首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aim As climate change is increasing the frequency, severity and extent of wildfire and bark beetle outbreaks, it is important to understand how these disturbances interact to affect ecological patterns and processes, including susceptibility to subsequent disturbances. Stand‐replacing fires and outbreaks of mountain pine beetle (MPB), Dendroctonus ponderosae, are both important disturbances in the lodgepole pine, Pinus contorta, forests of the Rocky Mountains. In the current study we investigated how time since the last stand‐replacing fire affects the susceptibility of the stand to MPB outbreaks in these forests. We hypothesized that at a stand‐scale, young post‐fire stands (< c. 100–150 years old) are less susceptible to past and current MPB outbreaks than are older stands. Location Colorado, USA. Methods We used dendroecological methods to reconstruct stand‐origin dates and the history of outbreaks in 23 lodgepole pine stands. Results The relatively narrow range of establishment dates among the oldest trees in most sampled stands suggested that these stands originated after stand‐replacing or partially stand‐replacing fires over the past three centuries. Stands were affected by MPB outbreaks in the 1940s/1950s, 1980s and 2000s/2010s. Susceptibility to outbreaks generally increased with stand age (i.e. time since the last stand‐replacing fire). However, this reduced susceptibility of younger post‐fire stands was most pronounced for the 1940s/1950s outbreak, less so for the 1980s outbreak, and did not hold true for the 2000s/2010s outbreak. Main conclusions Younger stands may not have been less susceptible to the most recent outbreak because: (1) after stands reach a threshold age of > 100–150 years, stand age does not affect susceptibility to outbreaks, or (2) the high intensity of the most recent outbreak reduces the importance of pre‐disturbance conditions for susceptibility to disturbance. If the warm and dry conditions that contribute to MPB outbreaks concurrently increase the frequency and/or extent of severe fires, they may thereby mitigate the otherwise increased landscape‐scale susceptibility to outbreaks. Potential increases in severe fires driven by warm and dry climatic trends may lead to a negative feedback by making lodgepole pine stands less susceptible to future MPB outbreaks.  相似文献   

2.
Mountain pine beetle (Dendroctonus ponderosae) outbreaks in western North American coniferous forests are increasing in size and severity. An understanding of wildlife population responses to pine beetle outbreaks is needed to inform habitat conservation strategies. We monitored 355 nests of 5 woodpecker species during 2 sampling periods, before (2003–2006) and after (2009–2014) the peak of a pine beetle outbreak in dry mixed conifer forest of Montana, USA. Three of 5 woodpecker species represented the beetle-foraging group: American three-toed (Picoides dorsalis), hairy (Dryobates villosus), and downy (D. pubescens) woodpeckers. The other 2 species studied were northern flicker (Colaptes auratus), a foraging and habitat generalist, and red-naped sapsucker (Sphyrapicus nuchalis), a sap forager and bark-gleaning insectivore. We analyzed daily survival rate of nests in relation to pine beetle outbreak (445,000 ha) severity and timing, along with covariates unrelated to the outbreak (temp, nest height, and nest tree diameter). Our results provided stronger evidence for relationships between woodpecker nest survival and the non-outbreak variables than those associated with outbreaks. Our results indicated limited support for nest survival relationships with beetle severity (annual and cumulative pine tree mortality at 0.81-ha and 314-ha scales). Nevertheless, we observed a significant increase in densities of hatched nests for beetle-foraging woodpeckers following the outbreak. Our results suggest that woodpeckers, particularly beetle foragers, respond numerically to pine beetle outbreaks through increased nesting densities more so than functionally via nest survival. © 2019 The Authors. Journal of Wildlife Management Published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

