首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been suggested that biogeographic historical legacies in plant diversity may influence ecosystem functioning. This is expected because of known diversity effects on ecosystem functions, and impacts of historical events such as past climatic changes on plant diversity. However, empirical evidence for a link between biogeographic history and present‐day ecosystem functioning is still limited. Here, we explored the relationships between Late‐Quaternary climate instability, species‐pool size, local species and functional diversity, and the net primary productivity (NPP) of Northern Hemisphere forests using structural equation modelling. Our study confirms that past climate instability has negative effects on plant functional diversity and through that on NPP, after controlling for present‐day climate, soil conditions, stand biomass and age. We conclude that global models of terrestrial plant productivity need to consider the biogeographical context to improve predictions of plant productivity and feedbacks with the climate system.  相似文献   

2.
Quaternary climate changes have contributed to shape the biogeographic distribution of extant species. The combination of climatic niche conservatism and glacial‐interglacial cycles forced many species to retract their range limits for surviving under the advance of Pleistocene ice‐sheets. Refugia offered geographical opportunities for species to retreat, persist and, later on, begin recolonization processes under favourable environmental conditions. Here we explore the hypothesis that refugia have been not only crucial for the survival of multiple species but also acted as speciation centres for Western Palaearctic mammals. We define ‘recurrent massive refugia’ as those geographical regions that have historically accumulated the highest levels of co‐occurring species for several Quaternary cycles. Our assemblage‐level analyses identify the existence of refugia within the Iberian Peninsula and the Atlantic French margin that were recurrently selected by most mammals. The topographic heterogeneity, climatic stability and microhabitat availability of these refugial areas may have offered suitable habitat conditions for multiple species during different climatic events over time. Using a Bayesian analysis of macroevolutionary mixtures we detected that the higher level of divergence and accumulative evolutionary changes in mammals of the Western Palaearctic are found in refugia. The continuous retractions and expansions of species’ ranges during the Pleistocene promoted temporal changes in the composition and richness of communities in this biogeographic region. The reorganization of ecological composition driven by cyclical climatic events may have favoured the emergence of biotic interactions and ecological responses conducive to novel selective pressures. Our findings suggest, first, that multiple climatic changes in the form of glacial‐interglacial transitions during the Quaternary have left a detectable imprint on the observed geographical patterns of species richness in mammalian faunas of the Western Palaearctic, and second, highlight the importance of refugia for the preservation of species (‘museums’) and as centers of speciation and endemism (‘cradles’) as well.  相似文献   

3.
Species distribution modeling has been widely used to address questions related to ecology, biogeography and species conservation on global and regional scales. Here, we study palms (Arecaceae) in a tropical biodiversity hotspot (Thailand) using species distribution modeling to assess range‐limiting factors and estimate distribution and diversity patterns based on a comprehensive compilation of occurrence records. We focused on palms as a model group due to their key‐stone importance for ecosystem functioning and socio‐economics. Different combinations of climatic, non‐climatic environmental and spatial predictors were used. The most accurate models as indicated by the ‘area under the receiver operating characteristic curve’ (AUC) statistic were those that combined all predictors. The four strongest single predictors of palm species distributions were, in decreasing order of importance, 1) latitude, 2) precipitation of driest quarter, 3) annual precipitation, and 4) minimum temperature of the coldest month, suggesting rainfall patterns and latitudinal spatial constraints as the main range determinants. Overlaying the predicted distributions revealed that potential palm hotspots are situated in the provinces of Satun and Yala in southern Thailand where vast areas remain relatively open to the discovery of new palm records and perhaps even new species.  相似文献   

