首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. In many freshwater systems, competition for shelter plays an important role in determining the persistence of both native and alien species. The red swamp crayfish, Procambarus clarkii, is currently invading the native habitat of the signal crayfish, Pacifastacus leniusculus, in southern Oregon, and interspecific competition for shelter may be driving the species replacement in this region. 2. We designed a 2 × 3 factorial mesocosm experiment, with shelter density and species combination as factors, to investigate shelter occupancy and resource competition. Contrary to our predictions, the two crayfish species are equal competitors for shelter. Further, the invasive P. clarkii modified its shelter occupancy behaviour in the presence of the native P. leniusculus and has broader microhabitat preferences. 3. Specifically, we found that P. clarkii alters shelter occupancy and space use patterns when the two species occurred together, such that shelter use was identical between P. clarkii and P. leniusculus in mixed‐species treatments. In such treatments, both species increased their use of shelters when shelter density increased. When P. clarkii was alone, however, individuals did not alter shelter use as a function of shelter density, whereas P. leniusculus exhibited similar density‐dependent behaviour in both mixed‐ and single‐species treatments. 4. In a complementary field survey, we employed an ‘epicentre‐based’ design to sample two field sites. We observed patterns of microhabitat use and breadth for each species similar to those in our mesocosm experiment: the invasive P. clarkii was more abundant across different habitats and used a broader range of microhabitats than the native P. leniusculus. As such, we found that P. clarkii was more abundant across both field sites than the P. leniusculus, occupying microhabitats within and beyond the preferred range of P. leniusculus. Both field sites were affected by urban development and agriculture. 5. The use of microhabitats by both species was similar in the laboratory and the field. This study confirms that P. clarkii individuals can, and do, successfully occupy microhabitats preferred by P. leniusculus in the Willamette Valley. The results from our study may be relevant to other freshwater systems inhabited by P. clarkii and contribute to the understanding of ‘niche opportunity’, a concept which defines the environmental conditions that promote biological invasions.  相似文献   

2.
  1. Invasive alien species and climate change are two of the most serious global environmental threats. In particular, it is of great interest to understand how changing climates could impact the distribution of invaders that pose serious threats to ecosystems and human activities.
  2. In this study, we developed ensemble species distribution models for predicting the current and future global distribution of the signal crayfish Pacifastacus leniusculus and the red swamp crayfish Procambarus clarkii, two of the most highly problematic invaders of freshwater ecosystems worldwide. We collected occurrence records of the species, from native and alien established ranges worldwide. These records in combination with averaged observations of current climatic conditions were used to calibrate a set of 10 distinct correlative models for estimating the climatic niche of each species. We next projected the estimated niches into the geographical space for the current climate conditions and for the 2050s and 2070s under representative concentration pathway 2.6 and 8.5 scenarios.
  3. Our species distribution models had high predictive abilities and suggest that annual mean temperature is the main driver of the distribution of both species. Model predictions indicated that the two crayfish species have not fully occupied their suitable climates and will respond differently to future climate scenarios in different geographic regions. Suitable climate for P. leniusculus was predicted to shift poleward and to increase in extent in North America and Europe but decrease in Asia. Regions with suitable climate for P. clarkii are predicted to widen in Europe but contract in North America and Asia.
  4. This study highlights that invasive species with different thermal preference are likely to respond differently to future climate changes. Our results provide important information for policy makers to design and implement anticipated measures for the prevention and control of these two problematic species.
  相似文献   

3.
4.
Impacts of invasive species may manifest most strongly if these organisms are highly distinct functionally from the native species they often replace. Yet, should we expect functional differences between native and invasive species of generalist organisms like freshwater crayfish? Some existing evidence has pointed to native and invasive crayfish species as ecologically equivalent. We contribute to this literature by comparing the trophic niches of the globally invasive crayfishes Pacifastacus leniusculus and Procambarus clarkii, by applying carbon and nitrogen stable isotope analyses to replicated allopatric (alone) and sympatric (together) lake populations in western Washington State, USA, where P. clarkii has been recently introduced and P. leniusculus is presumed native. Our study corrected for potential inherent differences in lake food webs as a consequence of lake abiotic or biotic characteristics using random effects in linear mixed effects models. We found that although overall trophic niche size or area of these species was not significantly different, P. leniusculus was significantly higher in trophic position than P. clarkii when also accounting for the effects of body size, sex, and lakes as random effects. This pattern of increased trophic position of P. leniusculus over P. clarkii was conserved over time in one sympatric lake for which we had data over multiple years. Cumulatively, our findings point to trophic differences between the globally cosmopolitan crayfishes P. leniusculus and P. clarkii, particularly when accounting for the ways that ecosystem context can affect food web structure of communities and the trophic resources available to these consumers.  相似文献   

