首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partial hydrolysis of a larch arabino(4-O-methylglucurono)xylan afforded two series of oligouronides composed of 4-O-methyl- d-glucuronic acid and d-xylose residues. The first series included aldouronic acids up to the aldopentaouronic acid. Methylation analysis indicated that the aldopentao- and aldotetrao-uronic acids were mixtures of isomers. One aldotetraouronic acid was isolated and identified as O-β-d-Xylp-(1 → 4)-O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-d-Xyl. The two isomeric aldotriouronic acids were separated from each other. The acids of the second series, which were composed of two uronic acids and 2-4 d-xylose residues, were identified as follows: O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-d-Xyl, O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-β-d -Xylp-(1 → 4)-D-Xyl, O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-(4-O-Mec-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-D-Xyl, and O-(4-O-Me-α-d-GlcAp)-(1 → 2)-O-β-d-Xylp-(1 → 4)-O-(4-O-Me-α-d-GlcAp)-(1 → 2)-D-Xyl. The first three compounds were new acidic oligosaccharides. The 4-O-methyl-d-glucuronic acid in the second series was present in a larger proportion than in the first series, indicating that a large proportion of the uronic acid side-chains were located on two contiguous D-xylose residues in the backbone of the softwood xylan.  相似文献   

2.
2-O-Benzoyl-3,6-di-O-benzyl-4-O-(chloroacetyl)-, 4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-, and 2-O-benzoyl-3,4,6-tri-O-benzyl-α-d-galactopyranosyl chloride were converted into the corresponding 2,2,2-trifluoroethanesulfonates, and these were treated with allyl 2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside, to give allyl 2-O-benzoyl-4-O-[2-O-benzoyl-3,6-di-O-benzyl-4-O-(chloroacetyl)-β-d-galactopyranosyl]-3,6-di-O-benzyl- α-d-galactopyranoside (26; 41% yield), allyl 4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di-O-benzyl- α-d-galactopyranoside (27; 62% yield), and allyl 2-O-benzoyl-4-O-(2-O-benzoyl-3,4,6-tri-O-benzyl-β-d-galactopyranosyl)-3,6-di-O-benzyl-α-d-galactopyranoside (28; 65% yield). All disaccharides were free from their α anomers. Disaccharides 26 and 27 were found to be base-sensitive, and were de-esterified by KCN in aqueous ethanol, and debenzylated with H2-Pd. Attempts to produce (1→4)-β-d-galactopyranosides from the coupling of a number of fully esterified d-galactopyranosyl sulfonates to allyl 2,3,6-tri-O-benzoyl-α-d-galactopyranoside were unsuccessful.  相似文献   

3.
Investigation of the acetolysis products of a partially desulphated sample of the polysaccharide isolated from Pachymenia carnosa led to the isolation and characterization of the following oligosaccharides: 3-O-α-D-galactopyranosyl-D-galactose (1), 4-O-β-D-galactopyranosyl-D-galactose (2), 3-O-(2-O-methyl-α-D-galactopyranosyl)-D-galactose (3), a 4-O-galactopyranosyl-2-O-methylgalactose (4), 3-O-α-D-galactopyranosyl-6-O-methyl-D-galactose (5), 4-O-β-D-galactopyranosyl-2-O-methyl-D-galactose (6), 2-O-methyl-4-O-(6-O-methyl-β-D-galactopyranosyl)-D-galactose (14), O-β-D-galactopyranosyl-(1→4)-O-α-D-galactopyranosyl-(1→3)-D-galactose (8), O-α-D-galactopyranosyl-(1→3)-O-β-D-galactopyranosyl-(1→4)-D-galactose (9), O-β-D-galactopyranosyl-(1→4)-O-α-(2-O-methyl-D-galactopyranosyl)-(1→3)-D-galactose (11), O-α-(2-O-methyl-D-galactopyranosyl)-(1→3)-O-β-D-galactopyranosyl-(1→4)-D-galactose (12), O-α-D-galactopyranosyl-(1→3)-O-β-D-galactopyranosyl-(1→4)-2-O-methyl-D-galactose (13), O-α-(2-O-methyl-D-galactopyranosyl)-(1→3)-O-β-D-galactopyranosyl-(1→4)-2-O-methyl-D-galactose (16), and O-β-D-galactopyranosyl-(1→4)-O-α-D-galactopyranosyl-(1→3)-O-β-D-galactopyranosyl-(1→4)-D-galactose (10). In addition, evidence was obtained for the presence of 4-O-(6-O-methyl-β-D-galactopyranosyl)-D-galactose (7) and O-β-D-galactopyranosyl-(1→4)-O-α-D-galactopyranosyl-(1→3)-6-O-methyl-D-galactose (15).  相似文献   

