in molecular simulations, in silico methods may provide viable alternatives. Computational predictions of these two parameters for a sample of 12 small molecule compounds were performed. The potential of mean force for each compound through a 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer is determined by molecular dynamics simulations. This system setup is often used as a simple BBB mimetic. Additionally, one-dimensional position-dependent diffusion coefficients are calculated from the molecular dynamics trajectories. The diffusion coefficient is combined with the free energy landscape to calculate the effective permeability (Peff) for each sample compound. The relative values of these permeabilities are compared to experimentally determined logBB and logPS values. Our computational predictions correlate remarkably well with both logBB (R2 = 0.94) and logPS (R2 = 0.90). Thus, we have demonstrated that this approach may have the potential to provide reliable, quantitatively predictive BBB permeability, using a relatively quick, inexpensive method.  相似文献   

10.
血脑屏障的是人体自然屏障之一。其主要作用是阻止有害物质通过颅内血管进入脑实质,并同时辅助排出脑内代谢物质等。对相当多的颅内恶性肿瘤术后患者,血脑屏障在一定程度上阻碍了化疗药物进入脑实质,从而影响化疗效果。因此近年来越来越多的学者将研究重点放在如何开放血脑屏障这个问题上。血脑屏障构成主要为毛细血管的内皮细胞、基膜周细胞和星状胶质细胞的足突,其中血管内皮细胞处于最重要的地位。原因归结于它自身的一个特殊结构--紧密连接。紧密连接是否完整,功能是否可以正常发挥关系到内皮细胞的完整性,因此对血脑屏障的开放有着举足轻重的作用。维持紧密连接结构中功能蛋白功能的能量物质为葡萄糖。脑血管中的葡萄糖进入脑实质需载体或通道,脑组织负责此过程的物质为葡萄糖转运蛋白1(GLUT1)。本文作者通过松胞菌素B抑制葡萄糖转运蛋白1,降低能量供应从而影响紧密连接功能,最终引起血脑屏障开放角度做一综述。  相似文献   

11.

Background

Exposure to pesticides and industrial toxins are implicated in cardiovascular disease. Paraquat (PAR) is a toxic chemical widely used as an herbicide in developing countries and described as a major suicide agent. The hypothesis tested here is that PAR induced myocardial dysfunction may be attributed to altered mechanisms of Ca2+ transport which are in turn possibly linked to oxidative stress. The mechanisms of PAR induced myocardial dysfunction and the impact of antioxidant protection was investigated in rat ventricular myocytes.

Methodology

Forty adult male Wistar rats were divided into 4 groups receiving the following daily intraperitoneal injections for 3 weeks: Group 1 PAR (10 mg/kg), Control Group 2 saline, Group 3 vitamin E (100 mg/kg) and Group 4 PAR (10 mg/kg) and vitamin E (100 mg/kg). Ventricular action potentials were measured in isolated perfused heart, shortening and intracellular Ca2+ in electrically stimulated ventricular myocytes by video edge detection and fluorescence photometry techniques, and superoxide dismutase (SOD) and catalase (CAT) levels in heart tissue.

Principal Findings

Spontaneous heart rate, resting cell length, time to peak (TPK) and time to half (THALF) relaxation of myocyte shortening were unaltered. Amplitude of shortening was significantly reduced in PAR treated rats (4.99±0.26%) and was normalized by vitamin E (7.46±0.44%) compared to controls (7.87±0.52%). PAR significantly increased myocytes resting intracellular Ca2+ whilst TPK and THALF decay and amplitude of the Ca2+ transient were unaltered. The fura-2–cell length trajectory during the relaxation of the twitch contraction was significantly altered in myocytes from PAR treated rats compared to controls suggesting altered myofilament sensitivity to Ca2+ as it was normalized by vitamin E treatment. A significant increase in SOD and CAT activities was observed in both PAR and vitamin E plus PAR groups.

