首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iaa oxidase and polyphenol oxidase activities of peanut peroxidase isozymes   总被引:1,自引:0,他引:1  
Four anionic isozymes (A1, A2, A4 and A5) from peanut cells in suspension medium possessed IAA oxidase and polyphenol oxidase activities. The specific activities of each of the enzymes differed among the 4 isozymes. The pH optima established in these assays for peroxidase was acidic, for IAA oxidase neutral and for polyphenol oxidase alkaline. All 4 isozymes had different Km and Vmax for the enzyme activities of peroxidase and polyphenol oxidase. The sigmoid kinetics from the IAA oxidase assays for the isozymes probably indicates an allosteric nature.  相似文献   

2.
Peroxidase and polyphenol oxidase activities in malformed mango inflorescences of ‘Himsagar’ and ‘Bombay green’ oultivars wore found to be increased considerably following infection byFusarium moniliforme var.subglutinans. Whether such increased activities were due to their synthesis by the pathogen or the host, or both, was not studied although it was found that the pathogen was incapable of producing the enzymesin vitro. The activities of both the enzymes in infected tissues were found to increase considerably during the experimental period. It was found that activities of polyphenol oxidase were inhibited in the presence of sodium diethyldithiocarbamate and phenylthiourea; the former acted as chelating agent of Cu of the enzymes and the latter as a competitive inhibitor. Similarly, peroxidase activity was found to be inhibited by cycloheximide which acted as inhibitor of enzyme protein synthesis. The fact that the ‘Himsagar’ cultivar showed greater enzyme activity than the ‘Bombay green’ cultivar possibly suggests its higher resistance to the pathogen.  相似文献   

3.
The production of viable meristem cultures of Medinilla magnifica has proved to be very difficult. This may be due, in part, to a pronounced ‘browning’ response of the tissues on cutting. For this reason the phenolic compounds and the hydrolysable-tannin polyphenol oxidase from Medinilla were studied. The distribution of the compounds was: simple phenols 19% , flavonoids 5% , hydrolysable tannins 69% , condensed tannins 7%. Amongst the simple phenols and phenolic acids, the following were identified: phloroglucinol, p-hydroxybenzoic acid, vanillic acid, protocatechuic acid, gallic acid (both in free and bound form the most abundant simple phenol), syringic acid, trans-p-coumaric acid, trans-ferulic acid and trans-caffeic acid. No kaempferol or quercetin or their derivatives were detected but condensed tannins are present. Methods for the extraction, fractionation and quantitative determination of phloroglucinol and the phenolic acids, as well as correction factors for losses during the extraction, alkali treatment and derivatization, are presented in a supplementary publication. With regard to the hydrolysable tannin polyphenol oxidase activity of Medinilla stems, the enzyme(s) is rather specific since at neither of its two pH optima (6 and 7) could a classical polyphenol oxidase activity be detected. The enzyme was strongly inhibited by 2-mercaptoethanol. Preliminary experiments have further shown that in addition to the hydrolysable tannins of the tissue, the ferrous ions of the medium, and oxygen together with the hydrolysable tannin polyphenol oxidase could play a role in the browning response. Ways to overcome this difficulty have been suggested.  相似文献   

4.
该文选取桂林岩溶石山檵木群落不同恢复阶段(灌木阶段、乔灌阶段和小乔林阶段)作为研究对象,探究凋落物层酶对凋落物分解速率的影响。结果表明:不同恢复阶段凋落物经1 a分解后,凋落物剩余率分别为灌木阶段(59.58%)、乔灌阶段(61.79%)和小乔林阶段(62.02%)。不同恢复阶段凋落物分解速率随演替的进行而减小。3个不同恢复阶段凋落物层多酚氧化酶、脲酶、蔗糖酶活性均在12月份最低,多酚氧化酶活性均在3月份最高,脲酶和蔗糖酶活性均在6月份最高。3个恢复阶段纤维素酶活性变化规律趋势一致,均在6月份酶活性最高,灌木阶段纤维素酶活性在3月份最低,乔灌阶段和小乔林阶段纤维素酶活性均在9月份最低。3个不同恢复阶段的凋落物层酶活性在不同时期均表现为蔗糖酶脲酶纤维素酶多酚氧化酶。不同恢复阶段凋落物层酶活性对凋落物分解速率影响不同。灌木阶段凋落物层蔗糖酶活性与分解速率呈显著正相关(P 0.05),乔灌阶段脲酶活性与分解速率呈显著正相关(P 0.05),小乔林阶段各酶活性与分解速率相关不显著。蔗糖酶、脲酶和多酚氧化酶是影响灌木阶段凋落物分解速率的重要因素,脲酶、纤维素酶和多酚氧化酶是影响乔灌和小乔林阶段分解速率的重要因素。  相似文献   