4.
Heating of 2,3,5-tri-O-methyl-4-O-p-tolylsulfonyl-D-ribose diethyl dithioacetal and dibenzyl dithioacetal in aqueous pyridine gave 4-S-ethyl-2,3,5-tri-O-methyl-4-thio-l-lyxose and benzyl 2,3,5-tri-O-methyl-α-1,4-dithio-l-lyxofuranoside, respectively. Similar rearrangements to the 4-thiofuranoside were observed with 2,3,5-tri-O-methyl-4-O-p-tolylsulfonyl-D-xylose and -D-lyxose dibenzyl dithioacetals. 2,3,4-Tri-O-methyl- 5-O-p-tolylsulfonyl-D-ribose or -D-xylose dibenzyl dithioacetal, however, gave upon heating with sodium iodide in acetone 2,5-anhydro-3,4-di-O-methyl-D-ribose or -D-xylose dibenzyl dithioacetal, respectively.  相似文献   

5.
The first compound in the series of reactions leading to the ester conjugates of indole-3-acetic acid (IAA) in kernels of Zea mays sweet corn is the acyl alkyl acetal, 1-O-indol-3-ylacetyl-β-d-glucose (1-O-IAGlu). The enzyme catalyzing the synthesis of this compound is UDP-glucose:indol-3-ylacetate glucosyl-transferase (IAGlu synthase). The IAA moiety of the high energy compound 1-O-IAGlu may be enzymatically transferred to myo-inositol or to glycerol or the 1-O-IAGlu may be enzymatically hydrolyzed. Alternatively, nonenzymatic acyl migration may occur to yield the 2-O, 4-O, and 6-O esters of IAA and glucose. The 4-O and 6-O esters may then be enzymatically hydrolyzed to yield free IAA and glucose. This work reports new enzymatic activities, the transfer of IAA from 1-O-IAGlu to glycerol, and the enzymecatalyzed hydrolysis of 4-O- and 6-O-IAGlu. Data is also presented on the rate of non-enzymatic acyl migration of IAA from the 1-O to the 4-O and 6-O positions of glucose. We also report that enzymes catalyzing the synthesis of 1-O-IAGlu and the hydrolysis of 1-O, 4-O, and 6-O-IAGlu fractionate as a hormone metabolizing complex. The association of synthetic and hydrolytic capabilities in enzymes which cofractionate may have physiological significance.  相似文献   

6.
《Carbohydrate research》1985,138(1):17-28
Syntheses are described for methyl 2-acetamido-2-deoxy-4-O-β-d-galactopyranosyl-α-d-glucopyranoside, methyl 2-acetamido-2-deoxy-4-O-β-d-galactopyranosyl-β-d-glucopyranoside, methyl 3-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl-β-d-galactopyranoside, methyl 3-O-(2-acetamido-2-deoxy-4-O-β-d-galactopyranosyl-β-d-glucopyranosyl)-β-d-galactopyranoside, and methyl 4-O-[3-O-(2-acetamido-2-deoxy-4-O-β-d-galactopyranosyl-β-d-glucopyranosyl)-β-d-galactopyranosyl]- β-d-glucopyranoside.  相似文献   