5.
6.
Recently, there has been much debate whether niche based models (NBM) can predict biological invasions into new areas. These studies have chiefly focused on the type of occurrence data to use for model calibration. Additionally, pseudo‐absences are also known to cause uncertainty in NBM, but are rarely tested for predicting invasiveness. Here we test the implications of using different calibration sets for building worldwide invasiveness models for four major problematic decapods: Cherax destructor, Eriocheir sinensis, Pacifastacus leniusculus and Procambarus clarkii. Using Artificial Neural Networks models we compared predictions containing either native range occurrences (NRO), native and invasive occurrences (NIO) and invasive only (IRO) coupled with three types of pseudo‐absences – based on sampling only 1) the native range (NRA), 2) native and invasive ranges (NIA), and 3) worldwide random (WRA). We further analysed the potential gains in accuracy obtained through averaging across multiple models. Our results showed that NRO and IRO provided the best predictions for native and invaded ranges, respectively. Still, NIO provided the best balance in predicting both ranges. Pseudo‐absences had a large influence on the predictive performance of the models, and were more important for predictiveness than types of occurrences. Specifically, WRA performed the best and NRA and NIA performed poorly. We also found little benefit in combining predictions since best performing single‐models showed consistently higher accuracies. We conclude that NBM can provide useful information in forecasting invasiveness but are largely dependent on the type of initial information used and more efforts should be placed on recognizing its implications. Our results also show extensive areas which are highly suitable for the studied species worldwide. In total these areas reach from three to nine times the species current ranges and large portions of them are contiguous with currently invasive populations.  相似文献   

7.
The introduction of non-indigenous plants, animals and pathogens is one of today’s most pressing environmental challenges. Freshwater ecologists are challenged to predict the potential consequences of species invasions because many ecosystems increasingly support novel assemblages of native and non-native species that are likely to interact in complex ways. In this study we evaluated how native signal crayfish (Pacifastacus leniusculus) and non-native red swamp crayfish (Procambarus clarkii) and northern crayfish (Orconectes virilis) utilize a novel prey resource: the non-native Chinese mystery snail (Bellamya chinensis). All species are widespread in the United States, as well as globally, and recent surveys have discovered them co-occurring in lakes of Washington State. A series of mesocosm experiments revealed that crayfish are able to consume B. chinensis, despite the snail’s large size, thick outer shell and trapdoor defense behaviour. Crayfish exhibited size-selective predation whereby consumption levels decreased with increasing snail size; a common pattern among decapod predators. Comparison of prey profitability curves—defined as the yield of food (weight of snail tissue) per second of feeding time (the time taken to crack the shell and consume the contents)—suggests that small and very large snails may represent the most profitable prey choice. By contrast, previous studies have reported the opposite pattern for crayfish consumption on thin-shelled snails. For all snail size classes, we found that native P. leniusculus and invasive O. virilis consumed greater numbers of snails than invasive P. clarkii. Moreover, P. leniusculus consistently handled and consumed snails at a faster pace compared to both invasive crayfishes across the range of snail sizes examined in our study. These results suggest not only that B. chinensis is a suitable food source for crayfish, but also that native P. leniusculus may ultimately out-consume invasive crayfishes for this new prey resource.  相似文献   

8.
Although of crucial importance for invasion biology and impact assessments of climate change, it remains widely unknown how species cope with and adapt to environmental conditions beyond their currently realized climatic niches (i.e., those climatic conditions existing populations are exposed to). The African clawed frog Xenopus laevis, native to southern Africa, has established numerous invasive populations on multiple continents making it a pertinent model organism to study environmental niche dynamics. In this study, we assess whether the realized niches of the invasive populations in Europe, South, and North America represent subsets of the species’ realized niche in its native distributional range or if niche shifts are traceable. If shifts are traceable, we ask whether the realized niches of invasive populations still contain signatures of the niche of source populations what could indicate local adaptations. Univariate comparisons among bioclimatic conditions at native and invaded ranges revealed the invasive populations to be nested within the variable range of the native population. However, at the same time, invasive populations are well differentiated in multidimensional niche space as quantified via n‐dimensional hypervolumes. The most deviant invasive population are those from Europe. Our results suggest varying degrees of realized niche shifts, which are mainly driven by temperature related variables. The crosswise projection of the hypervolumes that were trained in invaded ranges revealed the south‐western Cape region as likely area of origin for all invasive populations, which is largely congruent with DNA sequence data and suggests a gradual exploration of novel climate space in invasive populations.  相似文献   

9.
10.
11.
The responses of invasive and native species of crayfish to conspecific and heterospecific alarm odors were recorded in the laboratory. Individuals of the North American invasive Procambarus clarkii responded just as strongly to odors from crushed Austropotomobius pallipes as they did to crushed conspecifics. The North American invasive Orconectes limosus also responded as strongly to P. clarkii odor as to conspecific odor. The native Italian species A. pallipes responded more strongly to conspecific alarm than to heterospecific alarm from P. clarkii. The pattern of invasive species of crayfish using a broader range of danger signals than displaced native species appears to be robust.  相似文献   