4.
Most of the Earth's biodiversity resides in the tropics. However, a comprehensive understanding of which factors control range limits of tropical species is still lacking. Climate is often thought to be the predominant range‐determining mechanism at large spatial scales. Alternatively, species’ ranges may be controlled by soil or other environmental factors, or by non‐environmental factors such as biotic interactions, dispersal barriers, intrinsic population dynamics, or time‐limited expansion from place of origin or past refugia. How species ranges are controlled is of key importance for predicting their responses to future global change. Here, we use a novel implementation of species distribution modelling (SDM) to assess the degree to which African continental‐scale species distributions in a keystone tropical group, the palms (Arecaceae), are controlled by climate, non‐climatic environmental factors, or non‐environmental spatial constraints. A comprehensive data set on African palm species occurrences was assembled and analysed using the SDM algorithm Maxent in combination with climatic and non‐climatic environmental predictors (habitat, human impact), as well as spatial eigenvector mapping (spatial filters). The best performing models always included spatial filters, suggesting that palm species distributions are always to some extent limited by non‐environmental constraints. Models which included climate provided significantly better predictions than models that included only non‐climatic environmental predictors, the latter having no discernible effect beyond the climatic control. Hence, at the continental scale, climate constitutes the only strong environmental control of palm species distributions in Africa. With regard to the most important climatic predictors of African palm distributions, water‐related factors were most important for 25 of the 29 species analysed. The strong response of palm distributions to climate in combination with the importance of non‐environmental spatial constraints suggests that African palms will be sensitive to future climate changes, but that their ability to track suitable climatic conditions will be spatially constrained.  相似文献   

5.
The structure of species interaction networks is important for species coexistence, community stability and exposure of species to extinctions. Two widespread structures in ecological networks are modularity, i.e. weakly connected subgroups of species that are internally highly interlinked, and nestedness, i.e. specialist species that interact with a subset of those species with which generalist species also interact. Modularity and nestedness are often interpreted as evolutionary ecological structures that may have relevance for community persistence and resilience against perturbations, such as climate‐change. Therefore, historical climatic fluctuations could influence modularity and nestedness, but this possibility remains untested. This lack of research is in sharp contrast to the considerable efforts to disentangle the role of historical climate‐change and contemporary climate on species distributions, richness and community composition patterns. Here, we use a global database of pollination networks to show that historical climate‐change is at least as important as contemporary climate in shaping modularity and nestedness of pollination networks. Specifically, on the mainland we found a relatively strong negative association between Quaternary climate‐change and modularity, whereas nestedness was most prominent in areas having experienced high Quaternary climate‐change. On islands, Quaternary climate‐change had weak effects on modularity and no effects on nestedness. Hence, for both modularity and nestedness, historical climate‐change has left imprints on the network structure of mainland communities, but had comparably little effect on island communities. Our findings highlight a need to integrate historical climate fluctuations into eco‐evolutionary hypotheses of network structures, such as modularity and nestedness, and then test these against empirical data. We propose that historical climate‐change may have left imprints in the structural organisation of species interactions in an array of systems important for maintaining biological diversity.  相似文献   

6.
We investigated the roles of climate, geography, and geology in plant diversity and endemicity on the east Asian continental islands, by testing predictions from contrasting hypotheses considering current climate, habitat stability, and isolation as major drivers of plant richness and endemicity. We created a fine‐resolution map of vascular plant richness (5614 species) with 10 × 10 km grid cells. Using this large dataset and regression models, we explored correlations between species richness/number of endemics and temperature, precipitation, Quaternary temperature/precipitation changes, Quaternary alluvial development and volcanic disturbances (presence of alluvial plains and of pyroclastic flows), distance from the continent, and elevation. We applied these analyses to the vascular plant assemblage as a whole and separately to trees, herbs, and ferns. Temperature and precipitation were associated with the richness of vascular plants overall and of their endemics. Quaternary temperature change was negatively associated with the richness of vascular plants overall and of their endemics. The presence of pyroclastic flows and of lowland alluvial plains was negatively associated with those. Distance from the continent and elevation were positively associated with endemic species richness, especially those of trees and herbs. While current climate was an important predictor of species richness (especially of ferns), geographical isolation and habitat stability were the main predictors of the endemic species richness of trees and herbs. The relative importance of current climate and historical factors may be related to the dispersal ability of functional groups. Our results illustrate that the diverse geographical conditions reflecting the characteristics of the island led to the various historical effects on biodiversity patterns. The highly endemic flora on the east Asian islands resulted from species accumulation and in situ diversification, suggesting that the climate and historical hypotheses are not mutually exclusive, but can be reconciled as the interplay between recent ecological and evolutionary processes.  相似文献   

