共查询到20条相似文献,搜索用时 0 毫秒
1.
Ricardo A. Segovia Luis F. Hinojosa María F. Pérez Bradford A. Hawkins 《Austral ecology》2013,38(8):905-914
Broad‐scale richness gradients are closely associated with temperature and water availability. However, historical and evolutionary processes have also contributed to shape current diversity patterns. In this paper we focus on the potential influences of Pleistocene glaciation and phylogenetic niche conservatism (the tendency for traits to be maintained during diversification) on the tree diversity gradient in Chile, and we quantify its primary climatic correlates. Tree species richness is greatest at mid latitudes, particularly in the Andes and Coastal ranges, and decreases abruptly to the south and north. Regression tree analysis identified annual precipitation and annual temperature as the primary probable drivers of this gradient. Ice cover during the Last Glacial Maximum was also identified as an ‘important’ variable, but the contemporary and historical predictors are strongly collinear. Geographically weighted regression indicated that the relationships between richness and environmental variables vary regionally: the relationship between tree richness and precipitation is stronger in north‐central Chile, whereas tree richness and temperature are most strongly associated in south‐central Chile. By assigning each species the age of the family to which it belongs and averaging all species in each geographical unit, we also found that species from the oldest families are distributed mainly in mid to high latitudes and species from younger families are distributed mainly at lower latitudes. This pattern is closely associated with annual precipitation. Thus, the ecological component of tree richness follows contemporary climatic gradients of both energy and water, but the aridification of the Atacama Desert was an important driver over evolutionary time. The influence of recent Pleistocene glaciation remains unresolved but it cannot be discounted. 相似文献
2.
Madhav P. Thakur Helen R. P. Phillips Ulrich Brose Franciska T. De Vries Patrick Lavelle Michel Loreau Jerome Mathieu Christian Mulder Wim H. Van der Putten Matthias C. Rillig David A. Wardle Elizabeth M. Bach Marie L. C. Bartz Joanne M. Bennett Maria J. I. Briones George Brown Thibaud Decaëns Nico Eisenhauer Olga Ferlian Carlos Antnio Guerra Birgitta Knig‐Ries Alberto Orgiazzi Kelly S. Ramirez David J. Russell Michiel Rutgers Diana H. Wall Erin K. Cameron 《Biological reviews of the Cambridge Philosophical Society》2020,95(2):350-364
Soil is one of the most biodiverse terrestrial habitats. Yet, we lack an integrative conceptual framework for understanding the patterns and mechanisms driving soil biodiversity. One of the underlying reasons for our poor understanding of soil biodiversity patterns relates to whether key biodiversity theories (historically developed for aboveground and aquatic organisms) are applicable to patterns of soil biodiversity. Here, we present a systematic literature review to investigate whether and how key biodiversity theories (species–energy relationship, theory of island biogeography, metacommunity theory, niche theory and neutral theory) can explain observed patterns of soil biodiversity. We then discuss two spatial compartments nested within soil at which biodiversity theories can be applied to acknowledge the scale‐dependent nature of soil biodiversity. 相似文献
3.
Pavel Fibich Vojtch Novotný Sisira Ediriweera Savitri Gunatilleke Nimal Gunatilleke Kenneth Molem George D. Weiblen Jan Lep 《Ecology and evolution》2021,11(12):8085
Tropical forests are notable for their high species diversity, even on small spatial scales, and right‐skewed species and size abundance distributions. The role of individual species as drivers of the spatial organization of diversity in these forests has been explained by several hypotheses and processes, for example, stochastic dilution, negative density dependence, or gap dynamics. These processes leave a signature in spatial distribution of small trees, particularly in the vicinity of large trees, likely having stronger effects on their neighbors. We are exploring species diversity patterns within the framework of various diversity‐generating hypotheses using individual species–area relationships. We used the data from three tropical forest plots (Wanang—Papua New Guinea, Barro Colorado Island—Panama, and Sinharaja—Sri Lanka) and included also the saplings (DBH ≥ 1 cm). Resulting cross‐size patterns of species richness and evenness reflect the dynamics of saplings affected by the distribution of large trees. When all individuals with DBH ≥1 cm are included, ~50% of all tree species from the 25‐ or 50‐ha plot can be found within 35 m radius of an individual tree. For all trees, 72%–78% of species were identified as species richness accumulators, having more species present in their surroundings than expected by null models. This pattern was driven by small trees as the analysis of DBH >10 cm trees showed much lower proportion of accumulators, 14%–65% of species identified as richness repellers and had low richness of surrounding small trees. Only 11%–26% of species had lower species evenness than was expected by null models. High proportions of species richness accumulators were probably due to gap dynamics and support Janzen–Connell hypothesis driven by competition or top‐down control by pathogens and herbivores. Observed species diversity patterns show the importance of including small tree size classes in analyses of the spatial organization of diversity. 相似文献
4.