5.
王宜磊  赵良田 《植物学报》1999,16(4):454-456
本文测定了彩绒革盖菌在PDY液体培养基中的多酚氧化酶活性。在30℃,110 r/min,恒温振荡培养条件下,多酚氧化酶第14天达产酶高峰,最高酶活549.Ou;酶作用的最适酸碱度为pH 5.0;最适作用温度30℃;Mn2+、Ba2+、Mg2+等离子对多酚氧化酶有激活作用,Ag+、Fe3+等离子对酶活则有明显的抑制作用。  相似文献   

6.
Application of regurgitant from Leptinotarsa decemlineata Say on wound surfaces of one wounded leaf of intact bean (Phaseolus vulgaris L.) plants resulted in activation of ethylene biosynthesis followed by an increase of both peroxidase and polyphenol oxidase activity. The aim of the present investigation was to study the source of increased oxidative enzyme activities in regurgitant-treated bean leaves and to determine if hydrogen peroxide and ethylene biosynthesis is responsible for regurgitant-induced amplification of wound responses in bean plants. As the regurgitant contained relative high activities of both peroxidase and polyphenol oxidase, there is a possibility that increased enzyme activities in bean leaves following regurgitant treatment is an artifact of insect-derived enzymes. Localisation experiments and electrophoretic analysis revealed that only part of the increased enzyme activities could be attributed to regurgitant-derived enzymes. Both increase of ethylene production and oxidative enzyme activities depended on protein synthesis. To demonstrate if the increase of oxidative metabolism was ethylene-dependent, seedlings were pretreated with aminooxyacetic acid, an inhibitor of ethylene biosynthesis, and 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene action. Increase of both peroxidase and polyphenol oxidase activity in wounded and subsequently regurgitant-treated leaf was abolished by both aminooxyacetic acid and 1-MCP. Inhibitor studies indicated that H2O2 generated through NADPH oxidase and superoxide dismutase is necessary for regurgitant-induced increase of ethylene production and oxidative enzyme activities.  相似文献   

7.
模拟氮沉降对太岳山油松林土壤酶活性的影响   总被引:5,自引:0,他引:5  
刘星  汪金松  赵秀海 《生态学报》2015,35(14):4613-4624
为研究土壤酶活性对氮沉降增加的响应,以山西太岳山油松人工林和天然林为研究对象,于2009年8月开始实施模拟氮沉实验,试验设置对照(CK,0 kg N hm-2a-1);低氮(LN,50 kg N hm-2a-1);中氮(MN,100 kg N hm-2a-1);高氮(HN,150 kg N hm-2a-1)4种氮处理,自2012年起每年5、7、9月在各处理样方采集表层0—20 cm土壤,测定土壤酶活性(过氧化物酶、多酚氧化酶、纤维素酶、蔗糖酶、脲酶、中性磷酸酶)。研究结果表明:施氮处理下的脲酶与中性磷酸酶活性均有所提高,而低氮处理下天然林中的多酚氧化酶与人工林中的蔗糖酶显著低于对照,中氮、高氮处理下过氧化物酶、多酚氧化酶、天然林中的纤维素酶以及人工林中的蔗糖酶显著降低。总的来说,人工模拟氮沉降促进了土壤中脲酶和中性磷酸酶的活性,抑制了过氧化物酶和多酚氧化酶的活性,并降低了天然林土壤中的纤维素酶活性和人工林中的蔗糖酶活性,但对天然林中蔗糖酶和人工林中的纤维素酶无影响。主导木质素降解的多酚氧化酶活性与纤维素酶、蔗糖酶活性显著相关,纤维素酶与蔗糖酶活性的下降可能是由木质素降解受到抑制,土壤微生物可利用碳源减少所引起。另外,受到天然林土壤含氮量较高的影响,与人工林相比,天然林的多酚氧化酶活性对模拟氮沉降更敏感。由于被抑制的酶均与土壤有机质降解密切相关,氮沉降增加将减缓山西油松林土壤有机质的降解,有利于有机质在土壤中的积累。  相似文献   