7.
Abstract. There has been much debate concerning the relative influence on biodiversity of historical vs. current ecological factors. Although both are important, we suggest that historical influences might be greater at higher taxonomic level, since one is looking further back into evolutionary history than at lower taxonomic level. Although we are unable to separate ecological from historical effects in the present global study on scarabaeine dung beetles, we are able to demonstrate differences in correlations between major environmental influences (climatic area, numbers of dung types) and major components of diversity (taxon richness, taxon diversity, functional composition) at different taxonomic levels (tribe, genus, species). Current global variation in taxon richness is correlated strongly to current biogeographical variation in the area of suitable climate at all three taxonomic levels. However, generic and species richness is correlated most strongly to climatic combinations which include tropical and warm summer rainfall climate types (I, II). In contrast, tribal richness is correlated most strongly to climatic combinations which include both warm summer rainfall and temperate climate types (II, VI, X). Regional variation in the number of available dung types shows a strong positive correlation to regional variation in taxon richness at higher tribal level but not at lower generic and species levels. Similarly, biogeographical differences in the number of available dung types show a strong negative correlation to dominance indices for taxon diversity at tribal level (distribution of generic numbers between tribes) but none at generic level (species numbers per genus). As functional diversification is linked closely to taxonomic diversification at tribal level, proportions of both ball‐rolling genera and ball‐rolling species also show strong negative correlations to the number of dung types available in each region. In conclusion, the presence of dung type correlations only at higher taxonomic level may reflect historical effects on scarabaeine taxon diversification, whereas differences in correlations to climate type with taxonomic level may reflect both current ecological and historical effects.  相似文献   

8.
The relationship between climate/productivity and historical/regional contingency and their relative influence on geographical patterns of species richness (GPSR) are still unresolved. Based on field data from 1494 plots from forests on 63 mountains across China, we document the GPSR for forest communities. Regression tree and generalized linear models were used to explore the discreteness and gradient of the distribution of tree species richness (α‐diversity), and to estimate the correlations of climate, historical floristic region, and local habitat with species richness. The collinearity between climatic variables and region were further disentangled; and the spatial autocorrelation in the patterns of α‐diversity and the residuals of alternative predictive models were compared. Overall, 75% of variation in plot‐based α‐diversity of trees was accounted for by all variables included, and about 66.5%, 64.5% and 27.9% by climate, region, and local habitat respectively. Importantly, the explanatory power of these variables differed in particular for coniferous, deciduous broadleaved and evergreen broadleaved species. Ambient temperature was more important for α‐diversity of trees than were the other climatic variables across China. Spatial autocorrelation in the pattern of α‐diversity could be accounted for mainly by spatial variation climate. The concordance between tree α‐diversity, historical flora, contemporary climate, and Quaternary climate change mode suggests the climate/productivity and historical/regional contingency both contribute to the GPSR in a complimentary manner. Taken together, our results provide unique evidence to link of the effects of contemporary climate and historical climate change on species richness across scales.  相似文献   

9.
The extent to which species’ ecological and phylogenetic relatedness shape their co‐occurrence patterns at large spatial scales remains poorly understood. By quantifying phylogenetic assemblage structure within geographic ranges of >8000 bird species, we show that global co‐occurrence patterns are linked – after accounting for regional effects – to key ecological traits reflecting diet, mobility, body size and climatic preference. We found that co‐occurrences of carnivorous, migratory and cold‐climate species are phylogenetically clustered, whereas nectarivores, herbivores, frugivores and invertebrate eaters tend to be more phylogenetically overdispersed. Preference for open or forested habitats appeared to be independent from the level of phylogenetic clustering. Our results advocate for an extension of the tropical niche conservatism hypothesis to incorporate ecological and life‐history traits beyond the climatic niche. They further offer a novel species‐oriented perspective on how biogeographic and evolutionary legacies interact with ecological traits to shape global patterns of species coexistence in birds.  相似文献   