3.
4.
  • 1 Endemic populations of the bark beetle Dendroctonus ponderosae attack weakened lodgepole pine (Pinus contorta var. latifolia) trees that are often previously infested by other bark beetle species, such as Pseudips mexicanus.
  • 2 The effect of interactions on D. ponderosae was assessed by examining host selection and productivity of D. ponderosae in trees containing P. mexicanus and trees infested solely by D. ponderosae.
  • 3 The findings obtained show that D. ponderosae attacked hosts previously occupied by P. mexicanus at greater densities, and offspring emerged earlier compared with hosts infested by D. ponderosae alone. Additionally, D. ponderosae larvae in P. mexicanus‐infested trees were found to require a significantly lower amount of resource to complete development with no loss in size.
  • 4 The presence of P. mexicanus may affect host condition, improving the subcortical environment for endemic D. ponderosae, ultimately aiding in population maintenance at low levels. Hosts in this state should be preferentially attacked by D. ponderosae.
  相似文献   

5.
The southern pine beetle (Dendroctonus frontalis) and western pine beetle (Dendroctonus brevicomis) cause significant mortality to pines in the southern and western United States. The effectiveness of commercial lures at capturing these bark beetles in Arizona has not been tested and may vary from other regions of their distribution. We conducted experiments using baited Lindgren funnel traps to investigate (i) if D. frontalis is more attracted to the standard commercial lure for D. brevicomis (frontalin + exo‐brevicomin + myrcene) than the D. frontalis lure (frontalin + terpene blend), (ii) whether replacement of myrcene with α‐pinene changes trap catches of Dendroctonus and associated insects, and (iii) whether the attraction to these lures varies across the geographical range of ponderosa pine forests throughout Arizona. In 2005, we tested various combinations of frontalin, exo‐brevicomin, myrcene and α‐pinene to D. frontalis, D. brevicomis and associated species. Dendroctonus frontalis, D. brevicomis and the predator Temnochila chlorodia were most attracted to lures with exo‐brevicomin. The replacement of the myrcene component with α‐pinene in the D. brevicomis lure resulted in the capture of twice as many bark beetles and Elacatis beetles. However, T. chlorodia did not differentiate between monoterpenes. In 2006, traps were set up in 11 locations around Arizona to test the relative attraction of lure combinations. In 9 out 11 locations, the D. brevicomis lure with α‐pinene was more attractive than the lure with myrcene or a terpene blend. These results suggest that the D. brevicomis lure with α‐pinene rather than myrcene is more effective lure to capture D. brevicomis and D. frontalis in Arizona. However, geographical variation in attractiveness to lures is evident even within this region of the beetles’ distributions. Differential attraction of Dendroctonus and their predators to these lures suggests potential use in field trapping and control programmes.  相似文献   

6.
In a recent study, we reported a previously undescribed behavior in which a bark beetle exuded oral secretions containing bacteria that have antifungal properties, and hence defend their galleries against pervasive antagonistic Hyphomycete fungi. Actinobacteria, a group known for their antibiotic properties, were the most effective against fungi that invade the spruce beetle galleries. In the present study, we describe the isolation and identification of microorganisms from oral secretions of three bark beetles (Coleoptera: Curculionidae: Scolytinae): the spruce beetle, Dendroctonus rufipennis Kirby, the mountain pine beetle, Dendroctonus ponderosae Hopkins, and the pine engraver, Ips pini Say. Bacteria isolated from these three species span the major bacterial classes α-, β-, and γ-Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, except for D. ponderosae , which yielded no α-proteobacteria or Bacteroidetes isolates. Spruce beetles and pine engraver beetles had similar numbers of α-proteobacteria isolates, but pine engravers yielded twice as many Bacteroidetes isolates as spruce beetles. In contrast, mountain pine beetles yielded more isolates in the β- and γ-proteobacteria than spruce beetles and pine engravers. The highest percentage of Actinobacteria was obtained from spruce beetles, followed by pine engravers and mountain pine beetles. All of the fungal isolates obtained from the three beetle species were Ascomycetes. The greatest fungal diversity was obtained in spruce beetles, which had nine species, followed by pine engravers with five, and mountain pine beetles with one.  相似文献   

