首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
顾梦鹤  杜小光  文淑均  马涛  陈敏  任青吉  杜国祯    《生态学报》2008,28(6):2472-2472~2479
试验选用青藏高原东部高寒草甸普遍存在的3种禾本科牧草垂穗披碱草(Elymus nutans)、中华羊茅(Festuca sinensis)以及羊茅(Festuca ovina)进行种间竞争的野外研究.通过测定3种牧草生物量的干重,对其进行方差分析并计算了相对产量总和(RYT)以及竞争率(CR).结果如下:对实验物种竞争率(CR)的分析表明垂穗披碱草的竞争力最强,中华羊茅次之,羊茅最差.施肥和刈割处理对于原来的竞争格局没有影响,即在施肥、刈割及其交互作用下3种牧草的竞争等级均是一致的.对试验物种混播的相对产量总和(RYT)的分析表明:在中华羊茅与垂穗披碱草的混播中,两种组成物种利用相同的资源,表现出相互竞争的趋势,这种趋势是非密度依赖的;垂穗披碱草和羊茅混播,在低密度时,羊茅和垂穗披硷草可以共享资源,但是随着密度增加,羊茅和垂穗披碱草表现出竞争相同资源的趋势;在中华羊茅和羊茅的混播中,二者在生长过程中能够共享资源,有相互促进的趋势,表现出共生的关系,且是非密度依赖的.  相似文献   

2.
Aims Arbuscular mycorrhizal fungi can have a substantial effect on the water and nutrient uptake by plants and the competition between plants in harsh environments where resource availability comes in pulses. In this study we focus on interspecific competition between Acaia etbaica and Boswellia papyrifera that have distinctive resource acquisition strategies. We compared the extent of interspecific competition with that of intraspecific competition.Methods In a greenhouse study we examined the influence of Arbuscular Mycorrhiza (AM) and pulsed water availability on competitive interactions between seedlings of the rapidly growing species A. etbaica and the slowly growing species B. papyrifera. A factorial experimental design was used. The factors were AM, two water levels and five species combinationsImportant findings Seedlings of both species benefitted from AM when grown alone, and the positive growth response to pulsed water availability in B. papyrifera seedlings was in contrast with the negative growth response for A. etbaica seedlings. AM also affected the competitive performance of both species. B. papyrifera was not affected by intraspecific competition, whereas A. etbaica was negatively affected compared to the seedlings grown alone. This effect was stronger in the presence of AM. In interspecific competition, A. etbaica outcompeted B. papyrifera. Mycorrhiza and pulsed water availability did not affect the outcome of interspecific competition, and the aggressivity index of A. etbaica remained unchanged. The extent to which AM influences plant competition in a drought-stressed environment may depend on belowground functional traits of the species. AM and pulsed water availability could modify the balance between intraspecific and interspecific competition. By affecting the balance between intraspecific and interspecific competition, both factors could impact the establishment and survival of seedlings.  相似文献   

3.
Understanding and predicting possible responses of grassland species to global change is of important meaning for adapting grassland management to a changed and changing environment. A laboratory clipping experiment was conducted to examine the interspecific responses in an ecological context of competition and environmental changes. Festuca rubra and Trifolium pratense, either in monoculture or two- and three-species mixtures, were grown in three environmental combinations (ambient and increased temperature, repetitive N supply, and simulated acid rain), respectively. After a growth time of three months, plants were clipped at the height of 1.0 cm above soil surface. Plant height and aboveground biomass prior clipping, and survival rate and regrowth (height and biomass) after clipping were analyzed. F. rubra and T. pratense responded differently in compensatory growth and competition intensity to environmental change and co-existing species. The differences in their physiological and ecological traits may account for species-dependent responses. The present study emphasizes that predicting the plant assemblage response in the face of global change requires in understanding the integrating effects of abiotic and biotic factors.  相似文献   