10.
Disentangling the relative effects of local and regional processes on local species richness (LSR) is critical for understanding the mechanisms underlying large‐scale biodiversity patterns. In this study we used 1098 forest plots from 41 mountains across China, together with regional flora data, to examine the relative influence of local climate vs regional species richness (RSR) on LSR patterns. Both RSR and LSR for woody species and all species combined decreased with increasing latitude, while richness of herbaceous species exhibited a hump‐shaped pattern. The major climatic orrelates of species richness differed across spatial scales. At the regional scale, winter coldness was the best predictor of RSR patterns for both woody and herbaceous species. At the local scale, however, productivity‐related climatic indices were the best predictors of LSR patterns. Local climate and RSR together explained 48, 54 and 23% of the variation in LSR, for overall, woody and herbaceous species, respectively. Both local climate and RSR independently influenced LSR in addition to their joint effects, suggesting that LSR patterns were shaped by local and regional processes together. Local climate and RSR affected LSR of woody species mainly through their joint effects, while there were few shared effects of climate and RSR on the LSR of herbaceous species. Our findings suggest that while geographic RSR patterns are mainly determined by winter coldness, the ecological processes driven by productivity may be critical to the filtering of regional flora into local communities. We also demonstrate that biogeographic region is not a good surrogate for regional richness, at least for our dataset. Consequently, whether biogeographic region can effectively reflect regional effects needs further examination.  相似文献   

11.
Previous studies on large‐scale patterns in plant richness and underlying mechanisms have mostly focused on forests and mountains, while drylands covering most of the world's grasslands and deserts are more poorly investigated for lack of data. Here, we aim to 1) evaluate the plant richness patterns in Inner Asian drylands; 2) compare the relative importance of contemporary environment, historical climate, vegetation changes, and mid‐domain effect (MDE); and 3) explore whether the dominant drivers of species richness differ across growth forms (woody vs herbaceous) and range sizes (common vs rare). Distribution data and growth forms of 13 248 seed plants were compiled from literature and species range sizes were estimated. Generalized linear models and hierarchical partitioning were used to evaluate the relative contribution of different factors. We found that habitat heterogeneity strongly affected both woody and herbaceous species. Precipitation, climate change since the mid‐Holocene and climate seasonality dominated herbaceous richness patterns, while climate change since the Last Glacial Maximum dominated woody richness patterns. Rare species richness was strongly correlated with precipitation, habitat heterogeneity and historical climatic changes, while common species richness was strongly correlated with MDE (woody) or climate seasonality (herbaceous). Temperature had little effects on the species richness patterns of all groups. This study represents the first evaluation of the large‐scale patterns of plant species richness in the Inner Asian drylands. Our results suggest that increasing water deficit due to anthropogenic activities combined with future global warming may increase the extinction risk of many grassland species. Rare species (both herbaceous and woody) may face severe challenges in the future due to increased habitat destruction caused by urbanization and resource exploitation. Overall, our findings indicate that the hypotheses on species richness patterns based on woody plants alone can be insufficient to explain the richness patterns of herbaceous species.  相似文献   

12.
The role of climatic legacies in regulating community assembly of above‐ and belowground species in terrestrial ecosystems remains largely unexplored and poorly understood. Here, we report on two separate regional and continental empirical studies, including >500 locations, aiming to identify the relative importance of climatic legacies (climatic anomaly over the last 20,000 years) compared to current climates in predicting the relative abundance of ecological clusters formed by species strongly co‐occurring within two independent above‐ and belowground networks. Climatic legacies explained a significant portion of the variation in the current community assembly of terrestrial ecosystems (up to 15.4%) that could not be accounted for by current climate, soil properties, and management. Changes in the relative abundance of ecological clusters linked to climatic legacies (e.g., past temperature) showed the potential to indirectly alter other clusters, suggesting cascading effects. Our work illustrates the role of climatic legacies in regulating ecosystem community assembly and provides further insights into possible winner and loser community assemblies under global change scenarios.  相似文献   