7.
Allyl 4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di-O-benzyl-α-d- galactopyranoside was O-deallylated to give the 1-hydroxy derivative, and this was converted into the corresponding 1-O-(N-phenylcarbamoyl) derivative, treatment of which with dry HCl produced the α-d-galactopyranosyl chloride. This was converted into the corresponding 2,2,2-trifluoroethanesulfonate, which was coupled to allyl 2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside, to give crystalline allyl 4-O-[4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di- O-benzyl-β-d-galactopyranosyl]-2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside (15) in 85% yield, no trace of the α anomer being found. The trisaccharide derivative 15 was de-esterified with 2% KCN in 95% ethanol, and the product O-debenzylated with H2-Pd, to give the unprotected trisaccharide. Alternative sequences are discussed.  相似文献   

8.
《Carbohydrate research》1986,154(1):93-101
O-β-d-Galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose has been synthesised by reaction of benzyl 2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-β-d-galactopyranosyl)-β-d-glucopyranoside with 2,3,4-tri-O-benzyl-α-l-fucopyranosyl bromide in the presence of mercuric bromide, followed by hydrogenolysis. Benzylation of benzyl 3′,4′-O-isopropylidene-β-lactoside, via tributylstannylation, in the presence of tetrabutylammonium bromide or N-methylimidazole, gave benzyl 2,6-di-O-benzyl-4-O-(6-O-benzyl-3,4-O-isopropylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (6). α-Fucosylation of 6 in the presence of tetraethylammonium bromide provided either benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyransoyl)-β-d- galactopyranosyl]-β-d-glucopyranoside (13, 73%) or a mixture of 13 (42%) and benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4,-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d- galactopyranosyl-3-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d-glucopyranoside (16, 34%). α-Fucosylation of 13 in the presence of mercuric bromide and 2,6-di-tert-butyl-4-methylpyridine gave 16 (73%). Hydrogenolysis and acid hydrolysis of 13 and 16 afforded O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-d-glucose and O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose, respectively.  相似文献   

9.
Five new N-mono-/bis-substituted acetamide glycosides, N-{4-O-[3-O-(4-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (1), N-methyl-N-{4-O-[3-O-(4-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (2), N-methyl-N-{4-O-[3-O-(6-O-benzoyl-4-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (3), N-methyl-N-{4-O-[3-O-(6-O-benzoyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (4), and N-methyl-N-{4-O-[3-O-(6-O-trans-cinnamoyl-4-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (5), along with one known acetamide derivative, N-methyl-N-(4-hydroxyphenethyl)-acetamide, the shared aglycone of 25, were isolated from the ethanol extract of the stems of Ephedra sinica. The structures of these new compounds were elucidated on the basis of extensive spectroscopic examination, mainly including multiple 1D and 2D NMR and HRESIMS examinations, and qualitative chemical tests. All N,N-bissubstituted acetamide glycosides were found to show the obvious rotamerism, as in the case of the isolated known N-methyl-N-(4-hydroxyphenethyl)-acetamide, under the experimental NMR conditions, with the ratios of integrated intensities between anti- and syn-rotamers always being found to be about 4 to 3.  相似文献   

10.
《Phytochemistry》1987,26(4):1147-1152
Six phenolic glucoside gallates: D-threo-guaiacylglycerol 8-O-, L-threo-guaiacylglycerol 8-O-, 3-methoxy-4-hydroxyphenol 1-O-, gentisic acid 5-O-, 3,5- dimethoxy-4-hydroxyphenol 1-O- and cis-coniferyl alcohol 4-O-β-D-(6′-O-galloyl)glucopyranosides were isolated from Quercus mongolica and Q. acutissima.  相似文献   

11.
《Carbohydrate research》1987,163(1):63-72
Benzyl 2-acetamido-3-O-allyl-6-O-benzyl-2-deoxy-4-O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)- α-d-glucopyranoside (4) was obtained in high yield on using the silver triflate method in the absence of base. Compound 4 was converted in six steps into benzyl 2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-benzyl-2-deoxy-β-d-glucopyranosyl)-6-O-benzyl-3-O-(carboxymethyl)-2-deoxy-α-d- glucopyranoside, which was coupled with the benzyl ester of l-α-aminobutanoyl-d-isoglutamine and the product hydrogenolyzed to afford the title compound. O-Benzylation of benzyl 2-acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-3-O-allyl-6-O-benzyl-2-deoxy-α-d-glucopyranoside with benzyl bromide and barium hydroxide in N,N-dimethylformamide is strongly exhanced by sonication of the reaction mixture.  相似文献   

