首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synechococcus species are important primary producers in coastal and open‐ocean ecosystems. When nitrate was provided as the sole nitrogen source, nickel starvation inhibited the growth of strains WH8102 and WH7803, while it had little effect on two euryhaline strains, WH5701 and PCC 7002. Nickel was required for the acclimation of Synechococcus WH7803 to low iron and high light. In WH8102 and WH7803, nickel starvation decreased the linear electron transport activity, slowed down QA reoxidation, but increased the connectivity factor between individual photosynthetic units. Under such conditions, the reduction of their intersystem electron transport chains was expected to increase, and their cyclic electron transport around PSI would be favored. Nickel starvation decreased the total superoxide dismutase (SOD) activity of WH8102 and WH7803 by 30% and 15% of the control, respectively. The protein‐bound 63Ni of the oceanic strain WH8102 comigrated with SOD activity on nondenaturing gels and thus provided additional evidence for the existence of active NiSOD in Synechococcus WH8102. In WH7803, it seems likely that nickel starvation affected other metabolic pathways and thus indirectly affected the total SOD activity.  相似文献   

2.
Marine cyanobacteria genus Synechococcus are among the most abundant and widespread primary producers in the open ocean. Synechococcus strains belonging to different clades have adapted distinct strategies for growth and survival across a range of marine conditions. Clades I and IV are prevalent in colder, mesotrophic, coastal waters, while clades II and III prefer warm, oligotrophic open oceans. To gain insight into the cellular resources these unicellular organisms invest in adaptation strategies we performed shotgun membrane proteomics of four Synechococcus spp. strains namely CC9311 (clade I), CC9605 (clade II), WH8102 (clade III) and CC9902 (clade IV). Comparative membrane proteomes analysis demonstrated that CC9902 and WH8102 showed high resource allocation for phosphate uptake, accounting for 44% and 38% of overall transporter protein expression of the species. WH8102 showed high expression of the iron uptake ATP-binding cassette binding protein FutA, suggesting that a high binding affinity for iron is possibly a key adaptation strategy for some strains in oligotrophic ocean environments. One protein annotated as a phosphatase 2c (Sync_2505 and Syncc9902_0387) was highly expressed in the coastal mesotrophic strains CC9311 and CC9902, constituting 14%–16% of total membrane protein, indicating a vital, but undefined function, for strains living in temperate mesotrophic environments.  相似文献   

3.
Ni accumulation and utilization were studied in two strains of marine Synechococcus, isolated from both coastal (CC9311; clade I) and open-ocean (WH8102; clade III) environments, for which complete genome sequences are available. Both strains have genes encoding an Ni-containing urease and when grown on urea without Ni become Ni-N colimited. The Ni requirements of these strains also depend upon the genomic complement of genes encoding superoxide dismutase (SOD). WH8102, with a gene encoding only an Ni-SOD, has a novel obligate requirement for Ni, regardless of the N source. Reduced SOD activity in Ni-depleted cultures of WH8102 supports the link of this strain's Ni requirement to Ni-SOD. The genome of CC9311 contains a gene for a Cu/Zn-SOD in addition to a predicted pair of Ni-SODs, yet this strain cannot grow without Ni on NO3 and can grow only slowly on NH4+ without Ni, implying that the Cu/Zn-SOD cannot completely replace Ni-SOD in marine cyanobacteria. CC9311 does have a greater tolerance for Ni starvation. Both strains increase their Ni uptake capabilities and actively bioconcentrate Ni in response to decreasing extracellular and intracellular Ni. The changes in Ni uptake rates were more pronounced in WH8102 than in CC9311 and for growth on urea or nitrate than for growth on ammonia. These results, combined with an analysis of fully sequenced marine cyanobacterial genomes, suggest that the growth of many marine Synechococcus and all Prochlorococcus strains is dependent upon Ni.  相似文献   