13.
Aim To investigate the historical distribution of the Cerrado across Quaternary climatic fluctuations and to generate historical stability maps to test: (1) whether the ‘historical climate’ stability hypothesis explains squamate reptile richness in the Cerrado; and (2) the hypothesis of Pleistocene connections between savannas located north and south of Amazonia. Location The Cerrado, a savanna biome and a global biodiversity hotspot distributed mainly in central Brazil. Methods We generated occurrence datasets from 1000 presence points randomly selected from the entire distribution of the Cerrado, as determined by two spatial definitions. We modelled the potential Cerrado distribution by implementing a maximum‐entropy machine‐learning algorithm across four time projections: current, mid‐Holocene (6 ka), Last Glacial Maximum (LGM, 21 ka) and Last Interglacial (LIG, 120 ka). We generated historical stability maps (refugial areas) by overlapping presence/absence projections of all scenarios, and checked consistencies with qualitative comparisons with available fossil pollen records. We built a spatially explicit simultaneous autoregressive model to explore the relationship between current climate, climatic stability, and squamate species richness. Results Models predicted the LGM and LIG as the periods of narrowest and widest Cerrado distributions, respectively, and were largely corroborated by palynological evidence. We found evidence for two savanna corridors (eastern coastal during the LIG, and Andean during the LGM) and predicted a large refugial area in the north‐eastern Cerrado (Serra Geral de Goiás refugium). Variables related to climatic stability predicted squamate richness better than present climatic variables did. Main conclusions Our results indicate that Bolivian savannas should be included within the Cerrado range and that the Cerrado’s biogeographical counterparts are not Chaco and Caatinga but rather the disjunct savannas of the Guyana shield plateaus. Climatic stability is a good predictor of Cerrado squamate richness, and our stability maps could be used in future studies to test diversity patterns and genetic signatures of different taxonomic groups and as a higher‐order landscape biodiversity surrogate for conservation planning.  相似文献   

14.
Endemic species and species with small ranges are ecologically and evolutionarily distinct and are vulnerable to extinction. Determining which abiotic and biotic factors structure patterns of endemism on continents can advance our understanding of global biogeographic processes, but spatial patterns of mammalian endemism have not yet been effectively predicted and reconstructed. Using novel null model techniques, we reconstruct trends in mammalian endemism and describe the isolated and combined effects of physiographic, ecological, and evolutionary factors on endemism. We calculated weighted endemism for global continental ecoregions and compared the spatial distribution of endemism to niche-based, geographic null models of endemism. These null models distribute species randomly across continents, simulating their range sizes from their degree of climatic specialization. They isolate the effects of physiography (topography and climate) and species richness on endemism. We then ran linear and structural models to determine how topography and historical climate stability influence endemism. The highest rates of mammalian endemism were found in topographically rough, climatically stable ecoregions with many species. The null model that isolated physiography did not closely approximate the observed distribution of endemism (r2 = .09), whereas the null model that incorporated both physiography and species richness did (r2 = .59). The linear models demonstrate that topography and climatic stability both influenced endemism values, but that average climatic niche breadth was not highly correlated with endemism. Climate stability and topography both influence weighted endemism in mammals, but the spatial distribution of mammalian endemism is driven by a combination of physiography and species richness. Despite its relationship to individual range size, average climate niche breadth has only a weak influence on endemism. The results highlight the importance of historical biogeographic processes (e.g. centers of speciation) and geography in driving endemism patterns, and disentangle the mechanisms structuring species ranges worldwide.  相似文献   