8.
Sirkar S  Amin JV 《Plant physiology》1974,54(4):539-543
Cotton plants (Gossypium hirsutum. Linn. var. Sankar 4) were grown at normal and toxic levels of substrate manganese, and the altered metabolism of manganese toxic plants was studied. The tissues of plants exposed to toxic levels of manganese had higher activities of peroxidase and polyphenol oxidase, and the activities of catalase, ascorbic acid oxidase, glutathione oxidase and cytochrome c oxidase were lowered. In addition, the high manganese tissue had lower contents of ATP and glutathione but higher amounts of ascorbic acid. The respiration of the partially expanded leaves and the growing tips of toxic plants were depressed when compared to that of the normal tissues. The metabolic changes of manganese toxicity of cotton are placed in the following order: accumulation of manganese in the leaf tissue; a rise in respiration; stimulation of polyphenol oxidase; the appearance of initial toxicity symptoms; the evolution of ethylene and stimulation of peroxidase; the presence of severe toxicity symptoms; the depression of terminal oxidases and respiration; abscission of the growing tip and proliferation of the stem tissue. The early stimulation of polyphenol oxidase may be used to detect potential manganese toxicity.  相似文献   

9.
铜对三叶草-土壤酶系统的影响   总被引:5,自引:1,他引:4  
通过盆栽实验研究了重金属Cu污染对植物(三叶草)-土壤酶(脲酶、蔗糖酶、过氧化氢酶和多酚氧化酶)系统的影响.结果表明,随着Cu浓度增加,脲酶、蔗糖酶、过氧化氢酶和多酚氧化酶活性均逐渐减小,与Cu浓度有高度相关性,蔗糖酶>多酚氧化酶>脲酶>过氧化氢酶.在处理浓度不变情况下,酶活性随时间而变化,且呈现低Cu浓度(<00 mg·kg-1)时4种酶活性均有所上升,而Cu浓度增高(00~3 000 mg·kg-1)时各酶活性逐渐下降的趋势.统计分析表明,在每一梯度浓度上,4种酶在Ⅰ、Ⅱ、Ⅲ组内均存在显著差异性(P<0.01),与植物受重金属Cu污染时的生长情况一致.随着Cu浓度增加,土壤pH值逐渐下降,而电导率上升;同一Cu浓度下的pH值和电导率均随时间呈缓慢上升趋势,统计分析显示,二者在Ⅰ、Ⅱ、Ⅲ组内均存在显著差异性(P<0.01).土壤pH值和电导率与4种土壤酶活性有高度相关性,多酚氧化酶>蔗糖酶>过氧化氢酶>脲酶.这4种酶同时可作为检测土壤环境质量的指标.  相似文献   

10.
The change in polyphenol content in the primed leaves of burley, flue-cured, and Turkish tobaccos during air-curing was related to the activities and isozymes of polyphenol oxidase and peroxidase. The quantity of chlorogenic acid was rapidly reduced during the first week of curing. The decrease in rutin content during curing was less significant, especially when the concentration of chlorogenic acid was high in leaf tissues. This result was further confirmed by in vitro assays with partially purified tobacco polyphenol oxidase.  相似文献   