4.
Diverse strains of the marine planktonic cyanobacterium Synechococcus sp. show consistent differences in their susceptibility to predation. We used mutants of Sargasso Sea strain WH8102 (clade III) to test the hypothesis that cell surface proteins play a role in defence against predation by protists. Predation rates by the heterotrophic dinoflagellate Oxyrrhis marina on mutants lacking the giant SwmB protein were always higher (by 1.6 to 3.9×) than those on wild-type WH8102 cells, and equalled predation rates on a clade I strain (CC9311). In contrast, absence of the SwmA protein, which comprises the S-layer (surface layer of the cell envelope that is external to the outer membrane), had no effect on predation by O. marina. Reductions in predation rate were not due to dissolved substances in Synechococcus cultures, and could not be accounted for by variations in cell hydrophobicity. We hypothesize that SwmB defends Synechococcus WH8102 by interfering with attachment of dinoflagellate prey capture organelles or cell surface receptors. Giant proteins are predicted in the genomes of multiple Synechococcus isolates, suggesting that this defence strategy may be more general. Strategies for resisting predation will contribute to the differential competitive success of different Synechococcus groups, and to the diversity of natural picophytoplankton assemblages.  相似文献   

5.
A role for cpeYZ in cyanobacterial phycoerythrin biosynthesis.   总被引:5,自引:1,他引:4       下载免费PDF全文
Pigment mutant strain FdR1 of the filamentous cyanobacterium Fremyella diplosiphon is characterized by constitutive synthesis of the phycobiliprotein phycoerythrin due to insertional inactivation of the rcaC regulatory gene by endogenous transposon Tn5469. Whereas the parental strain Fd33 harbors five genomic copies of Tn5469, cells of strain FdR1 harbor six genomic copies of the element; the sixth copy in FdR1 is localized to the rcaC gene. Electroporation of FdR1 cells yielded secondary pigment mutant strains FdR1E1 and FdR1E4, which identically exhibited the FdR1 phenotype with significantly reduced levels of phycoerythrin. In both FdR1E1 and FdR1E4, a seventh genomic copy of Tn5469 was localized to the cpeY gene of the sequenced but phenotypically uncharacterized cpeYZ gene set. This gene set is located downstream of the cpeBA operon which encodes the alpha and beta subunits of phycoerythrin. Complementation experiments correlated cpeYZ activity to the phenotype of strains FdR1E1 and FdR1E4. The predicted CpeY and CpeZ proteins share significant sequence identity with the products of homologous cpeY and cpeZ genes reported for Pseudanabaena sp. strain PCC 7409 and Synechococcus sp. strain WH 8020, both of which synthesize phycoerythrin. The CpeY and CpeZ proteins belong to a family of structurally related cyanobacterial proteins that includes the subunits of the CpcE/CpcF phycocyanin alpha-subunit lyase of Synechococcus sp. strain PCC 7002 and the subunits of the PecE/PecF phycoerythrocyanin alpha-subunit lyase of Anabaena sp. strain PCC 7120. Phycobilisomes isolated from mutant strains FdR1E1 and FdR1E4 contained equal amounts of chromophorylated alpha and beta subunits of phycoerythrin at 46% of the levels of the parental strain FdR1. These results suggest that the cpeYZ gene products function in phycoerythrin synthesis, possibly as a lyase involved in the attachment of phycoerythrobilin to the alpha or beta subunit.  相似文献   

6.
Grazing mortality of the marine phytoplankton Synechococcus is dominated by planktonic protists, yet rates of consumption and factors regulating grazer-Synechococcus interactions are poorly understood. One aspect of predator-prey interactions for which little is known are the mechanisms by which Synechococcus avoids or resists predation and, in turn, how this relates to the ability of Synechococcus to support growth of protist grazer populations. Grazing experiments conducted with the raptorial dinoflagellate Oxyrrhis marina and phylogenetically diverse Synechococcus isolates (strains WH8102, CC9605, CC9311, and CC9902) revealed marked differences in grazing rates-specifically that WH8102 was grazed at significantly lower rates than all other isolates. Additional experiments using the heterotrophic nanoflagellate Goniomonas pacifica and the filter-feeding tintinnid ciliate Eutintinnis sp. revealed that this pattern in grazing susceptibility among the isolates transcended feeding guilds and grazer taxon. Synechococcus cell size, elemental ratios, and motility were not able to explain differences in grazing rates, indicating that other features play a primary role in grazing resistance. Growth of heterotrophic protists was poorly coupled to prey ingestion and was influenced by the strain of Synechococcus being consumed. Although Synechococcus was generally a poor-quality food source, it tended to support higher growth and survival of G. pacifica and O. marina relative to Eutintinnis sp., indicating that suitability of Synechococcus varies among grazer taxa and may be a more suitable food source for the smaller protist grazers. This work has developed tractable model systems for further studies of grazer-Synechococcus interactions in marine microbial food webs.  相似文献   