Aim To integrate dietary knowledge and species distributions in order to examine the latitudinal, environmental, and biogeographical variation in the species richness of avian dietary guilds (herbivores, granivores, frugivores, nectarivores, aerial insectivores, terrestrial/arboreal insectivores, carnivores, scavengers, and omnivores). Location Global. Methods We used global breeding range maps and a comprehensive dietary database of all terrestrial bird species to calculate guild species richness for grid cells at 110 × 110 km resolution. We assessed congruence of guild species richness, quantified the steepness of latitudinal gradients and examined the covariation between species richness and climate, topography, habitat diversity and biogeographic history. We evaluated the potential of current environment and biogeographic history to explain global guild distribution and compare observed richness–environment relationships with those derived from random subsets of the global species pool. Results While most guilds (except herbivores and scavengers) showed strong congruence with overall bird richness, covariation in richness between guilds varied markedly. Guilds exhibited different peaks in species richness in geographical and multivariate environmental space, and observed richness–environment relationships mostly differed from random expectations. Latitudinal gradients in species richness were steepest for terrestrial/arboreal insectivores, intermediate for frugivores, granivores and carnivores, and shallower for all other guilds. Actual evapotranspiration emerged as the strongest climatic predictor for frugivores and insectivores, seasonality for nectarivores, and temperature for herbivores and scavengers (with opposite direction of temperature effect). Differences in species richness between biogeographic regions were strongest for frugivores and nectarivores and were evident for nectarivores, omnivores and scavengers when present‐day environment was statistically controlled for. Guild richness–environment relationships also varied between regions. Main conclusions Global associations of bird species richness with environmental and biogeographic variables show pronounced differences between guilds. Geographic patterns of bird diversity might thus result from several processes including evolutionary innovations in dietary preferences and environmental constraints on the distribution and diversification of food resources. 相似文献
5.
Bradford A. Hawkins Miguel Á. Rodríguez Stephen G. Weller 《Journal of Biogeography》2011,38(7):1253-1266
Aim The global richness gradient of angiosperm families is correlated with current climate, and it has been claimed that historical processes are not necessary to understand patterns of plant family richness. This claim has drawn criticism, and there have been doubts about the quality of the data used to quantify the pattern. We revisit this issue using the Angiosperm Phylogeny Group (APG) III classification and revised range maps, and we incorporate an evolutionary variable, family age, to explore covariation between evolution and ecology and their links to climate via the tropical conservatism hypothesis (TCH). Location Global. Methods The richness pattern for 408 families was derived from range maps, and family ages were derived from a dated angiosperm phylogeny. Patterns were generated for all families, 143 families composed of trees, and 149 families composed of herbs. We also examined family range size patterns to test the extent to which extratropical floras are nested subsets of tropical floras. Ordinary least squares (OLS) multiple and partial regressions were used to generate climate models for richness, mean range size and mean age for each plant dataset and to evaluate the covariation between contemporary climate and clade age as correlates of family richness. Results We confirmed the strong association between contemporary climate and family richness. Age patterns predicted by TCH were also found for families comprising trees. The richness of herbaceous families, in contrast, was correlated with climate but the age pattern was not as predicted by TCH. Floras in cold and dry areas are strongly nested within richer tropical floras. Main conclusions Phylogenetic niche conservatism at the family level offers a likely explanation for the global diversity gradient of trees, but not for non‐desert herbs, probably because of the faster evolutionary rates for herbs and less constrained evolutionary responses to climate change. Thus, it appears that multiple processes account for the overall angiosperm family gradient. Our analysis also demonstrates that even very strong associations of taxon richness and climate do not preclude evolutionary processes, as has been widely argued, and that climatic and evolutionary hypotheses for richness gradients are not mutually exclusive. 相似文献
6.