7.
1 Abiotic conditions within logs can affect pine engraver Ips pini (Say) reproductive success, and slash management techniques have been developed that exploit these relationships to reduce brood production. In the present study, we investigated the affect of sunlight exposure on phloem temperature and moisture in logs of two diameters and the subsequent effects on pine engraver reproduction.
2 Logs, 30 cm in length, with diameters of 10 and 15 cm, were cut, left in the field for natural colonization by I pini , and then placed in an open meadow and under shade cloth, providing 27% and 66% shade, until offspring beetles had left the logs. Phloem temperature and moisture were recorded over the duration of the experiment and, at the end of the field experiment, logs were dissected and galleries were measured to gauge beetle reproductive success.
3 As sunlight exposure increased, phloem temperatures increased and potentially lethal temperatures were often reached in the high-sunlight exposure but seldom in the low-sunlight. Smaller diameter logs had drier phloem than larger diameter logs. All logs dried with time but sunlight level did not affect desiccation rates. Ips pini preferred attacking larger logs and the bottom side of logs. Sunlight exposure had a significant effect on net reproductive success in smaller diameter logs, with very little net reproductive success in high-sunlight exposed logs, and the highest reproductive success was found in small diameter logs in the low-sunlight treatments.
4 Management implications of these results are discussed.  相似文献   

8.
9.
Aim To understand how the biophysical environment influences patterns of infection by non‐native blister rust (caused by Cronartium ribicola) and mortality caused by native mountain pine beetles (Dendroctonus ponderosae) in whitebark pine (Pinus albicaulis) communities, to determine how these disturbances interact, and to gain insight into how climate change may influence these patterns in the future. Location High‐elevation forests in south‐west Montana, central Idaho, eastern and western Oregon, USA. Methods Stand inventory and dendroecological methods were used to assess stand structure and composition and to reconstruct forest history at sixty 0.1‐ha plots. Patterns of blister rust infection and mountain pine beetle‐caused mortality in whitebark pine trees were examined using nonparametric Kruskal–Wallis ANOVA, Mann–Whitney U‐tests, and Kolmogorov–Smirnov two‐sample tests. Stepwise regression was used to build models of blister rust infection and mountain pine beetle‐related mortality rates based on a suite of biophysical site variables. Results Occurrence of blister rust infections was significantly different among the mountain ranges, with a general gradient of decreasing blister rust occurrence from east to west. Evidence of mountain pine beetle‐caused mortality was identified on 83% of all dead whitebark pine trees and was relatively homogenous across the study area. Blister rust infected trees of all ages and sizes uniformly, while mountain pine beetles infested older, larger trees at all sites. Stepwise regressions explained 64% and 58% of the variance in blister rust infection and beetle‐caused mortality, respectively, indicating that these processes are strongly influenced by the biophysical environment. More open stand structures produced by beetle outbreaks may increase the exposure of surviving whitebark pine trees to blister rust infection. Main conclusions Variability in the patterns of blister rust infection and mountain pine beetle‐caused mortality elucidated the fundamental dynamics of these disturbance agents and suggests that the effects of climate change will be complex in whitebark pine communities and vary across the species’ range. Interactions between blister rust and beetle outbreaks may accelerate declines or facilitate the rise of rust resistance in whitebark pine depending on forest conditions at the time of the outbreak.  相似文献   

10.
The mountain pine beetle Dendroctonus ponderosae is a native species currently experiencing large-scale outbreaks in western North American pine forests. We sought to describe the pattern of genetic variation across the range of this species, to determine whether there were detectable genetic differences between D. ponderosae occupying different host trees in common localities, and to determine whether there was molecular evidence for a past demographic expansion. Using a combination of amplified fragment length polymorphism (AFLP) and mitochondrial sequencing analyses, we found evidence of genetic structuring among populations that followed a broad isolation-by-distance pattern. Our results suggest that the geographical pattern of gene flow follows the core distribution of the principal D. ponderosae host species, around rather than across the Great Basin and Mojave Deserts. Patterns of haplotype diversity and divergence were consistent with a range-wide population expansion. This signal was particularly pronounced in the northern part of the species' range, where outbreak activity is currently increasing. Using AFLP markers, we were unable to detect significant differences among groups of insects sampled from different host trees in common locations. Incidentally, we found that a large proportion of the polymorphic AFLP markers were gender-specific, occurring only in males. While we did not include these markers in our analyses, this finding warrants further investigation.  相似文献   