7.
Iron deficiency has been considered one of the main limiting factors of phytoplankton productivity in some aquatic systems including oceans and lakes. Concomitantly, solar ultraviolet‐B radiation has been shown to have both deleterious and positive impacts on phytoplankton productivity. However, how iron‐deficient cyanobacteria respond to UV‐B radiation has been largely overlooked in aquatic systems. In this study, physiological responses of four cyanobacterial strains (Microcystis and Synechococcus), which are widely distributed in freshwater or marine systems, were investigated under different UV‐B irradiances and iron conditions. The growth, photosynthetic pigment composition, photosynthetic activity, and nonphotochemical quenching of the different cyanobacterial strains were drastically altered by enhanced UV‐B radiation under iron‐deficient conditions, but were less affected under iron‐replete conditions. Intracellular reactive oxygen species (ROS) and iron content increased and decreased, respectively, with increased UV‐B radiation under iron‐deficient conditions for both Microcystis aeruginosa FACHB 912 and Synechococcus sp. WH8102. On the contrary, intracellular ROS and iron content of these two strains remained constant and increased, respectively, with increased UV‐B radiation under iron‐replete conditions. These results indicate that iron‐deficient cyanobacteria are more susceptible to enhanced UV‐B radiation. Therefore, UV‐B radiation probably plays an important role in influencing primary productivity in iron‐deficient aquatic systems, suggesting that its effects on the phytoplankton productivity may be underestimated in iron‐deficient regions around the world.  相似文献   

8.
Thirty-two strains of phycoerythrin-containing marine picocyanobacteria were screened for the capacity to produce cyanophycin, a nitrogen storage compound synthesized by some, but not all, cyanobacteria. We found that one of these strains, Synechococcus sp. strain G2.1 from the Arabian Sea, was able to synthesize cyanophycin. The cyanophycin extracted from the cells was composed of roughly equimolar amounts of arginine and aspartate (29 and 35 mol%, respectively), as well as a small amount of glutamate (15 mol%). Phylogenetic analysis, based on partial 16S ribosomal DNA (rDNA) sequence data, showed that Synechococcus sp. strain G2.1 formed a well-supported clade with several strains of filamentous cyanobacteria. It was not closely related to several other well-studied marine picocyanobacteria, including Synechococcus strains PCC7002, WH7805, and WH8018 and Prochlorococcus sp. strain MIT9312. This is the first report of cyanophycin production in a phycoerythrin-containing strain of marine or halotolerant Synechococcus, and its discovery highlights the diversity of this ecologically important functional group.  相似文献   

9.
The recA gene of Synechococcus sp. strain PCC 7002 was detected and cloned from a lambda gtwes genomic library by heterologous hybridization by using a gene-internal fragment of the Escherichia coli recA gene as the probe. The gene encodes a 38-kilodalton polypeptide which is antigenically related to the RecA protein of E. coli. The nucleotide sequence of a portion of the gene was determined. The translation of this region was 55% homologous to the E. coli protein; allowances for conservative amino acid replacements yield a homology value of about 74%. The cyanobacterial recA gene product was proficient in restoring homologous recombination and partial resistance to UV irradiation to recA mutants of E. coli. Heterologous hybridization experiments, in which the Synechococcus sp. strain PCC 7002 recA gene was used as the probe, indicate that a homologous gene is probably present in all cyanobacterial strains.  相似文献   

