首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microbialites are the most abundant macrofossils of the Precambrian. Decline in microbialite abundance and diversity during the terminal Proterozoic and early Phanerozoic has historically been attributed to the concurrent radiation of complex metazoans. Similarly, the apparent resurgence of microbialites in the wake of Paleozoic and Mesozoic mass extinctions is frequently linked to drastic declines in metazoan diversity and abundance. However, it has become increasing clear that microbialites are relatively common in certain modern shallow, normal marine carbonate environments—foremost the Bahamas. For the first time, we present data, collected from the Exuma Cays, the Bahamas, systematically characterizing the relationship between framework‐building cyanobacteria, microbialite fabrics, and microbialite‐associated metazoan abundance and diversity. We document the coexistence of diverse microbialite and infaunal metazoan communities and demonstrate that the predominant control upon both microbialite fabric and metazoan community structure is microbial mat type. These findings necessitate that we rethink prevalent interpretations of microbialite–metazoan interactions and imply that microbialites are not passive recipients of metazoan‐mediated alteration. Additionally, this work provides support for the theory that certain Precambrian microbialites may have been havens of early complex metazoan life, rather than bereft of metazoans, as has been traditionally envisaged.  相似文献   

2.
Thrombolite and stromatolite habitats are becoming increasingly recognized as important refuges for invertebrates during Phanerozoic Oceanic Anoxic Events (OAEs); it is posited that oxygenic photosynthesis by cyanobacteria in these microbialites provided a refuge from anoxic conditions (i.e., the “microbialite refuge” hypothesis). Here, we test this hypothesis by investigating the distribution of ~34, 500 benthic invertebrate fossils found in ~100 samples from a microbialite succession that developed following the latest Permian mass extinction event on the Great Bank of Guizhou (South China), representing microbial (stromatolites and thrombolites) and non‐microbial facies. The stromatolites were the least taxonomically diverse facies, and the thrombolites also recorded significantly lower diversities when compared to the non‐microbial facies. Based on the distribution and ornamentation of the bioclasts within the thrombolites and stromatolites, the bioclasts are inferred to have been transported and concentrated in the non‐microbial fabrics, that is, cavities around the microbial framework. Therefore, many of the identified metazoans from the post‐extinction microbialites are not observed to have been living within a microbial mat. Furthermore, the lifestyle of many of the taxa identified from the microbialites was not suited for, or even amenable to, life within a benthic microbial mat. The high diversity of oxygen‐dependent metazoans in the non‐microbial facies on the Great Bank of Guizhou, and inferences from geochemical records, suggests that the microbialites and benthic communities developed in oxygenated environments, which disproves that the microbes were the source of the oxygenation. Instead, we posit that microbialite successions represent a taphonomic window for exceptional preservation of the biota, similar to a Konzentrat‐Lagerstätte, which has allowed for diverse fossil assemblages to be preserved during intervals of poor preservation.  相似文献   

3.
Microbialites are organosedimentary structures that result from the trapping, binding, and lithification of sediments by microbial mat communities. In this study we developed a model artificial microbialite system derived from natural stromatolites, a type of microbialite, collected from Exuma Sound, Bahamas. We demonstrated that the morphology of the artificial microbialite was consistent with that of the natural system in that there was a multilayer community with a pronounced biofilm on the surface, a concentrated layer of filamentous cyanobacteria in the top 5 mm, and a lithified layer of fused oolitic sand grains in the subsurface. The fused grain layer was comprised predominantly of the calcium carbonate polymorph aragonite, which corresponded to the composition of the Bahamian stromatolites. The microbial diversity of the artificial microbialites and that of natural stromatolites were also compared using automated ribosomal intergenic spacer analysis (ARISA) and 16S rRNA gene sequencing. The ARISA profiling indicated that the Shannon indices of the two communities were comparable and that the overall diversity was not significantly lower in the artificial microbialite model. Bacterial clone libraries generated from each of the three artificial microbialite layers and natural stromatolites indicated that the cyanobacterial and crust layers most closely resembled the ecotypes detected in the natural stromatolites and were dominated by Proteobacteria and Cyanobacteria. We propose that such model artificial microbialites can serve as experimental analogues for natural stromatolites.  相似文献   