12.
Species-specific differences in dynamics of agonistic interactions may influence the outcome of interspecific competition and potentially contribute to competitive advantage of one species over another. In this study, we compared the dynamics of agonistic interactions of one of the most successful crayfish invaders of European freshwater ecosystems, the signal crayfish (Pacifastacus leniusculus) and the widespread native European species currently undergoing range expansion in Croatia and Europe, the narrow-clawed crayfish (Astacus leptodactylus). Comparisons between P. leniusculus pairs and the A. leptodactylus pairs demonstrated significant differences in frequency and duration of agonistic encounters: P. leniusculus dyads engaged in fewer fights, but their duration was significantly longer. In staged interactions between size-matched interspecific pairs, agonistic behaviour of P. leniusculus individuals translated into dominance over their A. leptodactylus counterparts. This indicates that the success of P. leniusculus in agonistic encounters with the native competitor might stem from its readiness to continue fighting for a longer time period, and could lead to ecological advantages during niche competition even when facing a successful native crayfish species.  相似文献   

13.
Aim There is increasing evidence that the quality and breadth of ecological niches vary among individuals, populations, evolutionary lineages and therefore also across the range of a species. Sufficient knowledge about niche divergence among clades might thus be crucial for predicting the invasion potential of species. We tested for the first time whether evolutionary lineages of an invasive species vary in their climate niches and invasive potential. Furthermore, we tested whether lineage‐specific models show a better performance than combined models. Location Europe. Methods We used species distribution models (SDMs) based on climatic information at native and invasive ranges to test for intra‐specific niche divergence among mitochondrial DNA (mtDNA) clades of the invasive wall lizard Podarcis muralis. Using DNA barcoding, we assigned 77 invasive populations in Central Europe to eight geographically distinct evolutionary lineages. Niche similarity among lineages was assessed and the predictive power of a combination of clade‐specific SDMs was compared with a combined SDM using the pooled records of all lineages. Results We recorded eight different invasive mtDNA clades in Central Europe. The analysed clades had rather similar realized niches in their native and invasive ranges, whereas inter‐clade niche differentiation was comparatively strong. However, we found only a weak correlation between geographic origin (i.e. mtDNA clade) and invasive occurrences. Clades with narrow realized niches still became successful invaders far outside their native range, most probably due to broader fundamental niches. The combined model using data for all invasive lineages achieved a much better prediction of the invasive potential. Conclusions Our results indicate that the observed niche differentiation among evolutionary lineages is mainly driven by niche realization and not by differences in the fundamental niches. Such cryptic niche conservatism might hamper the success of clade‐specific niche modelling. Cryptic niche conservatism may in general explain the invasion success of species in areas with apparently unsuitable climate.  相似文献   

14.
15.
In invasion processes, both abiotic and biotic factors are considered essential, but the latter are usually disregarded when modeling the potential spread of exotic species. In the framework of set theory, interactions between biotic (B), abiotic (A), and movement‐related (M) factors in the geographical space can be hypothesized with BAM diagrams and tested using ecological niche models (ENMs) to estimate A and B areas. The main aim of our survey was to evaluate the interactions between abiotic (climatic) and biotic (host availability) factors in geographical space for exotic symbionts (i.e., non‐free‐living species), using ENM techniques combined with a BAM framework and using exotic Entocytheridae (Ostracoda) found in Europe as model organisms. We carried out an extensive survey to evaluate the distribution of entocytherids hosted by crayfish in Europe by checking 94 European localities and 12 crayfish species. Both exotic entocytherid species found, Ankylocythere sinuosa and Uncinocythere occidentalis, were widely distributed in W Europe living on the exotic crayfish species Procambarus clarkii and Pacifastacus leniusculus, respectively. No entocytherids were observed in the remaining crayfish species. The suitable area for A. sinuosa was mainly restricted by its own limitations to minimum temperatures in W and N Europe and precipitation seasonality in circum‐Mediterranean areas. Uncinocythere occidentalis was mostly restricted by host availability in circum‐Mediterranean regions due to limitations of P. leniusculus to higher precipitation seasonality and maximum temperatures. The combination of ENMs with set theory allows studying the invasive biology of symbionts and provides clues about biogeographic barriers due to abiotic or biotic factors limiting the expansion of the symbiont in different regions of the invasive range. The relative importance of abiotic and biotic factors on geographical space can then be assessed and applied in conservation plans. This approach can also be implemented in other systems where the target species is closely interacting with other taxa.  相似文献   