10.
Two Synechococcus strains from the Culture Collection of the Institute for Marine Sciences of Andalusia (Cádiz, Spain), namely Syn01 and Syn02, were found to be closely related to the model strain Synechococcus sp. PCC7002 according to 16S rDNA (99% identity). Pigment and lipid profiles and crtR genes of these strains were ascertained and compared. The sequences of the crtR genes of these strains were constituted by 888 bp, and showed 99% identity between Syn01 and Syn02, and 94% identity of Syn01 and Syn02 to Synechococcus sp. PCC7002. There was coincidence in photosynthetic pigments between the three strains apart from the pigment synechoxanthin, which could be only observed in Synechococcus sp. PCC7002. Species of sulfoquinovosyl‐diacyl‐glycerol (SQDG), phosphatidyl‐glycerol (PG), mono‐ and di‐galactosyl‐diacyl‐glycerol (MGDG and DGDG) were detected by high performance liquid chromatography‐mass spectrometry analysis of lipid extracts. The most abundant species within each lipid class were those containing C18:3 together with C16:0 fatty acyl substituents in the glycerol backbone of the same molecule. From these results it is concluded that these cyanobacterial strains belong to group 2 of the lipid classification of cyanobacteria.  相似文献   

11.
12.
Thirty-two strains of phycoerythrin-containing marine picocyanobacteria were screened for the capacity to produce cyanophycin, a nitrogen storage compound synthesized by some, but not all, cyanobacteria. We found that one of these strains, Synechococcus sp. strain G2.1 from the Arabian Sea, was able to synthesize cyanophycin. The cyanophycin extracted from the cells was composed of roughly equimolar amounts of arginine and aspartate (29 and 35 mol%, respectively), as well as a small amount of glutamate (15 mol%). Phylogenetic analysis, based on partial 16S ribosomal DNA (rDNA) sequence data, showed that Synechococcus sp. strain G2.1 formed a well-supported clade with several strains of filamentous cyanobacteria. It was not closely related to several other well-studied marine picocyanobacteria, including Synechococcus strains PCC7002, WH7805, and WH8018 and Prochlorococcus sp. strain MIT9312. This is the first report of cyanophycin production in a phycoerythrin-containing strain of marine or halotolerant Synechococcus, and its discovery highlights the diversity of this ecologically important functional group.  相似文献   

13.
We examined the physiology and biochemistry associated with the iron-limited continuous culture of the halotolerant cyanobacterium Synechococcus PCC 7002. Biomass production, photosynthetic pigment levels, photosynthetic efficiency, and the production of hydroxamate- and catechol-type siderophores are reported for cells grown over a range of available iron concentrations. The relationship between the yield of Synechococcus PCC 7002 in iron-limited chemostats and the concentration of available iron was not linear. Synechococcus PCC 7002 expressed an inducible physiological response that led to alterations either in the cellular iron quotient or, more likely, in levels of available iron due to induced iron-scavenging processes. During iron limitation these cyanobacteria produced components consistent with the activation of a high-affinity iron transport system; both hydroxamate- and catechol-type siderophores were detected. Iron-limited Synechococcus PCC 7002 also reduced CO2 fixation rates from luxury levels to a rate that matched the cellular growth rate, presenting interesting implications for oceanic carbon flux models.  相似文献   

14.
The pathway for phycocyanobilin biosynthesis in Synechococcus sp. strain PCC 7002 comprises two enzymes: heme oxygenase and phycocyanobilin synthase (PcyA). The phycobilin content of cells can be modified by overexpressing genes encoding alternative enzymes for biliverdin reduction. Overexpression of the pebAB and HY2 genes, encoding alternative ferredoxin-dependent biliverdin reductases, caused unique effects due to the overproduction of phycoerythrobilin and phytochromobilin, respectively. Colonies overexpressing pebAB became reddish brown and visually resembled strains that naturally produce phycoerythrin. This was almost exclusively due to the replacement of phycocyanobilin by phycoerythrobilin on the phycocyanin α-subunit. This phenotype was unstable, and such strains rapidly reverted to the wild-type appearance, presumably due to strong selective pressure to inactivate pebAB expression. Overproduction of phytochromobilin, synthesized by the Arabidopsis thaliana HY2 product, was tolerated much better. Cells overexpressing HY2 were only slightly less pigmented and blue-green than the wild type. Although the pcyA gene could not be inactivated in the wild type, pcyA was easily inactivated when cells expressed HY2. These results indicate that phytochromobilin can functionally substitute for phycocyanobilin in Synechococcus sp. strain PCC 7002. Although functional phycobilisomes were assembled in this strain, the overall phycobiliprotein content of cells was lower, the efficiency of energy transfer by these phycobilisomes was lower than for wild-type phycobilisomes, and the absorption cross-section of the cells was reduced relative to that of the wild type because of an increased spectral overlap of the modified phycobiliproteins with chlorophyll a. As a result, the strain producing phycobiliproteins carrying phytochromobilin grew much more slowly at low light intensity.  相似文献   