4.
《Palaeoworld》2016,25(2):188-198
Carbonate concretions with structures and fossil groups associated with microbialite developed in a dolostone crust at the Permian–Triassic boundary of the Xishan section in Jiangsu Province, South China. These structures include clotted fabrics and laminated carbonate needles, as well as abundant carbonate crystal fans. Fossil groups associated with microbialite include microconchids, small gastropods, and small foraminifers. These fabrics and fossils suggest that the concretions are carbonate microbialite blocks developed in the dolostone crust. On the basis of the analysis of the microfabrics and the fossil groups together with a comparison to modern analogues, we attribute the formation of the micritic patches in the microbialite concretions to the calcification of cyanobacterial mats via carbonate nanoparticles and we attribute the carbonate crystal fans to the direct recrystallization of micritic carbonates. The sparitic patches were interpreted as either the direct recrystallization of micritic carbonates or the precipitation of carbonate spars in the inter-/intra-spaces of metazoan shells together with the recrystallization of these shells. The similarities to modern stromatolites, both in morphology and in internal texture, suggest that the laminated carbonate needles are stromatolite laminae built by filamentous cyanobacteria. The preservation of these microbialite microfabrics indicates that early lithification by carbonate precipitation was widespread and intense following the end-Permian boundary events. The weak development of microbialites as small concretions may be attributed to the deeper water depth and the lower water energy in the Xishan area during the earliest Triassic.  相似文献   

5.
Microbialites are organosedimentary deposits that have built up as a result of the growth and binding of detrital sediment by a benthic microbial community. This study focuses on microbialites built by monospecific populations of cyanobacteria in the south-west lagoon of New Caledonia, where they have been observed down to 20–25 m depth. The aim was to study their photosynthetic and respiratory responses to various light intensities. The Phormidium sp. TK1 microbialite was collected at 19 m depth and the P. crosbyanum (Tilden) microbialite was collected at 0.5 and 13 m depth. Phormidium sp. TK1 showed all the characteristic features of a low-light adapted species. The initial slope of the Photosynthesis versus Irradiance curve for this microbialite was close to the maximum quantum yield indicating an efficient light absorption and utilization at low light. The photosynthesis maximum was located 0.2–0.4 mm below the surface and did not shift with changing light intensity. Respiration rates were low and not enhanced by light; photoinhibition was observed at higher light intensities. In Phormidium crosbyanum (Tilden) microbialites, the photosynthesis maximum shifted downward to lower depths with increasing light, probably as a result of phototactic migration of cyanobacterial filaments, and light-enhanced respiration was observed at light intensities above light saturation. The photosynthetic para- meters measured in P. crosbyanum indicate that P. crosbyanum is capable of photo-acclimation at high light intensities. The gross productivity of the different microbialites was comparable to values measured in cyanobacterial stromatolites observed in other shallow environments. However, the microbialites studied here were characterized by a lower respiration / production ratio which indicates a higher growth efficiency.  相似文献   

6.
Bosak T  Greene SE  Newman DK 《Geobiology》2007,5(2):119-126
Although cyanobacteria are the dominant primary producers in modern stromatolites and other microbialites, the oldest stromatolites pre-date geochemical evidence for oxygenic photosynthesis and cyanobacteria in the rock record. As a step towards the development of laboratory models of stromatolite growth, we tested the potential of a metabolically ancient anoxygenic photosynthetic bacterium to build stromatolites. This organism, Rhodopseudomonas palustris, stimulates the precipitation of calcite in solutions already highly saturated with respect to calcium carbonate, and greatly facilitates the incorporation of carbonate grains into proto-lamina (i.e. crusts). The appreciable stimulation of the growth of proto-lamina by a nonfilamentous anoxygenic microbe suggests that similar microbes may have played a greater role in the formation of Archean stromatolites than previously assumed.  相似文献   