11.
重金属污染区土壤酶活性变化   总被引:5,自引:1,他引:4  
王涵  高树芳  陈炎辉  王果 《应用生态学报》2009,20(12):3034-3042
从福建龙岩新罗区特钢厂污灌区农田采集土壤,测定土壤基本理化性质及脲酶、纤维素酶、碱性磷酸酶、多酚氧化酶、过氧化氢酶活性和Cu、Cd、Pb、Zn含量,探讨重金属污染和土壤性质对土壤酶活性的影响.结果表明: 4种全量或有效态重金属与土壤脲酶、纤维素酶、碱性磷酸酶和多酚氧化酶活性呈显著正相关,与过氧化氢酶活性呈显著或极显著负相关;土壤pH与碱性磷酸酶活性呈极显著正相关,粉粒含量与过氧化氢酶活性呈显著负相关.经通径分析,重金属污染刺激了脲酶、多酚氧化酶和纤维素酶活性,但对碱性磷酸酶活性的影响较小.有效态Cu、Cd、Pb、Zn对过氧化氢酶活性的直接影响并不大,但通过间接途径抑制了过氧化氢酶活性.土壤理化性质对5种土壤酶活性的影响较大,碱解氮直接抑制了脲酶活性;全磷直接刺激了碱性磷酸酶和过氧化氢酶活性,并通过有效磷刺激了纤维素酶活性;有效磷直接刺激了纤维素酶活性,直接抑制了碱性磷酸酶和过氧化氢酶活性;全钾直接抑制了碱性磷酸酶和多酚氧化酶活性;速效钾通过有效磷刺激了纤维素酶活性;土壤颗粒组成明显影响多酚氧化酶和过氧化氢酶活性.5种酶活性与土壤Cu、Cd、Pb、Zn含量之间的关系不明确,因此其活性不是指示土壤Cu、Cd、Pb、Zn污染的良好指标.  相似文献   

12.
The objective of this study is to determine the spatial variability of nutrients, microbial biomass, and enzyme activities of soil due to the establishment of shrub plantation on moving sandy dunes, as part of an effort to understand the microenvironmental factors that control the soil microbiological properties. Caragana microphylla Lam., an indigenous leguminous shrub, is the dominant plant species used to control desertification in the semi-arid Horqin Sandy Land of Northeast China. In a 26-year-old C. microphylla plantation, soil samples were collected from three soil depths (0-5 cm, 5-10 cm, and 10-20 cm), three slope positions (windward slope, top slope, and leeward slope), and two microsites (under shrubs and between shrubs). The results showed significant differences in soil EC, nutrient content (except for total K), microbial biomass C and N, and the activities of dehydrogenase, urease, and protease at different slopes, soil depths, and microsites. Significant differences in pH at different microsites and slopes, soil moisture and polyphenol oxidase activity at different soil depths and slopes, and activities of phosphomonoesterase and nitrate reductase at different soil depths were also observed. The soil nutrient contents and microbiological activities were greater in the surface soil layer and decreased with the increase of soil depth. Soil organic C, total N, total P, available P and K, microbial biomass C and N, and the activities of enzymes tested (except for protease) under shrubs were higher than those in between shrubs. Furthermore, significant correlations among soil organic C, microbial biomass C and N, the activities of phosphomonoesterase, dehydrogenase, urease, protease, and nitrate reductase were observed, and correlations were also found among EC, total N, total P, available P and K, enzyme (except for polyphenol oxidase) activities, and microbial biomass C and N contents. These results suggest that microenvironmental factors (slope, soil depth and microsite) have significant influences on the spatial distribution of soil nutrients and microbiological properties when the C. microphylla sand-fixing plantation is established in the moving sand dunes in the Horqin Sandy Land.  相似文献   

13.
The effect of salicylic acid (SA) counteracting the UV-A, UV-B, and UV-C-induced action on pepper (Capsicum annuum L.) plants was studied. For this purpose, the activities of antioxidant enzymes (peroxidase, polyphenol oxidase, ascorbate peroxidase, catalase, and glutathione reductase) were measured. Plants were sprayed with SA and treated with UV-A (320–390 nm), UV-B (312 nm), and UV-C (254 nm) radiation with a density of 6.1, 5.8, and 5.7 W/m2. The activities of antioxidant enzymes were enhanced in leaves in response to UV-B and UV-C radiation. SA treatment moderated an increase in the activities of some antioxidant enzymes (peroxidase, ascorbate peroxidase, catalase, and glutathione reductase) in plants that were treated with UV radiation. The activity of antioxidant enzyme polyphenol oxidase in plants that were treated with UV-B, UV-C, and SA was significantly increased. The aim of the present study was to investigate the possible protective effect of SA treatment on UV-A, UV-B, and UV-C stress.  相似文献   