15.
The gene alr0617, from the cyanobacterium Anabaena sp. PCC7120, which is homologous to cpeS from Gloeobacter violaceus PCC 7421, Fremyella diplosiphon (Calothrix PCC7601), and Synechococcus sp. WH8102, and to cpcS from Synechococcus sp. PCC7002, was overexpressed in Escherichia coli. CpeS acts as a phycocyanobilin: Cys-beta84-phycobiliprotein lyase that can attach, in vitro and in vivo, phycocyanobilin (PCB) to cysteine-beta84 of the apo-beta-subunits of C-phycocyanin (CpcB) and phycoerythrocyanin (PecB). We found the following: (a) In vitro, CpeS attaches PCB to native CpcB and PecB, and to their C155I-mutants, but not to the C84S mutants. Under optimal conditions (150 mm NaCl and 500 mm potassium phosphate, 37 degrees C, and pH 7.5), no cofactors are required, and the lyase had a Km(PCB) = 2.7 and 2.3 microm, and a kcat = 1.7 x 10(-5) and 1.1 x 10(-5) s(-1) for PCB attachment to CpcB (C155I) and PecB (C155I), respectively; (b) Reconstitution products had absorption maxima at 619 and 602 nm and fluorescence emission maxima at 643 and 629 nm, respectively; and (c) PCB-CpcB(C155I) and PCB-PecB(C155I), with the same absorption and fluorescence maxima, were also biosynthesized heterologously in vivo, when cpeS was introduced into E. coli with cpcB(C155I) or pecB(C155I), respectively, together with genes ho1 (encoding heme oxygenase) and pcyA (encoding PCB:ferredoxin oxidoreductase), thereby further proving the lyase function of CpeS.  相似文献   

16.
The cyanobacteria Synechococcus and Prochlorococcus are important primary producers in marine ecosystems. Because currently available approaches for estimating microbial growth rates can be difficult to apply in the field, we have been exploring the feasibility of using quantitative rRNA measurements as the basis for making such estimates. In this study we examined the relationship between rRNA and growth rate in several Synechococcus and Prochlorococcus strains over a range of light‐regulated growth rates. Whole‐cell hybridization with fluorescently labeled peptide nucleic acid (PNA) probes was used in conjunction with flow cytometry to quantify rRNA on a per cell basis. This PNA probing technique allowed rRNA analysis in a phycoerythrin‐containing Synechococcus strain (WH7803) and in a non–phycoerythrin‐containing strain and in Prochlorococcus. All the strains showed a qualitatively similar tri‐phasic relationship between rRNA·cell?1 and growth rate, involving relatively little change in rRNA·cell?1 at low growth rates, linear increase at intermediate growth rates, and a plateau and/or decrease at the highest growth rates. The onset of each phase was associated with the relative, rather than absolute, growth rate of each strain. In the Synechococcus strains, rRNA normalized to flow cytometrically measured forward angle light scatter (an indicator of size) was well‐correlated with growth rate across strains. These findings support the idea that cellular rRNA may be useful as an indicator of in situ growth rate in natural Synechococcus and Prochlorococcus populations.  相似文献   