7.
Ancient biologically mediated sedimentary carbonate deposits, including stromatolites and other microbialites, provide insight into environmental conditions on early Earth. The primary limitation to interpreting these records is our lack of understanding regarding microbial processes and the preservation of geochemical signatures in contemporary microbialite systems. Using a combination of metagenomic sequencing and isotopic analyses, this study describes the identity, metabolic potential and chemical processes of microbial communities from living microbialites from Cuatro Ciénegas, Mexico. Metagenomic sequencing revealed a diverse, redox-dependent microbial community associated with the microbialites. The microbialite community is distinct from other marine and freshwater microbial communities, and demonstrates extensive environmental adaptation. The microbialite metagenomes contain a large number of genes involved in the production of exopolymeric substances and the formation of biofilms, creating a complex, spatially structured environment. In addition to the spatial complexity of the biofilm, microbial activity is tightly controlled by sensory and regulatory systems, which allow for coordination of autotrophic and heterotrophic processes. Isotopic measurements of the intracrystalline organic matter demonstrate the importance of heterotrophic respiration of photoautotrophic biomass in the precipitation of calcium carbonate. The genomic and stable isotopic data presented here significantly enhance our evolving knowledge of contemporary biomineralization processes, and are directly applicable to studies of ancient microbialites.  相似文献   

8.
Offshore facies of the Mesoproterozoic Sulky Formation, Dismal Lakes Group, arctic Canada, preserve microbialites with unusual morphology. These microbialites grew in water depths greater than several tens of meters and correlate with high‐relief conical stromatolites of the more proximal September Lake reef complex. The gross morphology of these microbial facies consists of ridge‐like vertical supports draped by concave‐upward, subhorizontal elements, resulting in tent‐shaped cuspate microbialites with substantial primary void space. Morphological and petrographic analyses suggest a model wherein penecontemporaneous upward growth of ridge elements and development of subhorizontal draping elements initially resulted in a buoyantly supported, unlithified microbial form. Lithification began via precipitation within organic elements during microbialite growth. Mineralization either stabilized or facilitated collapse of initially neutrally buoyant microbialite forms. Microbial structures and breccias were then further stabilized by precipitation of marine herringbone cement. During late‐stage diagenesis, remaining void space was occluded by ferroan dolomite cement. Cuspate microbialites are most similar to those found in offshore facies of Neoarchean carbonate platforms and to unlithified, buoyantly supported microbial mats in modern ice‐covered Antarctic lakes. We suggest that such unusual microbialite morphologies are a product of the interaction between motile and non‐motile communities under nutrient‐limiting conditions, followed by early lithification, which served to preserve the resultant microbial form. The presence of marine herringbone cement, commonly associated with high dissolved inorganic carbon (DIC), low O2 conditions, also suggests growth in association with reducing environments at or near the seafloor or in conjunction with a geochemical interface. Predominance of coniform stromatolite forms in the Proterozoic—across a variety of depositional environments—may thus reflect a combination of heterogeneous nutrient distribution, potentially driven by variable redox conditions, and an elevated carbonate saturation state, which permits preservation of these unusual microbialite forms.  相似文献   