14.
Mango sap (latex), a by-product in mango industry, was separated into upper non-aqueous phase and lower aqueous phase. Aqueous phase contains very low protein (4.3 mg/ml) but contains high specific activities for peroxidase and polyphenol oxidase. The aqueous phase of sap was subjected to ion-exchange chromatography on DEAE-Sephacel. The bound protein was separated into three enzyme peaks: peak I showed peroxidase activity, peak II showed polyphenol oxidase activity and peak III showed activities against substrates of peroxidase as well as polyphenol oxidase. On native PAGE and SDS-PAGE, each peak showed a single band. Based on the substrate specificity and inhibitor studies peak III was identified as laccase. Although they showed variations in their mobility on native PAGE, these enzymes showed similar molecular weight of 100,000 ± 5000. These enzymes exhibited maximum activity at pH 6 however, polyphenol oxidase showed good activity even in basic pH. Peroxidase and polyphenol oxidase showed stability up to 70 °C while laccase was found to be stable up to 60 °C. Syringaldazine was the best substrate for laccase while catechol was the best for polyphenol oxidase. Thus, mango sap a by-product in mango industry is a good source of these phenol oxidases.  相似文献   

15.
A new enzymatic method for the removal of phenols from industrial aqueous effluents has been developed. The method uses the enzyme polyphenol oxidase which oxidizes phenols to the corresponding o-quinones; the latter then undergo a nonenzymatic polymerization to form water-insoluble aggregates. Therefore, the enzyme in effect precipitates phenols from water. Polyphenol oxidase has been found to nearly completely dephenolize solutions of phenol in the concentration range from 0.01 to 1.0 g/L. The enzymatic treatment is effective over a wide range of pH and temperature; a crude preparation of polyphenol oxidase (mushroom extract) is as effective as a purified, commercially obtained version. In addition to phenol itself, polyphenol oxidase is capable of precipitating from water a number of substituted phenols (cresols, chlorophenols, naphthol, etc.). Also, even pollutants which are unreactive towards polyphenol oxidase can be enzymatically coprecipitated with phenol. The polyphenol oxidase treatment has been successfully used to dephenolize two different real industrial waste-water samples, from a plant producing triarylphosphates and from a coke plant. The advantage of the polyphenol oxidase dephenolization over the peroxidase-catalyzed one previously elaborated by the authors is that the former enzyme uses molecular oxygen instead of costly hydrogen peroxide (used by peroxidase) as an oxidant.  相似文献   

16.
两种污泥连续施用对潮土重金属含量及酶活性的影响   总被引:5,自引:0,他引:5  
采用盆栽土培试验,研究了工业污泥(化工厂底泥)及城市污水处理厂剩余污泥中重金属存在的形态与含量,以及两种污泥连续施用对潮土重金属含量及酶活性的影响。结果表明,两种污泥中的重金属主要是以非交换态存在,城市污水处理厂剩余污泥中总的重金属含量比工业污泥低,而重金属的有效性比工业污泥高;污泥的施用能增加潮土中脲酶的活性,多酚氧化酶及中性磷酸酶的活性与污泥的施用量有一定相关性,并与土壤中交换态Zn、Cu含量呈一定负相关,土壤多酚氧化酶及过氧化氢酶活性可作为土壤中重金属Zn污染的指示指标;污泥的施用有提高潮土中交换态Cu、Zn及Pb含量的趋势。  相似文献   