16.
Climatic niche conservatism, the tendency of species‐climate associations to remain unchanged across space and time, is pivotal for forecasting the spread of invasive species and biodiversity changes. Indeed, it represents one of the key assumptions underlying species distribution models (SDMs), the main tool currently available for predicting range shifts of species. However, to date, no comprehensive assessment of niche conservatism is available for the marine realm. We use the invasion by Indo‐Pacific tropical fishes into the Mediterranean Sea, the world's most invaded marine basin, to examine the conservatism of the climatic niche. We show that tropical invaders may spread far beyond their native niches and that SDMs do not predict their new distributions better than null models. Our results suggest that SDMs may underestimate the potential spread of invasive species and call for prudence in employing these models in order to forecast species invasion and their response to environmental change.  相似文献   

17.
1. Dispersal and habitat use are key elements in determining impacts of introduced species. We examined if an invasive crayfish species showed a different pattern of movement, dispersal and refuge use to that of a species that it displaces. 2. Fifteen adults of the introduced American signal crayfish, Pacifastacus leniusculus and 20 adult native white‐clawed crayfish Austropotamobius pallipes were radiotagged in an area of river where in 2003 they co‐occurred and the spatial behaviour and habitat use of the two species were examined. Subsequent surveys at the study site in 2005 recorded no A. pallipes and the density of P. leniusculus had increased. 3. Clear differences in the spatial behaviour of the two species were found. The median distance moved per day by signal crayfish was over twice that of white‐clawed crayfish, and dispersal from release locations was higher in signal crayfish. A similar range of refuges with a high degree of overlap was used by both species suggesting that the potential for competitive interaction between the two species exists. 4. The greater movement and dispersal by signal crayfish recorded here supports the hypothesis that invaders are better dispersers than the species that they displace. In addition, movements by signal crayfish may allow them to make better use of patchy resources than white‐clawed crayfish and this, coupled with similar microhabitat use, may contribute to the observed replacement.  相似文献   

18.
Aim Niche conservatism is key to understanding species responses to environmental stress such as climate change or arriving in new geographical space such as biological invasion. Halotydeus destructor is an important agricultural pest in Australia and has been the focus of extensive surveys that suggest this species has undergone a niche shift to expand its invasive range inland to hotter and drier environments. We employ modern correlative modelling methods to examine niche conservatism in H. destructor and highlight ecological differences between historical and current distributions. Location Australia and South Africa. Methods We compile comprehensive distribution data sets for H. destructor, representing the native range in South Africa, its invasive range in Australia in the 1960s (40 yr post‐introduction) and its current range in Australia. Using MAXENT, we build correlative models and reciprocally project them between South Africa and Australia and investigate range expansion with models constructed for historical and current data sets. We use several recently developed model exploration tools to examine the climate similarity between native and invasive ranges and subsequently examine climatic variables that limit distributions. Results The invasive niche of H. destructor in Australia transgresses the native niche in South Africa, and the species has expanded in Australia beyond what is predicted from the native distribution. Our models support the notion that H. destructor has undergone a more recent range shift into hotter and drier inland areas of Australia since establishing a stable distribution in the 1960s. Main conclusions Our use of historical and current data highlights that invasion is an ongoing dynamic process and demonstrates that once a species has reached an established range, it may still expand at a later stage. We also show that model exploration tools help understand factors influencing the range of invasive species. The models generate hypotheses about adaptive shifts in H. destructor.  相似文献   

19.
20.
Aim Niche‐based distribution models are often used to predict the spread of invasive species. These models assume niche conservation during invasion, but invasive species can have different requirements from populations in their native range for many reasons, including niche evolution. I used distribution modelling to investigate niche conservatism for the Asian tiger mosquito (Aedes albopictus Skuse) during its invasion of three continents. I also used this approach to predict areas at risk of invasion from propagules originating from invasive populations. Location Models were created for Southeast Asia, North and South America, and Europe. Methods I used maximum entropy (Maxent ) to create distribution models using occurrence data and 18 environmental datasets. One native model was created for Southeast Asia; this model was projected onto North America, South America and Europe. Three models were created independently for the non‐native ranges and projected onto the native range. Niche overlap between native and non‐native predictions was evaluated by comparing probability surfaces between models using real data and random models generated using a permutation approach. Results The native model failed to predict an entire region of occurrences in South America, approximately 20% of occurrences in North America and nearly all Italian occurrences of A. albopictus. Non‐native models poorly predict the native range, but predict additional areas at risk for invasion globally. Niche overlap metrics indicate that non‐native distributions are more similar to the native niche than a random prediction, but they are not equivalent. Multivariate analyses support modelled differences in niche characteristics among continents, and reveal important variables explaining these differences. Main conclusions The niche of A. albopictus has shifted on invaded continents relative to its native range (Southeast Asia). Statistical comparisons reveal that the niche for introduced distributions is not equivalent to the native niche. Furthermore, reciprocal models highlight the importance of controlling bi‐directional dispersal between native and non‐native distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号