Conclusions

PAR exposure compromised rats heart function and ameliorated by vitamin E treatment.  相似文献   

12.
Sunitha  Y.  Udaykumar  P.  Raghunath  M. 《Neurochemical research》1997,22(7):785-790
Thyroid hormones affect the structure and function of biological membranes. Whether or not they affect the Blood-Brain Barrier nutrient transport, the rate limiting membrane transport regulating nutrient supply to brain is to be established yet. That the impaired brain development and function seen in iodine deficiency could be due to such an effect has been assessed in situ by the brain uptake index (BUI) method in Wistar/NIN rat pups born to dams subjected to dietary iodine deficiency/rehabilitation for different times. Compared to controls (C), there was a significant decrease in the BUI values of 2-Deoxy-D-Glucose (2-DG) and L-leucine (Leu) in the pups (D1) born to dams chronically fed low iodine test (LIT) diet through their active growth and subsequent pregnancy and lactation. Surprisingly transport of L-Tyrosine (Tyr) and sucrose (the background marker) was not altered, nor was the BBB transport of all these nutrients affected by feeding LIT diet during the mothers' gestation (D2) and lactation (D3) only. The hypothyroidism in D1 pups was only moderate and preventable by rehabilitation of mothers with control diet from conception (R1) or parturition (R2), as were the changes in BBB nutrient transport. The results suggest that chronic material dietary iodine deficiency impairs BBB nutrient transport in the offspring and this could be prevented by their rehabilitation with iodine.  相似文献   

13.
目的:探讨维生素E(VitE)对癫痫大鼠认知功能障碍的治疗作用及其可能机制。方法:将30只成年雄性SD大鼠随机分为健康对照组、单纯致痫组(SE组)、VitE[按体重100mg/(kg.d)]干预组(VitE组)。采用Morris水迷宫实验方法检测致癫后大鼠学习记忆功能变化,同时检测脑组织匀浆中超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-PX)、谷胱甘肽(GSH)、丙二醛(MDA)的水平。结果:(1)SE组大鼠寻找平台的潜伏期明显长于对照组,具有统计学意义(P<0.05),VitE组寻找平台的潜伏期相对于SE组显著缩短(P<0.05)。撤离平台后,SE组大鼠在平台所在象限的停留时间明显短于对照组(P<0.05),VitE治疗后大鼠在平台所在象限的停留时间较SE组显著延长(P<0.05)。(2)SE组SOD、GSH-PX、GSH显著下降,MDA明显增高,VitE干预组SOD、GSH-PX、GSH显著增高,而MDA明显下降,具有统计学意义(P<0.05)。结论:VitE可改善癫痫持续状态后大鼠认知功能,其可能机制是通过减轻海马区的氧化应激反应减轻海马区的损伤,从而实现改善认知功能。  相似文献   

14.
目的:探讨维生素E(VitE)对癫痫大鼠认知功能障碍的治疗作用及其可能机制。方法:将30只成年雄性SD大鼠随机分为健康对照组、单纯致痫组(SE组)、VitE[按体重100mg/(kg·d)]干预组(VitE组)。采用Morris水迷宫实验方法检测致癫后大鼠学习记忆功能变化,同时检测脑组织匀浆中超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH—PX)、谷胱甘肽(GSH)、丙二醛(MDA)的水平。结果:(1)SE组大鼠寻找平台的潜伏期明显长于对照组,具有统计学意义(P〈0.05),VitE组寻找平台的潜伏期相对于SE组显著缩短(P〈0.05)。撤离平台后,SE组大鼠在平台所在象限的停留时间明显短于对照组(P〈0.05),VitE治疗后大鼠在平台所在象限的停留时间较SE组显著延长(P〈0.05)。(2)SE组SOD、GSH—PX、GSH显著下降,MDA明显增高,VitE干预组SOD、GSH.PX-GSH显著增高,而MDA明显下降,具有统计学意义(P〈0.05)。结论:VitE可改善癫痫持续状态后大鼠认知功能,其可能机制是通过减轻海马区的氧化应激反应减轻海马区的损伤,从而实现改善认知功能。  相似文献   

15.
16.
Variations in apparent diffusion coefficient of water (ADC) and blood-brain barrier (BBB) permeability after ischemia have been suggested, though the correlation between ADC alterations and BBB opening remains to be studied. We hypothesized that there are correlations between the alteration of ADC and BBB permeability. Rats were subjected to 2 h of transient middle cerebral artery occlusion and studied at 3 and 48 h of reperfusion, which are crucial times of BBB opening. BBB permeability and ADC values were measured by dynamic contrast-enhanced MRI and diffusion-weighted imaging, respectively. Temporal and spatial analyses of the evolution of BBB permeability and ADC alteration in cortical and subcortical regions were conducted along with the correlation between ADC and BBB permeability data. We found significant increases in BBB leakage and reduction in ADC values between 3 and 48 h of reperfusion. We identified three MR tissue signature models: high Ki and low ADC, high Ki and normal ADC, and normal Ki and low ADC. Over time, areas with normal Ki and low ADC transformed into areas with high Ki. We observed a pattern of lesion evolution where the extent of initial ischemic injury reflected by ADC abnormalities determines vascular integrity. Our results suggest that regions with vasogenic edema alone are not likely to develop low ADC by 48 h and may undergo recovery.  相似文献   

17.