17.
Phylogenetic relationships among members of the marine Synechococcus genus were determined following sequencing of the 16S ribosomal DNA (rDNA) from 31 novel cultured isolates from the Red Sea and several other oceanic environments. This revealed a large genetic diversity within the marine Synechococcus cluster consistent with earlier work but also identified three novel clades not previously recognized. Phylogenetic analyses showed one clade, containing halotolerant isolates lacking phycoerythrin (PE) and including strains capable, or not, of utilizing nitrate as the sole N source, which clustered within the MC-A (Synechococcus subcluster 5.1) lineage. Two copies of the 16S rRNA gene are present in marine Synechococcus genomes, and cloning and sequencing of these copies from Synechococcus sp. strain WH 7803 and genomic information from Synechococcus sp. strain WH 8102 reveal these to be identical. Based on the 16S rDNA sequence information, clade-specific oligonucleotides for the marine Synechococcus genus were designed and their specificity was optimized. Using dot blot hybridization technology, these probes were used to determine the in situ community structure of marine Synechococcus populations in the Red Sea at the time of a Synechococcus maximum during April 1999. A predominance of genotypes representative of a single clade was found, and these genotypes were common among strains isolated into culture. Conversely, strains lacking PE, which were also relatively easily isolated into culture, represented only a minor component of the Synechococcus population. Genotypes corresponding to well-studied laboratory strains also appeared to be poorly represented in this stratified water column in the Red Sea.  相似文献   

18.
Lipopolysaccharide (LPS) is the first defense against changing environmental factors for many bacteria. Here, we report the first structure of the LPS from cyanobacteria based on two strains of marine Synechococcus, WH8102 and CC9311. While enteric LPS contains some of the most complex carbohydrate residues in nature, the full-length versions of these cyanobacterial LPSs have neither heptose nor 3-deoxy-d-manno-octulosonic acid (Kdo) but instead 4-linked glucose as their main saccharide component, with low levels of glucosamine and galacturonic acid also present. Matrix-assisted laser desorption ionization mass spectrometry of the intact minimal core LPS reveals triacylated and tetraacylated structures having a heterogeneous mix of both hydroxylated and nonhydroxylated fatty acids connected to the diglucosamine backbone and a predominantly glucose outer core-like region for both strains. WH8102 incorporated rhamnose in this region as well, contributing to differences in sugar composition and possibly nutritional differences between the strains. In contrast to enteric lipid A, which can be liberated from LPS by mild acid hydrolysis, lipid A from these organisms could be produced by only two novel procedures: triethylamine-assisted periodate oxidation and acetolysis. The lipid A contains odd-chain hydroxylated fatty acids, lacks phosphate, and contains a single galacturonic acid. The LPS lacks any limulus amoebocyte lysate gelation activity. The highly simplified nature of LPSs from these organisms leads us to believe that they may represent either a primordial structure or an adaptation to the relatively higher salt and potentially growth-limiting phosphate levels in marine environments.Lipopolysaccharide (LPS) in the outer membrane layer is known to be the first line of defense against environmental factors in many gram-negative organisms, preventing lysis by complement, antimicrobial peptides and detergents (17, 21, 47). In proteobacteria, 3-deoxy-d-manno-octulosonic acid (Kdo), heptose, and phosphate are key parts of the conserved inner core of the LPS which connects the less-well-conserved outer core and sometimes an attached polysaccharide to the lipid A anchor. Why heptose is so well conserved is a mystery, but the prevalence of Kdo and phosphate may be related to the charge which they impart to the outer membrane and to their ability to bind divalent cations. The Kdo-phosphate metal binding center is capable of binding calcium with a dissociation constant (Kd) of 12 to 13 μM (28). This high-affinity binding of divalent cations is known to be necessary for the low permeability of LPS bilayers to some antibiotics (32), and it has been hypothesized that divalent cation cross-bridges may link LPS molecules on the bacterial cell surfaces of enterobacteria into a giant complex with very low membrane permeability (16).Though the LPSs of many proteobacteria are well characterized, the LPSs from cyanobacteria are much less studied. The cell envelopes of cyanobacteria resemble those of gram-negative bacteria structurally, consisting of a cytoplasmic membrane, a peptidoglycan layer, an outer membrane containing LPS, and sometimes additional structures (9, 14). Previous chemical analyses have shown the LPS of some cyanobacteria to be devoid of phosphate, Kdo, and heptose (11, 12, 42, 43). Given the lack of Kdo in these organisms as well as the fact that the lability of the Kdo-glucosamine ketosidic linkage allows for the mild acid hydrolysis of LPS to lipid A, it is perhaps not surprising that many attempts at hydrolysis of cyanobacterial LPS to lipid A have failed (for an example, see reference 29).Within the cyanobacteria, the genus Synechococcus represents a polyphyletic group of unicellular morphotypes. Synechococcus cells are found in both freshwater and marine environments. Organisms from group A Synechococcus and its sister taxon Prochlorococcus are extremely important primary producers in marine environments, with multiple “clades” similar to “species” described for other bacteria, dominating in different environments (3, 22). Unlike enterobacteria, which must frequently contend with an onslaught of host factors, members of the Synechococcus face grazing by protists and bacteriophages as their primary survival challenges.The genome of Synechococcus sp. strain CC9311 has been shown to be devoid of the genes for Kdo biosynthesis, while strain WH8102 has several putative genes for Kdo biosynthesis (18, 20). This suggests that the LPS of cyanobacteria could be significantly different from that of enteric bacteria and could show species/strain variation as well. A comparison of the structures of LPS from cyanobacteria and enterobacteria would afford a unique opportunity to understand which elements of LPS structure are essential to bacterial survival and which are adaptations to the environment in which the bacteria live. To further this understanding, we present here an analysis of the LPS structure from two strains of marine Synechococcus: an open-ocean-dwelling strain having the putative genes for Kdo biosynthesis (strain WH8102; clade III) and a coastal strain lacking these genes (strain CC9311; clade I). We further present two novel methods for producing lipid A from bacteria lacking the labile Kdo ketosidic linkage.  相似文献   