Understanding species’ responses to environmental conditions, and how these species–environment associations shape spatial distributions, are longstanding goals in ecology and biogeography. However, an essential component of species–environment relationships – the spatial unit, or grain, at which they operate – remains unresolved. We identify three components of scale‐dependence in analyses of species–environment associations: 1) response grain, the grain at which species respond most strongly to their environment; 2) environment spatial structure, the pattern of spatial autocorrelation intrinsic to an environmental factor; and 3) analysis grain, the grain at which analyses are conducted and ecological inferences are made. We introduce a novel conceptual framework that defines these scale components in the context of analyzing species–environment relationships, and provide theoretical examples of their interactions for species with various ecological attributes. We then use a virtual species approach to investigate the impacts of each component on common methods of measuring and predicting species–environment relationships. We find that environment spatial structure has a substantial impact on the ability of even simple, univariate species distribution models (SDMs) to recover known species–environment associations at coarse analysis grains. For simulated environments with ‘fine’ and ‘intermediate’ spatial structure, model explanatory power, and the frequency with which simple SDMs correctly estimated a virtual species’ response to the simulated environment, dramatically declined as analysis grain increased. Informed by these results, we use a scaling analysis to identify maximum analysis grains for individual environmental factors, and a scale optimization procedure to determine the grain of maximum predictive accuracy. Implementing these analysis grain thresholds and model performance standards in an example east African study system yields more accurate distribution predictions, compared to SDMs independently constructed at arbitrary analysis grains. Finally, we integrate our conceptual framework with virtual and empirical results to provide practical recommendations for researchers asking common questions about species–environment relationships. 相似文献
7.
Thea Kristiansen Jens‐Christian Svenning Wolf L. Eiserhardt Dennis Pedersen Hans Brix Søren Munch Kristiansen Maria Knadel César Grández Henrik Balslev 《Journal of Biogeography》2012,39(7):1318-1332
Aim It is a central issue in ecology and biogeography to understand what governs community assembly and the maintenance of biodiversity in tropical rain forest ecosystems. A key question is the relative importance of environmental species sorting (niche assembly) and dispersal limitation (dispersal assembly), which we investigate using a large dataset from diverse palm communities. Location Lowland rain forest, western Amazon River Basin, Peru. Methods We inventoried palm communities, registering all palm individuals and recording environmental conditions in 149 transects of 5 m × 500 m. We used ordination, Mantel tests and indicator species analysis (ISA) to assess compositional patterns, species responses to geographical location and environmental factors. Mantel tests were used to assess the relative importance of geographical distance (as a proxy for dispersal limitation) and environmental differences as possible drivers of dissimilarity in palm species composition. We repeated the Mantel tests for subsets of species that differ in traits of likely importance for habitat specialization and dispersal (height and range size). Results We found a strong relationship between compositional dissimilarity and environmental distance and a weaker but also significant relationship between compositional dissimilarity and geographical distance. Consistent with expectations, relationships with environmental and geographical distance were stronger for understorey species than for canopy species. Geographical distance had a higher correlation with compositional dissimilarity for small‐ranged species compared with large‐ranged species, whereas the opposite was true for environmental distance. The main environmental correlates were inundation and soil nutrient levels. Main conclusions The assembly of palm communities in the western Amazon appears to be driven primarily by species sorting according to hydrology and soil, but with dispersal limitation also playing an important role. The importance of environmental characteristics and geographical distance varies depending on plant height and geographical range size in agreement with functional predictions, increasing our confidence in the inferred assembly mechanisms. 相似文献
8.
Aim This study uses a high‐resolution simulation of the Last Glacial Maximum (LGM) climate to assess: (1) whether LGM climate still affects the geographical species richness patterns in the European tree flora and (2) the relative importance of modern and LGM climate as controls of tree species richness in Europe. Location The parts of Europe that were unglaciated during the LGM. Methods Atlas data on the distributions of 55 tree species were linked with data on modern and LGM climate and climatic heterogeneity in a geographical information system with a 60‐km grid. Four measures of species richness were computed: total richness, and richness of the 18 most restricted species, 19 species of medium incidence (intermediate species) and 18 most widespread species. We used ordinary least‐squares regression and spatial autoregressive modelling to test and estimate the richness–climate relationships. Results LGM climate constituted the best single set of explanatory variables for richness of restricted species, while modern climate and climatic heterogeneity was best for total and widespread species richness and richness of intermediate species, respectively. The autoregressive model with all climatic predictors was supported for all richness measures using an information‐theoretic approach, albeit only weakly so for total species richness. Among the strongest relationships were increases in total and intermediate richness with climatic heterogeneity and in restricted richness with LGM growing‐degree‐days. Partial regression showed that climatic heterogeneity accounted for the largest unique variation fraction for intermediate richness, while LGM climate was particularly important for restricted richness. Main conclusions LGM climate appears to still affect geographical patterns of tree species richness in Europe, albeit the relative importance of modern and LGM climate depends on range size. Notably, LGM climate is a strong richness control for species with a restricted range, which appear to still be associated with their glacial refugia. 相似文献
9.