15.
Aims Major patterns and determinants of the species richness of Sphingidae in the Malesian archipelago were investigated, including a distinction of richness patterns between subfamilies and range‐size classes. Location Southeast Asia, Malesia. Methods Using a compilation of specimen‐label data bases, geographic information system (GIS)‐supported estimates of distributional ranges for all Sphingidae species of Southeast Asia were used to assess the species richness of islands. Range maps for all species and checklists for 114 islands can be found at http://www.sphingidae‐sea.biozentrum.uni‐wuerzburg.de . Potential determinants of the species richness of islands were tested with general linear models. Results The estimated species richness of islands in the region is determined by biogeographical association, seasonality, availability of rain forest and island size. Species–area relationships are linear on a semi‐logarithmic representation, but not on a double‐logarithmic scale. Species richness of all sphingid subfamilies is influenced by biogeography. The presence of large rain‐forest areas affects mainly Smerinthinae, whereas distance from continental Asia is conspicuously irrelevant for this group. Widespread rather than geographically restricted species shape the overall distribution patterns of species richness. The altitudinal range of islands does not significantly affect species‐richness patterns, but its potential effects on geographically restricted species are discussed. Main conclusions As well as being affected by climatic and vegetation parameters, sphingid species richness is strongly influenced by a historical, directional dispersal process from continental Southeast Asia to the Pacific islands. This process did not apply equally to species of different taxonomic groups or range sizes. Widespread species decline in species richness towards the south‐east, whereas geographically restricted species exhibit an inverse pattern of species richness, probably because speciation becomes more important in this group within the more isolated island groups.  相似文献   

16.
Aim To integrate dietary knowledge and species distributions in order to examine the latitudinal, environmental, and biogeographical variation in the species richness of avian dietary guilds (herbivores, granivores, frugivores, nectarivores, aerial insectivores, terrestrial/arboreal insectivores, carnivores, scavengers, and omnivores). Location Global. Methods We used global breeding range maps and a comprehensive dietary database of all terrestrial bird species to calculate guild species richness for grid cells at 110 × 110 km resolution. We assessed congruence of guild species richness, quantified the steepness of latitudinal gradients and examined the covariation between species richness and climate, topography, habitat diversity and biogeographic history. We evaluated the potential of current environment and biogeographic history to explain global guild distribution and compare observed richness–environment relationships with those derived from random subsets of the global species pool. Results While most guilds (except herbivores and scavengers) showed strong congruence with overall bird richness, covariation in richness between guilds varied markedly. Guilds exhibited different peaks in species richness in geographical and multivariate environmental space, and observed richness–environment relationships mostly differed from random expectations. Latitudinal gradients in species richness were steepest for terrestrial/arboreal insectivores, intermediate for frugivores, granivores and carnivores, and shallower for all other guilds. Actual evapotranspiration emerged as the strongest climatic predictor for frugivores and insectivores, seasonality for nectarivores, and temperature for herbivores and scavengers (with opposite direction of temperature effect). Differences in species richness between biogeographic regions were strongest for frugivores and nectarivores and were evident for nectarivores, omnivores and scavengers when present‐day environment was statistically controlled for. Guild richness–environment relationships also varied between regions. Main conclusions Global associations of bird species richness with environmental and biogeographic variables show pronounced differences between guilds. Geographic patterns of bird diversity might thus result from several processes including evolutionary innovations in dietary preferences and environmental constraints on the distribution and diversification of food resources.  相似文献   

17.
Past climatic shifts have played a major role in generating and shaping biodiversity. Quaternary glacial cycles are the better known examples of dramatic climatic changes endured by ecosystems in temperate regions. Although still a matter of debate, some authors suggest that glaciations promoted speciation. Here we investigate the effect of past climatic changes on the diversification of the ground‐dwelling spider genus Harpactocrates, distributed across the major mountain ranges of the western Mediterranean. Concatenated and species‐tree analyses of multiple mitochondrial and nuclear loci, combined with the use of fossil and biogeographic calibration points, reveal a Miocene origin of most nominal species, but also unravel several cryptic lineages tracing back to the Pleistocene. We hypothesize that the Miocene Climatic Transition triggered major extinction events in the genus but also promoted its subsequent diversification. Under this scenario, the Iberian mountains acted as an island‐like system, providing shelter to Harpactocrates lineages during the climate shifts and favouring isolation between mountain ranges. Quaternary glacial cycles contributed further to the diversification of the group by isolating lineages in peripheral refugia within mountain ranges. In addition, we recovered some unique biogeographic patterns, such as the colonization of the Alps and the Apennines from the Iberian Peninsula.  相似文献   