12.
《Phytochemistry》1986,25(12):2861-2865
Five new glycosides were isolated from the Chinese crude drug ‘Tong-guang-san’: the stems of Marsdenia tenacissima (Roth.) Wight et Arn. (Asclepiadaceae). The structures of tenacissosides A-E were deduced on the basis of chemical and spectral evidence as tenacigenin B-I 3-O-β-D-glucopyranosyl-(1→4)-3-O-methyl-6-deoxy-β-D- allopyranosyl-(1→4)-β-D-oleandropyranoside, tenacigenin B-II 3-O-β-D-glucopyranosyl-(1 →4)-3-O-methyl-6-deoxy- β-Dallopyranosyl-(1 →4)-β-D-oleandropyranoside, tenacigenin B-III 3-O-β-Dglucopyranosyl-(1→4)-3-O-methyl-6- deoxy-β-D-allopyranosyl-(1 → 4)-β-D-oleandropyranoside, tenacigenin B-IV 3-O-β-D-glucopyranosyl-(1 →4)-3-O- methyl-6-deoxy-β-D-allopyranosyl-(1 → 4)-β-D-oleandropyranoside and tenacigenin B-V 3-O-β-D-glucopyranosyl- (1 → 4)-3-O-methyl-6-deoxy-allopyranosyl-(1 → 4)-β-D-oleandropyranoside, respectively.  相似文献   

13.
A novel tetra-acylated cyanidin 3-sophoroside-5-glucoside was isolated from the purple-violet flowers of Moricandia arvensis (L.) DC. (Family: Brassicaceae), and determined to be cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(β-glucopyranosyl)-trans-caffeoyl)-β-glucopyranosyl)-trans-caffeoyl)-β-glucopyranosyl)-6-O-(trans-caffeoyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] by chemical and spectroscopic methods.  相似文献   

14.
The structure of three neuraminyl-oligosaccharides isolated from rat urine-have been studied by chromatographic and mass spectrometric analyses of different hydrolysis and methylation products. The structures of the oligosaccharides were identifies as O-α-N-acetyl(O-acetyl)neuraminyl-(2 → 3)-O-β-galactopyranosyl-(1 → 4)-glucopyranose, O-α-N-acetylneuraminyl-(2 → 3)-O-β-galactopyranosyl-(1 → 4)-glucopyranose and O-α-N-glycolylneuraminyl-(2 → 3)-O-β-galactopyranosyl-(1 → 4)-glucopyranose.  相似文献   

15.
Methyl 6-deoxy-4-C-hydroxymethyl-5-O-methyl-2,3-O-methylene-l-idonate, isolated from everninomicin B and D, was synthesized from benzyl 4-O-benzyl-4-C-[(S)-1-methoxyethyl]-2,3-O-methylene-β-l-arabinopyranoside by successive hydrogenolysis of the O-benzyl groups, oxidation to the aldonate, and esterification. The configuration of the methyl 4-C-acetyl-6-deoxy-2,3-O-methylenehexonate from flambamycin and avilamycin A was shown to be d-galacto by a synthesis from the corresponding benzyl α-d-galactopyranoside using the above pathway.  相似文献   

16.
After partial, acid hydrolysis of the extracellular, acid polysaccharide from Rh. trifolii Bart A, the following products were isolated and characterized: 3,4-O-(1-carboxyethylidene)-d-galactose, 4,6-O-(1-carboxyethylidene)-d-galactose, 3-O-[3,4-O-(1-carboxyethylidene)-β-d)-galactopyranosyl]-d-glucose, 3-O-[4,6-O-(1-carboxyethylidene)-β-d-galactopyranosyl]-d-glucose, O-[3,4-O-(1-carboxyethylidene)-β-d-galactopyranosyl ]-(1→3)-O-d-glucopyranosyl-(1→4)-d-glucose, and O-[4,6-O-(1- carboxyethylidene)-β-d-galactopyranosyl]-(1→3)-O-β-d-glucopyranosyl-(1→4)-d-glucose. The presence of pyruvic acid linked either to O-3 and O-4 or to O-4 and O-6 of the d-galactopyranosyl group of these saccharides indicates that both structures may be present in the original polysaccharide.  相似文献   