4.
Enhanced solar ultraviolet‐B (UV‐B) irradiation resulted from the stratospheric ozone depletion has adverse impacts on the primary productivity of marine algae. The effects of UV‐B enhancement on marine algae include reduction in photosynthesis and biomass, alteration in species competition, impaired chloroplast function, and damage to DNA. Harmful algal blooms (HAB) are an ubiquitous natural phenomenon caused by the excessive growth of phytoplankton. Many studies have examined the influence of supplemental UV‐B irradiation on different algae, but the effects of UV‐B irradiation on the interspecific growth interaction of HAB species has received little attention. In this study, Heterosigma akashiwo and Prorocentrum donghaiense were chosen to investigate the effect of UV‐B irradiation on the growth interaction between two HAB species by a co‐culture method. In a mixed culture experiment, H. akashiwo inhibited the growth of P. donghaiense in an inoculum dependent manner. In the absence of UV‐B irradiation, H. akashiwo dominated the competition with P. donghaiense under different inoculation proportions. Surprisingly, supplemental UV‐B irradiation alters the growth interaction between the two HAB species. P. donghaiense dominated the competition at the inoculation proportion of H: P = 1: 4. Supplemental UV‐B irradiation also weakens the competition dominance of H. akashiwo at the inoculation proportion of H: P = 1: 1 or H: P = 4: 1. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We studied the effects of differences in root growth and nutrient pool on the competitive ability of Festuca ovina (short grass), Arrhenatherum elatius and Calamagrostis epigejos (tall grasses) grown in monocultures and in mixtures of homogeneous and heterogeneous environments during two growing seasons. Analysis of variance revealed a significant effect of plant species on nutrient concentrations in above-ground biomass and of substrate type on contents of N, K, Ca, Mg in biomass. The ANOVA also confirmed the significant effect of competitive environment on the concentration of N, K in above-ground biomass. In heterogeneous environments, both tall grasses (in competition with F. ovina) were able to produce more roots in the nutrient-rich patches and to accumulate more nitrogen in plant tissues, which was associated with higher yield of their above-ground biomass. Thus, the relative competitive ability for nutrients of both tall grasses was higher than that of F. ovina. This competitive ability of A. elatius to C. epigejos increased in heterogeneous treatments.  相似文献   

6.
Ozone effects on plant species mixtures could depend on the characteristics of the species involved, their mixing ratio, or on environmental conditions. Predicting long-term effects on the dynamics of plant communities requires an understanding of the interactions involved. The present experiment was designed to determine the effects of ozone on grassland species in relation to mixing ratio and soil water content (irrigation) using binary mixtures. The grass Trisetum flavescens was grown in potted replacement-series mixtures with Centaurea jacea (Experiment A) or Trifolium pratense (Experiment B). The plants were exposed to three concentrations of ozone in open-top chambers in two irrigation treatments. Total above-ground dry weight over three growth periods was measured. The competitive ability of T. flavescens was expressed as the competitive ratio ( CR T). In Experiment B, total above-ground dry weight was reduced by elevated ozone and by reduced soil moisture, and significant interactions were found for ozone × irrigation and ozone × ratio. In Experiment A these effects were not significant. Under well watered conditions, CR T tended to be reduced by elevated ozone in Experiment A, but increased significantly in Experiment B, indicating the importance of the competing species in modifying the ozone effect on T. flavescens . In both experiments reduced irrigation decreased the magnitude of ozone effects on biomass production, which could be related to observed reductions in specific leaf conductance. The results suggest that under well watered conditions the effect of elevated ozone on the competitive balance between species depends on the species mixture, but that the mixing ratio is less important.  相似文献   

7.
荒漠草原三种蝗虫成虫种内和种间竞争的研究   总被引:1,自引:1,他引:1  
荒漠草原三种蝗虫成虫种内和种间竞争的研究贺达汉方成郑哲民(宁夏农学院农学系,永宁750105)(陕西师范大学动物研究所,西安710062)Intra_andInterspecificCompetitionamongtheAdultsofThreeGr...  相似文献   

8.
With a pace of about twice the observed rate of global warming, the temperature on the Qinghai‐Tibetan Plateau (Earth's ‘third pole’) has increased by 0.2 °C per decade over the past 50 years, which results in significant permafrost thawing and glacier retreat. Our review suggested that warming enhanced net primary production and soil respiration, decreased methane (CH4) emissions from wetlands and increased CH4 consumption of meadows, but might increase CH4 emissions from lakes. Warming‐induced permafrost thawing and glaciers melting would also result in substantial emission of old carbon dioxide (CO2) and CH4. Nitrous oxide (N2O) emission was not stimulated by warming itself, but might be slightly enhanced by wetting. However, there are many uncertainties in such biogeochemical cycles under climate change. Human activities (e.g. grazing, land cover changes) further modified the biogeochemical cycles and amplified such uncertainties on the plateau. If the projected warming and wetting continues, the future biogeochemical cycles will be more complicated. So facing research in this field is an ongoing challenge of integrating field observations with process‐based ecosystem models to predict the impacts of future climate change and human activities at various temporal and spatial scales. To reduce the uncertainties and to improve the precision of the predictions of the impacts of climate change and human activities on biogeochemical cycles, efforts should focus on conducting more field observation studies, integrating data within improved models, and developing new knowledge about coupling among carbon, nitrogen, and phosphorus biogeochemical cycles as well as about the role of microbes in these cycles.  相似文献   