Background

Hypoglycemia-induced brain edema is a severe clinical event that often results in death. The mechanisms by which hypoglycemia induces brain edema are unclear.

Methods

In a hypoglycemic injury model established in adult rats, brain edema was verified by measuring brain water content and visualizing water accumulation using hematoxylin and eosin staining. Temporal expression of aquaporin 4 (AQP4) and the integrity of the blood-brain barrier (BBB) were evaluated. We assessed the distribution and expression of AQP4 following glucose deprivation in astrocyte cultures.

Results

Brain edema was induced immediately after severe hypoglycemia but continued to progress even after recovery from hypoglycemia. Upregulation of AQP4 expression and moderate breakdown of the BBB were observed 24 h after recovery. In vitro, significant redistribution of AQP4 to the plasma membrane was induced following 6 h glucose deprivation.

Conclusion

Hypoglycemia-induced brain edema is caused by cytotoxic and vasogenic factors. Changes in AQP4 location and expression may play a protective role in edema resolution.  相似文献   

18.
19.
Abstract: Using a cell culture model of the blood-brain barrier (BBB), we investigated the brain capillary endothelial cell (EC) response to hypoxia. The activities of antioxidant enzymes such as glutathione peroxidase, glutathione reductase, catalase, and superoxide dismutase and the GSH level of brain capillary ECs alone or in coculture with astrocytes, as well as those of pericytes, were compared with those obtained with freshly isolated microvessels. These results demonstrated that brain capillary ECs cocultured with astrocytes and used in the presence of a coculture-conditioned medium provided a relevant in vitro model for studying the effect of hypoxia-reoxygenation at the BBB level. The effect of hypoxia on antioxidant enzymes, GSH, and ATP levels was studied, as well as the modification of the permeability to small weight molecules. A decrease in all enzymes and the GSH level could explain an increase in the susceptibility of the brain capillary ECs to further oxidant injury. Second, profound rearrangements of F-actin filaments of the ECs and a decrease in the ATP level could be associated with an increase in the permeability of the monolayer. Furthermore, an apoptotic process was detected by in situ end labeling of DNA. These results indicate that hypoxia distorts the function of ECs and that these cells in culture provide a valuable tool for exploring mechanisms after hypoxia-reoxygenation.  相似文献   

20.
The term blood-brain barrier (BBB) relates to the ability of cerebral vessels to hold back hydrophilic and large molecules from entering the brain, thereby crucially contributing to brain homeostasis. In fact, experimental opening of endothelial tight junctions causes a breakdown of the BBB evidenced as for instance by albumin leakage. This and similar observations led to the conclusion that BBB breakdown is predominantly mediated by damage to tight junction complexes, but evidentiary ultrastructural data are rare. Since functional deficits of the BBB contribute to an increased risk of hemorrhagic transformation and brain edema after stroke, which both critically impact on the clinical outcome, we studied the mechanism of BBB breakdown using an embolic model of focal cerebral ischemia in Wistar rats to closely mimic the essential human pathophysiology. Ischemia-induced BBB breakdown was detected using intravenous injection of FITC-albumin and tight junctions in areas of FITC-albumin extravasation were subsequently studied using fluorescence and electron microscopy. Against our expectation, 25 hours after ischemia induction the morphology of tight junction complexes (identified ultrastructurally and using antibodies against the transcellular proteins occludin and claudin-5) appeared to be regularly maintained in regions where FITC-albumin massively leaked into the neuropil. Furthermore, occludin signals along pan-laminin-labeled vessels in the affected hemisphere equaled the non-affected contralateral side (ratio: 0.966 vs. 0.963; P = 0.500). Additional ultrastructural analyses at 5 and 25 h after ischemia induction clearly indicated FITC-albumin extravasation around vessels with intact tight junctions, while the endothelium exhibited enhanced transendothelial vesicle trafficking and signs of degeneration. Thus, BBB breakdown and leakage of FITC-albumin cannot be correlated with staining patterns for common tight junction proteins alone. Understanding the mechanisms causing functional endothelial alterations and endothelial damage is likely to provide novel protective targets in stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号