10.
C. Brown D. F. R. P. Burslem J. B. Illian L. Bao W. Brockelman M. Cao L. W. Chang H. S. Dattaraja S. Davies C. V. S. Gunatilleke I. A. U. N. Gunatilleke J. Huang A. R. Kassim J. V. LaFrankie J. Lian L. Lin K. Ma X. Mi A. Nathalang S. Noor P. Ong R. Sukumar S. H. Su I. F. Sun H. S. Suresh S. Tan J. Thompson M. Uriarte R. Valencia S. L. Yap W. Ye R. Law 《Proceedings. Biological sciences / The Royal Society》2013,280(1764)
Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity. 相似文献
11.
12.
In some island systems, an ‘anomalous’ feature of species richness on smaller islands, in comparison with larger ones, has been observed. This has been described as the small island effect (SIE). The precise meaning of the term remains unresolved, as does the explanation for the phenomenon and even whether it exists. Dengler (2010 ; Diversity Distrib, 16 , 256–266.) addresses a number of conceptual and methodological issues concerning the nature and the detection of the SIE but fails to settle conclusively most of the issues he raises. We contend that his approach is theoretically flawed, especially in its treatment of habitat diversity. We offer a few suggestions of what is needed to advance understanding of the SIE. 相似文献
13.
物种多样性的空间分布格局和维持机制是群落生态学的基本问题。为了探讨海南尖峰岭地区物种多样性空间分布格局的尺度效应, 以海南尖峰岭热带山地雨林60 hm2样地为研究对象, 分析了物种丰富度、物种多度、Shannon-Wiener指数、Simpson指数以及Pielou均匀度指数随6个空间取样尺度(5 m × 5 m、10 m × 10 m、20 m × 20 m、40 m × 40 m、100 m ×100 m、200 m × 200 m)的变化。结果表明: 相比Simpson指数和Pielou均匀度指数, 物种丰富度、多度以及Shannon-Wiener指数具有更为明显的空间尺度效应; 物种丰富度的方差随取样尺度增加呈现单峰分布特征, 并且在20 m × 20 m尺度上达到最大值, 而物种多度的方差随取样尺度的增加而增大; 物种丰富度和多度的正相关性随着取样尺度的增加逐渐减小甚至消失, 这可能与随取样尺度增加生境异质性增加有关; 取样尺度对3个物种多样性指数空间分布的影响可能与研究区域内稀有种的组成有关。 相似文献
14.
15.
Pablo R. Stevenson 《Biotropica》2011,43(4):512-519
Ateline monkeys, the largest primates in the Neotropics, may disperse more than one million seeds/km2/d at sites where they are abundant, but it is unclear whether a reduction in their populations can alter plant diversity patterns. The species richness and composition of regenerating plants as a proxy of future plant communities were studied by comparing 16 sites with different ateline abundance in three countries in northwestern South America. A total of 3658 plots included 94,340 regenerating plants, which were assigned to species or morphospecies. Paired t‐tests comparing sites in the same region but with different densities of atelines, and regression analyses showed a consistent positive relationship between ateline density and plant diversity. These results were due to the larger number of stems per area and higher evenness at sites with more atelines, suggesting higher recruitment rates for dispersed seeds. Differences were also found in plant composition, as canopy, endozoochorous, and medium seed size plants were consistently more abundant in sites with more ateline monkeys than in sites with less atelines. The findings of this study suggest that these primates play a key role in plant regeneration. In order to maintain the diversity and plant composition of tropical forests for future generations, conservation of these large frugivores and other key game species is imperative. 相似文献
16.
17.