9.
The role of microorganisms in microbialite formation remains unresolved: do they induce mineral precipitation (microbes first) or do they colonize and/or entrap abiotic mineral precipitates (minerals first)? Does this role vary from one species to another? And what is the impact of mineral precipitation on microbial ecology? To explore potential biogenic carbonate precipitation, we studied cyanobacteria–carbonate assemblages in modern hydromagnesite-dominated microbialites from the alkaline Lake Alchichica (Mexico), by coupling three-dimensional imaging of molecular fluorescence emitted by microorganisms, using confocal laser scanning microscopy, and Raman scattering/spectrometry from the associated minerals at a microscale level. Both hydromagnesite and aragonite precipitate within a complex biofilm composed of photosynthetic and other microorganisms. Morphology and pigment-content analysis of dominant photosynthetic microorganisms revealed up to six different cyanobacterial morphotypes belonging to Oscillatoriales, Chroococcales, Nostocales and Pleurocapsales, as well as several diatoms and other eukaryotic microalgae. Interestingly, one of these morphotypes, Pleurocapsa-like, appeared specifically associated with aragonite minerals, the oldest parts of actively growing Pleurocapsa-like colonies being always aragonite-encrusted. We hypothesize that actively growing cells of Pleurocapsales modify local environmental conditions favoring aragonite precipitation at the expense of hydromagnesite, which precipitates at seemingly random locations within the biofilm. Therefore, at least part of the mineral precipitation in Alchichica microbialites is most likely biogenic and the type of biominerals formed depends on the nature of the phylogenetic lineage involved. This observation may provide clues to identify lineage-specific biosignatures in fossil stromatolites from modern to Precambrian times.  相似文献   

10.
The use of metals as biosignatures in the fossil stromatolite record requires understanding of the processes controlling the initial metal(loid) incorporation and diagenetic preservation in living microbialites. Here, we report the distribution of metals and the organic fraction within the lithifying microbialite of the hypersaline Big Pond Lake (Bahamas). Using synchrotron‐based X‐ray microfluorescence, confocal, and biphoton microscopies at different scales (cm–μm) in combination with traditional geochemical analyses, we show that the initial cation sorption at the surface of an active microbialite is governed by passive binding to the organic matrix, resulting in a homogeneous metal distribution. During early diagenesis, the metabolic activity in deeper microbialite layers slows down and the distribution of the metals becomes progressively heterogeneous, resulting from remobilization and concentration as metal(loid)‐enriched sulfides, which are aligned with the lamination of the microbialite. In addition, we were able to identify globules containing significant Mn, Cu, Zn, and As enrichments potentially produced through microbial activity. The similarity of the metal(loid) distributions observed in the Big Pond microbialite to those observed in the Archean stromatolites of Tumbiana provides the foundation for a conceptual model of the evolution of the metal distribution through initial growth, early diagenesis, and fossilization of a microbialite, with a potential application to the fossil record.  相似文献   

11.
Mata SA  Bottjer DJ 《Geobiology》2012,10(1):3-24
Widespread development of microbialites characterizes the substrate and ecological response during the aftermath of two of the 'big five' mass extinctions of the Phanerozoic. This study reviews the microbial response recorded by macroscopic microbial structures to these events to examine how extinction mechanism may be linked to the style of microbialite development. Two main styles of response are recognized: (i) the expansion of microbialites into environments not previously occupied during the pre-extinction interval and (ii) increases in microbialite abundance and attainment of ecological dominance within environments occupied prior to the extinction. The Late Devonian biotic crisis contributed toward the decimation of platform margin reef taxa and was followed by increases in microbialite abundance in Famennian and earliest Carboniferous platform interior, margin, and slope settings. The end-Permian event records the suppression of infaunal activity and an elimination of metazoan-dominated reefs. The aftermath of this mass extinction is characterized by the expansion of microbialites into new environments including offshore and nearshore ramp, platform interior, and slope settings. The mass extinctions at the end of the Triassic and Cretaceous have not yet been associated with a macroscopic microbial response, although one has been suggested for the end-Ordovician event. The case for microbialites behaving as 'disaster forms' in the aftermath of mass extinctions accurately describes the response following the Late Devonian and end-Permian events, and this may be because each is marked by the reduction of reef communities in addition to a suppression of bioturbation related to the development of shallow-water anoxia.  相似文献   