11.
12.
The b/c intron of the mitochondrial nad1 gene, was sequenced to characterize the indel region of ponderosa pine, Pinus ponderosa. The sequence in ponderosa pine was aligned with the sequence in Scots pine, Pinus sylvestris, to design seven primers that are useful for sequencing and for revealing size variation in amplified fragments in ponderosa pine, Scots pine, and limber pine, Pinus flexilis. These primers reveal variability in all three species, and the pattern of variability within ponderosa pine is described by a preliminary survey. The indel region of ponderosa pine contains three distinct elements with lengths of 31, 32, and 34 bp. Received: 1 March 2000 / Accepted: 14 April 2000<@head-com-p1a.lf>Communicated by P.M.A. Tigerstedt  相似文献   

13.
Bark beetle epidemics result in tree mortality across millions of hectares in North America. However, few studies have quantified impacts on carbon (C) cycling. In this study, we quantified the immediate response and subsequent trajectories of stand‐level aboveground tree C stocks and fluxes using field measurements and modeling for a location in central Idaho, USA that experienced an outbreak of mountain pine beetle (Dendroctonus ponderosae Hopkins). We measured tree characteristics in lodgepole pine (Pinus contorta) plots spanning a range of structure and mortality conditions. We then initialized the forest vegetation simulator, an individual tree‐based model, with these measurements and simulated the response of aboveground production of C fluxes as well as trajectories of C stocks and fluxes in the coming decades. Mountain pine beetles killed up to 52% of the trees within plots, with more larger trees killed. C stocks in lodgepole pine were reduced by 31–83% following the outbreak, and plot‐level C fluxes decreased 28–73%. Modeled C stocks increased nearly continuously following the infestation, recovering to preoutbreak levels in 25 years or less. Simulated aboveground tree C fluxes increased following the immediate postoutbreak decrease, then subsequently declined. Substantial variability of C stocks and fluxes among plots resulted from the number and size of killed and surviving trees. Our study illustrates that bark beetle epidemics alter forest C cycling unlike stand‐replacement wildfires or clear‐cut harvests, due in part to incomplete mortality coupled with the preference by beetles for larger trees. The dependency of postoutbreak C stocks and fluxes on stand structure suggests that C budget models and studies in areas experiencing mountain pine beetle disturbances need to include size distribution of trees for the most accurate results.  相似文献   

14.
15.
The Chinese white pine beetle, Dendroctonus armandi Tsai & Li (Coleoptera: Curculionidae, Scolytinae), is considered the most destructive forest pest in the Qinling and Bashan Mountains of China. In recent years, winter temperature has dropped in these regions, and extremely low temperatures are hard to survive for insects. Cold hardiness becomes a crucial strategy because temperature change often leads to fluctuations in insect abundance, and the metabolism rate is a key index of resistance to cold in overwintering insects. Therefore, we investigated the relationship between the change in respiratory rate and the activity of metabolism-related mitochondrial enzymes in D. armandi larvae under cold conditions. We found that the respiratory rate decreased, and it was matched with the activity of glutamate dehydrogenase, aconitase, and lipase during overwintering. Among the various test times under cold conditions, the respiratory rate also decreased with decreasing temperature and increased under very low temperatures. At all cold stress periods, glutamate dehydrogenase and lipase showed increased activity at higher temperatures and decreased activity under lower temperatures, but the activity of NAD-malic enzyme, NADP-malic enzyme, mitochondrial isocitrate dehydrogenase, and aconitase were contrary. Under all low temperatures, the activity of enzymes – except for NADP-malic enzyme, glutamate dehydrogenase, and lipase – increased in short-term cold stress and decreased in long-term cold stress at 4, 0, −4, −6, −8, and −10 °C. However, at −2 °C, the activity of enzymes showed a decreasing trend in short-term treatments and an increasing trend in long-term treatments, except for mitochondrial isocitrate dehydrogenase. The results not only improve our understanding of the metabolic mechanism of cold adaptation in D. armandi, but also provide an important experimental basis for further study and biological pest control.  相似文献   