Cristian S. Dambros José W. Morais Alexandre Vasconcellos Jorge L. P. Souza Elizabeth Franklin Nicholas J. Gotelli 《Biotropica》2016,48(2):237-245
Predation is a key determinant of prey community structure, but few studies have measured the effect of multiple predators on a highly diverse prey community. In this study, we asked whether the abundance, species richness, and species composition of a species‐rich assemblage of termites in an Amazonian rain forest is more strongly associated with the density of predatory ants or with measures of vegetation, and soil texture and chemistry. We sampled termite assemblages with standardized hand‐collecting in 30 transects arranged in a 5 km × 6 km grid in a terra firme Amazonian rain forest. For each transect, we also measured vegetation structure, soil texture, and soil phosphorus, and estimated the density of predatory ants from baits, pitfall traps, and Winkler samples. Seventy‐nine termite species were recorded, and the total density of predatory ants was the strongest single predictor of local termite abundance (r = ?0.66) and termite species richness (r = ?0.44). In contrast, termite abundance and species richness were not strongly correlated with edaphic conditions (¦r¦ < 0.01), or with the density of non‐predatory ants (rabund = ?0.27; rs = ?0.06). Termite species composition was correlated with soil phosphorus content (r = 0.79), clay content (r = ?0.75), and tree density (r = ?0.42). Assemblage patterns were consistent with the hypothesis that ants collectively behaved as generalist predators, reducing total termite abundance, and species richness. There was no evidence that ants behaved as keystone predators, or that any single termite species benefited from the reduction in the abundance of potential competitors. 相似文献
18.
Pablo Cuevas-Reyes Cristina Siebe Miguel Martínez-Ramos Ken Oyama 《Biodiversity and Conservation》2003,12(3):411-422
We tested two hypotheses to explain changes in species richness ofgall-forming insects. The first hypothesis proposes that gall-forming insectspecies richness increases as more potential host–plant species areavailable. The second hypothesis implies that soil fertility affects plantcolonization by gall-forming insects. Seven sites, representing strongdifferences in vegetation and soil were chosen at the Lacandona tropical rainforest region, Chiapas, Mexico. Overall, we found 1522 individual plantsbelonging to 340 different plant species. From this, we found gall-forminginsects on 737 (43.9%) plants and on 74 (22%) of total plant species. We found asignificant negative correlation between gall-forming insect species richnessand species richness of plants, which does not support the hypothesis that plantspecies richness is an important factor in generating the radiation ofgall-forming insects. Using phosphorus as an indicator of soil fertility, wefound the lowest number of plants with gall-forming insects and the smallestgall-forming insect load per individual plant in the more fertile soil(alluvial). In contrast, the highest number of plants with galls and the highestgall-forming insect load per plant were found at a savanna-like vegetationsite, where the poorest soil was recorded. These results did not support thesoil fertility hypothesis in terms of species richness, but did with respect toabundance of plants with galls. 相似文献
19.
Tiago Jordão Porto Ricardo Pinto‐da‐Rocha Pedro Luís Bernardo da Rocha 《Diversity & distributions》2018,24(3):375-386
Aim
This study formally evaluates the ability of three models to use geographical data on species distribution to predict the habitat use patterns of species in heterogeneous landscapes.Location
Species and habitats in the Brazilian Atlantic Rain Forest were investigated.Methods
Based on empirical data on harvestmen and scorpions, we estimated the strength of species association with preferred habitat and classified them as habitat generalists or habitat specialists. We compared these empirical results with predictions made using data on species range size (model 1), species occurrence in biomes (model 2) and species occurrence in habitats within the biomes (model 3).Results
We used 1,278 records of eight harvestman and two scorpion species that had specific determination and enough sampling numbers to allow safe identification of habitat specialization. We observed the following: (1) the extension of species occurrence did not influence the strength of species–habitat association (estimated by IndVal), which led us to reject model 1; (2) species habitat specialization derived from occurrences in biomes was 60% coincident with the classification derived from empirical data. This value is not different enough from the value expected by chance for these data, which also led us to reject model 2; and (3) species classification derived from secondary data about the habitats used had a significant coincidence of 80% with the empirical classification, which led us to accept model 3.Main conclusions
For correct classification of species habitat specialization using secondary distributional data, we recommend that future studies consider using the most accurate information available on the habitats used by species. Especially for megadiverse and understudied groups, information about habitats used is not easy to obtain, so it is important for researchers and institutions to register and disseminate this information, which could support many other studies.20.