12.
Pavilion Lake in British Columbia, Canada, is home to modern‐day microbialites that are actively growing at multiple depths within the lake. While microbialite morphology changes with depth and previous isotopic investigations suggested a biological role in the formation of these carbonate structures, little is known about their microbial communities. Microbialite samples acquired through the Pavilion Lake Research Project (PLRP) were first investigated for phototrophic populations using Cyanobacteria‐specific primers and 16S rRNA gene cloning. These data were expounded on by high‐throughput tagged sequencing analyses of the general bacteria population. These molecular analyses show that the microbial communities of Pavilion Lake microbialites are diverse compared to non‐lithifying microbial mats also found in the lake. Phototrophs and heterotrophs were detected, including species from the recently described Chloroacidobacteria genus, a photoheterotroph that has not been previously observed in microbialite systems. Phototrophs were shown as the most influential contributors to community differences above and below 25 meters, and corresponding shifts in heterotrophic populations were observed at this interface as well. The isotopic composition of carbonate also mirrored this shift in community states. Comparisons to previous studies indicated this population shift may be a consequence of changes in lake chemistry at this depth. Microbial community composition did not correlate with changing microbialite morphology with depth, suggesting something other than community changes may be a key to observed variations in microbialite structure.  相似文献   

13.
The shallow marine and subaerial sedimentary and hydrothermal rocks of the ~3.48 billion‐year‐old Dresser Formation are host to some of Earth's oldest stromatolites and microbial remains. This study reports on texturally distinctive, spherulitic barite micro‐mineralization that occur in association with primary, autochthonous organic matter within exceptionally preserved, strongly sulfidized stromatolite samples obtained from drill cores. Spherulitic barite micro‐mineralization within the sulfidized stromatolites generally forms submicron‐scale aggregates that show gradations from hollow to densely crystallized, irregular to partially radiating crystalline interiors. Several barite micro‐spherulites show thin outer shells. Within stromatolites, barite micro‐spherulites are intimately associated with petrographically earliest dolomite and nano‐porous pyrite enriched in organic matter, the latter of which is a possible biosignature assemblage that hosts microbial remains. Barite spherulites are also observed within layered barite in proximity to stromatolite layers, where they are overgrown by compositionally distinct (Sr‐rich), coarsely crystalline barite that may have been sourced from hydrothermal veins at depth. Micro‐spherulitic barite, such as reported here, is not known from hydrothermal systems that exceed the upper temperature limit for life. Rather, barite with near‐identical morphology and micro‐texture is known from zones of high bio‐productivity under low‐temperature conditions in the modern oceans, where microbial activity and/or organic matter of degrading biomass controls the formation of spherulitic aggregates. Hence, the presence of micro‐spherulitic barite in the organic matter‐bearing Dresser Formation sulfidized stromatolites lend further support for a biogenic origin of these unusual, exceptionally well‐preserved, and very ancient microbialites.  相似文献   

14.
Abundant isolated specimens of microconchid tubes have been extracted from a microbialite deposit near the Permian–Triassic boundary (PTB) in the Dajiang section, southern Guizhou Province, South China. They are assignable to Microconchus aff. utahensis, M. aff. aberrans and Helicoconchus aff. elongatus, all of which possess micro‐lamellar tube walls. Quantitative analysis of bulk samples indicates that most microconchids occur in the upper part of the PTB microbialite deposit and show substrate selectivity for bioclastic grainstone–packstones. In contrast, very few microconchids were found in the rocks bearing well‐developed microbialite structures. Both stratigraphical and substrate preferences indicate proliferation of microconchids coincided with an ebb of microbialite development. Microconchids therefore only proliferated in local niches in which microbial activities were not very active within the PTB microbialite ecosystem. The presence of abundant microconchids further strengthens the impression that PTB microbialite metazoans are much more diverse than previously thought. The end‐Permian mass extinction is calibrated to the base of microbialite deposit in South China. Thus, abundant microbialite metazoans, such as ostracods, lingulid brachiopods, microgastropods and microconchids, together with the considerable, temporarily surviving faunas reported from non‐microbialite PTB sections in South China, indicate that metazoans diversified immediately after the first episode of the end‐Permian mass extinction, supporting the scenario that marine ecosystems underwent episodic collapses during the devastating biocrisis over the Permian–Triassic transition.  相似文献   