9.
Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages.  相似文献   

10.
Variation in grassland vegetation structure influences the habitat selection of insectivorous birds. This variation presents a trade‐off for insectivorous predators: Arthropod abundance increases with vegetation height and heterogeneity, but access to arthropod prey items decreases. In contrast, grazing by large herbivores reduces and homogenizes vegetation, decreasing total arthropod abundance and diversity. However, the presence of livestock dung may help counteract the overall reduction in invertebrates by increasing arthropods associated with dung. It is unclear, however, how the presence of arthropod prey in dung contributes to overall habitat selection for insectivorous birds or how dung‐associated arthropods affect trade‐offs between vegetation structure, arthropod abundance, and access to prey. To explore these relationships, we studied habitat selection of the Black‐necked Crane (Grus nigricollis), a large omnivorous bird that breeds on the Qinghai–Tibet Plateau. We assessed the relationships between habitat selection of cranes and vegetation structure, arthropod abundance, and the presence of yak dung. We found that Black‐necked Cranes disproportionately foraged in grassland patches with short sward height, low sward height heterogeneity, and high numbers of dry yak dung, despite these habitats having lower total arthropod abundance. Although total arthropod abundance is lower, these habitats are supplemented with dry yak dung, which are associated with coleopteran larvae, making dung pats an indicator of food resources for breeding Black‐necked Cranes. Coleopteran adults and larvae in yak dung appear to be an important factor influencing the habitat selection of Black‐necked Cranes and should be considered when assessing grassland foraging trade‐offs of insectivorous birds. This research provides new insights into the role of livestock dung in defining foraging habitats and resources for insectivorous predators.  相似文献   

11.
12.
13.
生物入侵是全球生物多样性的主要威胁,外来种与本地种的种间竞争能力会影响其能否成功入侵.本研究选用入侵植物空心莲子草和其本地同属种莲子草为对象,探究其专食性天敌莲草直胸跳甲与南方根结线虫对空心莲子草与莲子草的生长及种间关系的影响.结果 表明:与无天敌胁迫相比,线虫处理显著降低了莲子草的株高(28.1%),但显著增加了空心...  相似文献   

14.
《Global Change Biology》2018,24(6):2721-2734
Atmospheric nitrogen (N) deposition has enhanced soil carbon (C) stocks in temperate forests. Most research has posited that these soil C gains are driven primarily by shifts in fungal community composition with elevated N leading to declines in lignin degrading Basidiomycetes. Recent research, however, suggests that plants and soil microbes are dynamically intertwined, whereby plants send C subsidies to rhizosphere microbes to enhance enzyme production and the mobilization of N. Thus, under elevated N, trees may reduce belowground C allocation leading to cascading impacts on the ability of microbes to degrade soil organic matter through a shift in microbial species and/or a change in plant–microbe interactions. The objective of this study was to determine the extent to which couplings among plant, fungal, and bacterial responses to N fertilization alter the activity of enzymes that are the primary agents of soil decomposition. We measured fungal and bacterial community composition, root–microbial interactions, and extracellular enzyme activity in the rhizosphere, bulk, and organic horizon of soils sampled from a long‐term (>25 years), whole‐watershed, N fertilization experiment at the Fernow Experimental Forest in West Virginia, USA. We observed significant declines in plant C investment to fine root biomass (24.7%), root morphology, and arbuscular mycorrhizal (AM) colonization (55.9%). Moreover, we found that declines in extracellular enzyme activity were significantly correlated with a shift in bacterial community composition, but not fungal community composition. This bacterial community shift was also correlated with reduced AM fungal colonization indicating that declines in plant investment belowground drive the response of bacterial community structure and function to N fertilization. Collectively, we find that enzyme activity responses to N fertilization are not solely driven by fungi, but instead reflect a whole ecosystem response, whereby declines in the strength of belowground C investment to gain N cascade through the soil environment.  相似文献   

15.
Smaller seeds might encounter more severe selective pressure than larger ones because they have fewer food reserves and are more easily buried; thus, seed mass can be considered to be directly related to the effect of light on germination. To investigate the effect of light on seed germination and associated seed mass variation within a whole plant community, we compiled germination data for common herbaceous species from an alpine meadow on the eastern Qinghai‐Tibet plateau. The results showed the following. (i) Light had a general positive effect on seed germination. Under light, the proportion of species with lower germinability was decreased, mean germination percentage was increased by 20% and the speed of germination was doubled. (ii) Irrespective of light environment, species with medium‐sized seeds (seed mass ranging from 0.11 to 0.5 mg) had higher germination percentage and speed when compared with species within the largest seed mass group. (iii) The germination of smaller‐seeded species was more dependent on light stimulation than larger‐seeded ones. In darkness, the species within the smallest seed mass group had the lowest percentage and speed of germination; however, under light, the species within the largest seed mass group had the lowest percentage and speed of germination. Our results suggested that the germination characteristics and especially seeds’ response to light among species in the alpine meadow might be an adaptation to natural selective pressure.  相似文献   