19.
The genes for the alpha and beta subunits of a novel six bilin-bearing (class II) phycoerythrin were cloned from Synechococcus sp. WH8020 and sequenced. The cloned genes (mpeA and mpeB) were detected by homology with the genes for C-phycoerythrin from Pseudanabaena sp. PCC7409. The mpe locus occurs once in the genome and is arranged similarly to that of many other phycobiliproteins, with mpeA shortly 3' of mpeB. Sequence comparison suggests that this phycoerythrin (and perhaps all class II phycoerythrins) occupy a branch of the phycoerythrin family separate from five-chromophore per alpha beta (class I) phycoerythrins, C-phycoerythrin, and B-phycoerythrin. The position of the sixth chromophore of the class II phycoerythrin of WH8020 was determined by comparison of the amino acid sequence of the chromopeptides (Ong, L. J., and Glazer, A. N. (1991) J. Biol Chem. 266, 9515-9527) with the sequence deduced from the gene. This located the chromophore at residue 75 of the alpha subunit, very close to the alpha-83 chromophore in the primary structure and, presumably, in the three-dimensional structure.  相似文献   

20.
The fatty acid composition of two motile (strains WH 8113 and WH 8103) and one nonmotile (strain WH 7803) marine cyanobacteria has been determined and compared with two freshwater unicellular Synechocystis species (strain PCC 6308 and PCC 6803). The fatty acid composition of lipid extracts of isolated membranes from Synechocystis PCC 6803 was found to be identical to that of whole cells. All the marine strains contained myristic acid (14:0) as the major fatty acid, with only traces of polyunsaturated fatty acids. This composition is similar to Synechocystis PCC 6308. The major lipid classes of the nonmotile marine strain were identified as digalactosyl diacylglycerol, monogalactosyl diacylglycerol, phosphatidylglycerol, and sulfoquinovosyl diacylglycerol, identical to those found in other cyanobacteria.Abbreviations DGDG Digalactosyl diacylglycerol - MGDG Monogalactosyldiacylglycerol - PG Phosphatidylglycerol - SGDG sulfoquinovosyl diacylglycerol - gc gas chromatography - ms mass spectrometry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号