15.
Modern microbialites are often located within groundwater discharge zones, yet the role of groundwater in microbialite accretion has yet to be resolved. To understand relationships between groundwater, microbialites, and associated microbial communities, we quantified and characterized groundwater flow and chemistry in active thrombolitic microbialites in Lake Clifton, Western Australia, and compared these observations to inactive thrombolites and lakebed sediments. Groundwater flows upward through an interconnected network of pores within the microstructure of active thrombolites, discharging directly from thrombolite heads into the lake. This upwelling groundwater is fresher than lake water and is hypothesized to support microbial mat growth by reducing salinity and providing limiting nutrients in an osmotically stressful and oligotrophic habitat. This is in contrast to inactive thrombolites that show no evidence of microbial mat colonization and are infiltrated by hypersaline lake water. Groundwater discharge through active thrombolites contrasts with the surrounding lakebed, where hypersaline lake water flows downward through sandy sediments at very low rates. Based on an appreciation for the role of microorganisms in thrombolite accretion, our findings suggest conditions favorable to thrombolite formation still exist in certain locations of Lake Clifton despite increasing lake water salinity. This study is the first to characterize groundwater flow rates, paths, and chemistry within a microbialite‐forming environment and provides new insight into how groundwater can support microbial mats believed to contribute to microbialite formation in modern and ancient environments.  相似文献   

16.
Recurrent microbialite proliferations during the Early Triassic are usually explained by ecological relaxation and abnormal oceanic conditions. Most Early Triassic microbialites are described as single or multiple lithological units without detailed ecological information about lateral and coeval fossiliferous deposits. Exposed rocks along Workman Wash in the Hurricane Cliffs (southwestern Utah, USA) provide an opportunity to reconstruct the spatial relationships of late Smithian microbialites with adjacent and contemporaneous fossiliferous sediments. Microbialites deposited in an intertidal to subtidal interior platform are intercalated between inner tidal flat dolosiltstones and subtidal bioturbated fossiliferous limestones. Facies variations along these fossiliferous deposits and microbialites can be traced laterally over a few hundreds of meters. Preserved organisms reflect a moderately diversified assemblage, contemporaneous to the microbialite formation. The presence of such a fauna, including some stenohaline organisms (echinoderms), indicates that the development of these late Smithian microbial deposits occurred in normal-marine waters as a simple facies belt subject to relative sea-level changes. Based on this case study, the proliferation of microbialites cannot be considered as direct evidence for presumed harsh environmental conditions.  相似文献   

17.
We here show that nano‐scale mapping of elements commonly utilized in biological cycles provides a promising new additional line of evidence when evaluating the extent of the contribution of biology to microbialites. Our case study comes from Lake Clifton in Western Australia, a unique environment where living domical and conical microbialites occur in close proximity to ≤4000‐year‐old fossilized equivalents. The outer margins of a partially lithified, actively growing Lake Clifton microbialite are characterized by abundant filamentous cyanobacteria within a loosely cemented aragonite matrix. Nano‐scale chemical maps have been successfully matched to specific morphological features such as trichomes, sheaths and putative extracellular polymeric substances (EPS). A suite of elements (C, O, Mg, N, Si, S) is concentrated within cyanobacterial sheaths, with carbon, magnesium, nitrogen and sulfur also enriched within trichomes and putative EPS. Calcium distribution highlights the sites of aragonite mineralization. In contrast, the fossilized Lake Clifton microbialite contains only rare, extensively degraded cyanobacterial filaments, the mean diameter of which is <50% of the living equivalents. Nevertheless, nano‐scale chemical maps can again be matched with morphological features. Here, poorly preserved filamentous microfossils are highlighted by enrichments in nitrogen and sulfur. Magnesium is no longer concentrated within the filaments, instead it co‐occurs with calcium and oxygen in the calcite cement. Extension of this study to a ∼2720‐million‐year‐old stromatolitic microbialite from the Tumbiana Formation of Western Australia shows that similar nano‐scale signals, in particular nitrogen and sulfur enrichments, are characteristic of stromatolite laminations, even when morphological microfossils are absent. The close similarities of nano‐scale elemental distributions in organic material from modern and ancient microbialites show that this technique provides a valuable addition to the morphological investigation of such structures, particularly in non‐fossiliferous ancient examples.  相似文献   