16.
Frequently, Pleistocene climatic cycling has been found to be the diver of genetic structuring in populations, even in areas that did not have continental ice sheets, such as on the Qinghai‐Tibetan Plateau (QTP). Typically, species distributed on the plateau have been hypothesized to re‐treat to south‐eastern refugia, especially during the Last Glacial Maximum (LGM). We evaluated sequence variation in the mitochondrial DNA gene Cytb and the nuclear DNA gene RAG‐1 in Rana kukunoris, a species endemic to the QTP. Two major lineages, N and S, were identified, and lineage N was further subdivided into N1 and N2. The geographical distribution and genealogical divergences supported the hypothesis of multiple refugia. However, major lineages and sublineages diverged prior to the LGM. Demographical expansion was detected only in lineage S and sublineage N2. Sublineage N1 might have survived several glacial cycles in situ and did not expand after the LGM because of the absence of suitable habitat; it survived in river islands. Genetic analysis and environment modelling suggested that the north‐eastern edge of QTP contained a major refugium for R. kukunoris. From here, lineage S dispersed southwards after the LGM. Two microrefugia in northern Qilian Mountains greatly contributed to current level of intraspecific genetic diversity. These results were found to have important implications for the habitat conservation in Northwest China.  相似文献   

17.
Increasing atmospheric carbon dioxide (ab. CO2) and fertilizer‐nitrogen (ab. N) applications may have marked direct effects on the plant growth of agricultural crops, and in turn affect the higher trophic level of insect herbivores. In this study, the effects of elevated CO2 (i.e., 650 µl/L vs. ambient 400 µl/L) and fertilizer‐N (0, 50, 100, 200 kg/ha) on the population abundances and the inter‐specific competition among three co‐occurring species of wheat aphids, Sitobion avenae, Rhopalosiphum padi and Schizaphis graminum, were studied. The grain weight per ear and the 1,000‐grain weight were generally increased when grown under elevated CO2 and showed a significant effect at the 100 kg/ha (grain weight per ear) and 0, 50 and 100 kg/ha (1,000‐grain weight) N. These two yield indexes increased with increasing fertilizer‐N levels within reasonable limits and reached a maximum at 100 kg/ha. Elevated CO2 combined with fertilizer‐N levels formed complex indirect effects on the three wheat aphids through the wheat crops they fed on. Elevated CO2 significantly decreased the niche overlap index (ab. NOI) between S. avenae and R. padi under 0 and 100 kg/ha and that between R. padi and S. graminum under 0 kg/ha, while significantly increased the three NOIs under 50 kg/ha and that between R. padi and S. graminum under 100 and 200 kg/ha. S. avenae and R. padi had the larger population and stronger competition in low‐N condition (0 and 50 kg/ha), which was harmful to wheat yield and quality when combined with its own poor nutrition. Overall, the 100 kg/ha N level was the best option based on the aphid population, competition and wheat yields. Therefore, the balanced relationship formed among fertilizers, plants and insects under 100 kg/ha N was vital for the interactive ecosystem.  相似文献   

18.
The Qinghai‐Tibetan Plateau (QTP) is thought to be more strongly affected by the Quaternary glaciations than most other regions of the same latitude. It would be of great interest to investigate the population genetic structure of organisms distributed on the platform and its correlation with the Quaternary climatic oscillations. Here we used the chloroplast (cp)DNA trnT‐trnF sequence to study genetic variation and phylogeography of Pedicularis longiflora, an alpine herb with extensive distribution on the QTP. Based on a range‐wide sampling comprising 41 populations and 910 individuals, we detected 30 cpDNA haplotypes that were divided into five clades by phylogenetic and network analyses and a strong phylogeographical structure. All haplotypes but one in the three basal clades occur exclusively in the southeast QTP, whereas haplotypes in the young clade V occupy almost the whole species range. In particular, the young haplotype H18 occurs in 420 individuals, even at a frequency of 100% in some QTP platform populations and the Altai population. The haplotype distribution pattern, together with molecular clock estimation and mismatch distribution analysis, suggests that the southeast QTP was either a refuge for P. longiflora during the Quaternary climatic change or is the place of origin of the species. The present wide distribution of the species on the QTP platform has resulted from recent population expansions which could be dated back to 120 000–17 000 years ago, a period mostly before the last glacial maximum. The possible relationships among geographic genetic structure, climatic change and species diversification in Pedicularis are also discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号