17.
Investigation of polyphenol production in cut-injured sweet potato (Ipomoea batatas Lam. cv. Kokei 14) roots by histochemical and quantitative methods showed that polyphenols were produced in striking amounts in the proximal side of the tissue pieces (2 cm thick), but only in small amounts in cells of the distal side. In response to cut injury, formation of the enzymes related to polyphenol biosynthesis, phenylalanine ammonia-lyase and trans-cinnamic acid 4-hydroxylase, was also pronounced in the proximal side of the tissue pieces and slight in the distal side. The similar polarity was observed in the development of activities of various enzymes, such as NADPH-cytochrome c oxidoreductase, acid invertase, peroxidase, o-diphenol oxidase, and cytochrome c-O2 oxidoreductase. Acropetal development of polyphenol contents and of various enzyme activities may be related to the acropetal movement of indoleacetic acid (IAA) in roots of various plants. Treatment of the distal surface of tissue pieces with IAA or 2,4-dichlorophenoxyacetic acid caused polyphenol production but treatment with gibberellic acid, abscisic acid, kinetin, or ethylene had little effect. The results suggest that IAA may play a role in the metabolic response to cut injury.  相似文献   

18.
Avocado fruit showing severe symptoms of the mesocarp discolouration disorder exhibited significantly higher extractable activities of soluble polyphenol oxidase and peroxidase, as well as higher levels of total phenols, hydroxycinnamic acids and proanthocyanidins, when compared to healthy fruit. However, l-phenylalanine ammonia-lyase activity was very variable, and no significant differences were observed between healthy and affected fruit. Extraction of healthy, but not severely affected, fruit in the presence of 0.1 % SDS resulted in increased polyphenol oxidase activity reflecting the release of bound and/or latent enzyme. Qualitative differences between healthy and affected fruit included different patterns of polyphenol oxidase multiple forms and different polyphenol profiles. The pattern of polyphenol oxidase multiple forms from SDS-extracted healthy fruit was similar to that from mildly affected fruit not extracted with detergent.  相似文献   

19.
Plant contamination by polycyclic aromatic hydrocarbons (PAHs) is crucial to food safety and human health. Enzyme inhibitors are commonly utilized in agriculture to control plant metabolism of organic components. This study revealed that the enzyme inhibitor ascorbic acid (AA) significantly reduced the activities of peroxidase (POD) and polyphenol oxidase (PPO), thus enhancing the potential risks of PAH contamination in tall fescue (Festuca arundinacea Schreb.). POD and PPO enzymes in vitro effectively decomposed naphthalene (NAP), phenanthrene (PHE) and anthracene (ANT). The presence of AA reduced POD and PPO activities in plants, and thus was likely responsible for enhanced PAH accumulation in tall fescue. This conclusion is supported by the significantly enhanced uptake of PHE in plants in the presence of AA, and the positive correlation between enzyme inhibition efficiencies and the rates of metabolism of PHE in tall fescue roots. This study provides a new perspective, that the common application of enzyme inhibitors in agricultural production could increase the accumulation of organic contaminants in plants, hence enhancing risks to food safety and quality.  相似文献   

20.
模拟增温对川西亚高山两类针叶林土壤酶活性的影响   总被引:10,自引:7,他引:3  
徐振锋  唐正  万川  熊沛  曹刚  刘庆 《生态学杂志》2010,21(11):2727-2733
采用开顶式生长室(open top chamber,OTC)模拟增温,同步监测了亚高山人工针叶林和天然针叶林表层土壤温、湿度的变化,以及模拟增温初期土壤转化酶、脲酶、过氧化氢酶和多酚氧化酶活性的变化.结果表明:在整个生长季节中,OTC使人工林和天然林5 cm土壤日平均温度分别增加0.61 ℃和0.56 ℃,10 cm体积含水量分别下降4.10%和2.55%;模拟增温增加了土壤转化酶、脲酶、过氧化氢酶和多酚氧化酶活性.增温与林型的交互作用对土壤脲酶和过氧化氢酶活性有显著影响,而对转化酶和多酚氧化酶影响不显著.增温对过氧化氢酶活性的影响与季节变化相关.在各处理下,天然林土壤酶活性显著高于人工林.土壤酶活性季节动态与土壤温度有着较大相关性,而与土壤水分季节变化关系不明显.模拟增温易于增加土壤酶活性,但增温效应和林型、酶种类和季节变化有一定关系;亚高山针叶林土壤酶活性主要受控于土壤温度,而与土壤水分关系不大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号