17.
Four novel disaccharides of glycosylated 1,5-anhydro-d-ketoses have been prepared: 1,5-anhydro-4-O-β-d-glucopyranosyl-d-fructose, 1,5-anhydro-4-O-β-d-galactopyranosyl-d-fructose, 1,5-anhydro-4-O-β-d-glucopyranosyl-d-tagatose, and 1,5-anhydro-4-O-β-d-galactopyranosyl-d-tagatose. The common intermediate, 1,5-anhydro-2,3-O-isopropylidene-β-d-fructopyranose, was prepared from d-fructose and was converted into the d-tagatose derivative by oxidation followed by stereoselective reduction to the 4-epimer. The anhydroketoses thus prepared were glycosylated and deprotected to give the disaccharides.  相似文献   

18.
The oligosaccharide β-d-Man-(1 → 4)-α-l-Rha (1 → 3)-d-Gal-(6 ← 1)-α-d-Glc, which is the repeating unit of the O-specific polysaccharide chain of the lipopolysaccharide from Salmonella senftenberg, was obtained by glycosylation of benzyl 2,4-di-O-benzyl-6-O-(2,3,4-tri-O-benzyl-6-O-p-nitrobenzoyl-α-d-glucopyranosyl)-β-d-galactopyranoside or benzyl 2-O-acetyl-6-O-(2,3,4-tri-O-benzyl-6-O-p-nitrobenzoyl-α-d-glucopyranosyl)-β-d-galactopyranoside with 3-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-d-mannopyranosyl)-β-l-rhamnopyranose 1,2-(methyl orthoacetate) followed by removal of protecting groups.  相似文献   

19.
As part of a program to synthesize the ceramide trisaccharide (1) related to Fabry's disease, methyl 4-O-(4-O-α-d-galactopyranosyl-β-d-galactopyranosyl)-β-d-glucopyranoside (12) was prepared. Methyl β-lactoside (2) was converted into methyl 4-O-(4,6-O-benzylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (4). Methyl 2,3,6-tri-O-benzoyl-4-O-(2,3,6-tri-O-benzoyl-β-d-galactopyranosyl)-β-d-glucopyranoside (7) was synthesized from 4 through the intermediates methyl 2,3,6-tri-O-benzoyl-4-O-(4,6-O-benzylidene-2,3-di-O-benzoyl-β-d-galactopyranosyl)-β-d-glucopyranoside (5) and methyl 2,3,6-tri-O-benzoyl-4-O-(2,3-di-O-benzoyl-β-d-galactopyranosyl)-β-d-glucopyranoside (6). The halide-catalyzed condensation of 7 with 2,3,4,6-tetra-O-benzyl-d-galactopyranosyl bromide (8) gave methyl 2,3,6-tri-O-benzoyl-4-O-[2,3,6-tri-O-benzoyl-4-O-(2,3,4,6-tetra-O-benzyl-α-d-galactopyranosyl)- β-d-galactopyranosyl]-β-d-glucopyranoside (10). Stepwise deprotection of 10 led to 12, the methyl β-glycoside of the trisaccharide related to Fabry's disease.  相似文献   

20.
Three 18-norspironstanol oligoglycosides partly acylated in their sugar moieties were isolated from the underground parts of Trillium tschonoskii. Their structures were characterized, as 1-O-[2″,3″,4″-tri-O-acetyl-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl]-epitrillenogenin-24-O-acetate, 1-O-[2″,3″,4″-tri-O-acetyl-α-l-rhamno-pyranosyl-(1 → 2)-α-l-arabinopyranosyl]-epitrillenogenin and 1-O-[2″,4″-di-O-acetyl-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl]-epitrillenogenin-24-O-acetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号