18.
A railroad causeway across Great Salt Lake, Utah (GSL), has restricted water flow since its construction in 1959, resulting in a more saline North Arm (NA; 24%–31% salinity) and a less saline South Arm (SA; 11%–14% salinity). Here, we characterized microbial carbonates collected from the SA and the NA to evaluate the effect of increased salinity on community composition and abundance and to determine whether the communities present in the NA are still actively precipitating carbonate or if they are remnant features from prior to causeway construction. SSU rRNA gene abundances associated with the NA microbialite were three orders of magnitude lower than those associated with the SA microbialite, indicating that the latter community is more productive. SSU rRNA gene sequencing and functional gene microarray analyses indicated that SA and NA microbialite communities are distinct. In particular, abundant sequences affiliated with photoautotrophic taxa including cyanobacteria and diatoms that may drive carbonate precipitation and thus still actively form microbialites were identified in the SA microbialite; sequences affiliated with photoautotrophic taxa were in low abundance in the NA microbialite. SA and NA microbialites comprise smooth prismatic aragonite crystals. However, the SA microbialite also contained micritic aragonite, which can be formed as a result of biological activity. Collectively, these observations suggest that NA microbialites are likely to be remnant features from prior to causeway construction and indicate a strong decrease in the ability of NA microbialite communities to actively precipitate carbonate minerals. Moreover, the results suggest a role for cyanobacteria and diatoms in carbonate precipitation and microbialite formation in the SA of GSL.  相似文献   

19.
Many Antarctic lakes provide habitat for extensive microbial mats that respond on various timescales to environmental change. Lake Joyce contains calcifying microbialites and provides a natural laboratory to constrain how environmental changes influence microbialite development. In Lake Joyce, depth-specific distributions of calcitic microbialites, organic carbon, photosynthetic pigments and photosynthetic potential cannot be explained by current growth conditions, but are a legacy of a 7-m lake level rise between 1973 and 2009. In the well-illuminated margins of the lake, photosynthetically active benthic communities colonised surfaces submerged for just a few years. However, observed increases in accumulated organic material with depth from 5 to 20 m (2-40 mg ash-free dry weight cm(-2)) and the presence of decimetre-scale calcite microbialites at 20-22 m depth, apparently related to in situ photosynthetic growth, are inconsistent with the current distributions of irradiance, photosynthetic pigments and mat photosynthetic potential (as revealed by pulse-amplitude-modulated fluorometry). The microbialites appeared photosynthetically active in 1986 and 1997, but were outside the depth zone where significant phototrophic growth was possible and were weakly photosynthetically competent in 2009. These complex microbial structures have persisted after growth has ceased, demonstrating how fluctuating environmental conditions and the hysteresis between environmental change, biological response and microbialite development can be important factors to consider when interpreting modern, and by inference ancient, microbially mediated structures.  相似文献   

20.
新元古代奇异叠层石和凝块石中可疑的动物活动证据   总被引:6,自引:0,他引:6  
曹瑞骥 《古生物学报》1999,38(3):291-304
在湖北保康马桥地区,新元古代神农架群石家冲组产出一套奇异的叠层石,凝块石和叠层石-凝块石联合体。其中叠层石具类似于食草和钻孔动物破坏的疤痕,通过对上述构造形态和特征分析,这些构造可能与后生动物的活动有关,但也不排除它们是非生物成因的可能。这些后生动物似乎已显示高度发育的行为。当前的资料表明,在凝块石构造与食草和钻孔动物生态效应之间似乎存在着一种紧密的联系,在生物进化史上,寒武纪生命大爆发似乎仅是一  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号