18.
Quaternary climate changes explain diversity among reptiles and amphibians   总被引:2,自引:0,他引:2  
It is widely believed that contemporary climate determines large-scale patterns of species richness. An alternative view proposes that species richness reflects biotic responses to historic climate changes. These competing "contemporary climate" vs "historic climate" hypotheses have been vigorously debated without reaching consensus. Here, we test the proposition that European species richness of reptiles and amphibians is driven by climate changes in the Quaternary. We find that climate stability between the Last Glacial Maximum (LGM) and the present day is a better predictor of species richness than contemporary climate; and that the 0°C isotherm of the LGM delimits the distributions of narrow-ranging species, whereas the current 0°C isotherm limits the distributions of wide-ranging species. Our analyses contradict previous studies of large-scale species richness patterns and support the view that "historic climate" can contribute to current species richness independently of and at least as much as contemporary climate.  相似文献   

19.
Oceanic islands are vulnerable ecosystems and their flora has been under pressure since the arrival of the first humans. Human activities and both deliberately and inadvertently introduced biota have had and continue to have a severe impact on island endemic plants. The number of alien plants has increased nearly linearly on many islands, perhaps resulting in extinction‐based saturation of island floras. Here, we provide evidence for such a scenario in Alejandro Selkirk, Robinson Crusoe Islands (Archipelago Juan Fernández, Chile). We compared species richness and species composition of historical vegetation samples from 1917 with recent ones from 2011. Changes in species’ relative occurrence frequency were related to their taxonomic affiliation, dispersal mode, distribution status, and humidity and temperature preferences. While total species richness of vascular plants remained relatively similar, species composition changed significantly. Plants endemic to the Robinson Crusoe Islands declined, exotic species increased substantially within the period of ca. 100 years. Further, the relative occurrence frequency of plants with preferences for very warm and humid climate decreased, while the opposite was found for plants preferring drier and colder environments. Potential drivers responsible for this dramatic shift in the vegetation within only one century might have been the large goat population affecting especially small populations of endemic plants and climatic changes. Taking into account a substantial extinction debt, we expect further shifts in the vegetation of this small oceanic island toward alien plants. This would have significant negative consequences on global biodiversity, considering that island floras contribute substantially to global plant species richness due to their high proportion of endemics.  相似文献   

20.
Island biogeography has greatly contributed to our understanding of the processes determining species' distributions. Previous research has focused on the effects of island geography (i.e., island area, elevation, and isolation) and current climate as drivers of island species richness and endemism. Here, we evaluate the potential additional effects of historical climate on breeding land bird richness and endemism in Wallacea and the West Indies. Furthermore, on the basis of species distributions, we identify island biogeographical network roles and examine their association with geography, current and historical climate, and bird richness/endemism. We found that island geography, especially island area but also isolation and elevation, largely explained the variation in island species richness and endemism. Current and historical climate only added marginally to our understanding of the distribution of species on islands, and this was idiosyncratic to each archipelago. In the West Indies, endemic richness was slightly reduced on islands with historically unstable climates; weak support for the opposite was found in Wallacea. In both archipelagos, large islands with many endemics and situated far from other large islands had high importance for the linkage within modules, indicating that these islands potentially act as speciation pumps and source islands for surrounding smaller islands within the module and, thus, define the biogeographical modules. Large islands situated far from the mainland and/or with a high number of nonendemics acted as links between modules. Additionally, in Wallacea, but not in the West Indies, climatically unstable islands tended to interlink biogeographical modules. The weak and idiosyncratic effect of historical climate on island richness, endemism, and network roles indicates that historical climate had little effects on extinction‐immigration dynamics. This is in contrast to the strong effect of historical climate observed on the mainland, possibly because surrounding oceans buffer against strong climate oscillations and because geography is a strong determinant of island richness, endemism and network roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号