16.
Abstract:  The white pine cone beetle, Conophthorus coniperda (Schwarz), is a common and destructive pest of eastern white pine cones. The potential of mating disruption as a pest management tool against C. coniperda was tested during this experiment. The 5.5 ha white pine seed orchard used in this study was separated in three equal sections and different blocks were treated with pityol over 2-year experiments. Ten and 20 pityol dispensers (bubble caps) were hung per treated block in 2001 (east block) and 2002 (centre block), respectively, to evaluate their impact on cone protection. During both seasons, the percentage of damaged cones at permanent stations was evaluated at monthly intervals in the middle of the treated block and at different places in the control area. For both years, the mean reduction in cone damage was 63.7% in the pheromone-treated blocks. With this study, we have been able to demonstrate that mating disruption could be used as a biological pest management tool for the control of C. coniperda in white pine seed orchards.  相似文献   

17.
Where tributaries meet, certain conditions of flow and topography often result in incomplete mixing and the formation of spatially and temporally persistent plumes or bands. Yolo Bypass, the primary floodplain of the lower Sacramento River (California, USA), provides an extreme example of this effect. Inspection of recent and historical aerial photographs revealed that the four major tributaries of Yolo Bypass typically do not substantially mix laterally within the floodplain. The phenomenon is notable in the number of tributaries involved (4), the distance over which the bands remain distinct (>61 km), and the persistence of the bands despite channel constrictions and long cross-wind fetch. This effect demonstrates the importance of lateral variability during floodplain flow events, including transport and distribution of chemical constituents, and habitat for fish and other organisms that use floodplains as migration corridors and rearing areas. Handling editor: S. M. Thomaz  相似文献   

18.
Abstract 1 After a 1‐year, extensive pine looper (Bupalus piniaria) outbreak, plots were laid out to study tree susceptibility to attack, and performance of Tomicus piniperda in pine trees suffering from varying levels of defoliation. 2 Tomicus piniperda was the dominating stem‐attacking species among the primary stem colonizers, and 82% of all trees that died had been colonized by T. piniperda. 3 Beetle attacks primarily struck severely defoliated trees, i.e. trees that suffered from 90% to 100% defoliation. 4 Beetle attacks peaked in the second year after cessation of the outbreak, and suppressed trees were both more frequently attacked and more susceptible to beetle attack than intermediate and dominant trees. 5 Trees surviving beetle attacks carried more foliage than trees that did not survive the attacks. 6 A single year of severe defoliation is enough to render pine trees susceptible to secondary pests, such as T. piniperda.  相似文献   

19.
<正> Understanding vertebrate habitat relationships is important to promote management strategies for the longterm conservationof many species. Using a modified drift fence method, we sampled reptiles and compared habitat variables within theWilliam B. Bankhead National Forest (BNF) in Alabama, U.S.A from April 2005 to June 2006. We captured 226 individual reptilesrepresenting 19 species during 564 total trap nights. We used canonical correspondence analysis to examine habitat associationsfor the reptiles sampled and we detected a distinct habitat gradient ranging from sites with greater litter depth and percentcanopy cover to more open sites with greater woody, herbaceous, and coarse woody debris (CWD) coverage, and CWD volume.Little brown skinks Scincella lateralis and eastern worm snakes Carphophis a. amoenus were associated with sites with greaterlitter depth and canopy cover, whereas eastern fence lizards Sceloporus undulatus, copperheads Agkistrodon cnntortrix, and grayratsnakes Pantherophis spiloides were associated with sites possessing greater CWD coverage and volume. We found that disturbancesdue to the southern pine beetle Dendroctonus frontalis were likely important for influencing reptile distributions throughthe creation of canopy gaps and fallen coarse woody debris. Compared to other studies, our modified drift-fence trap techniquewas successful for sampling larger snake species (66 snakes in 564 trap nights). We have also provided detailed schematics forconstructing drift fence array and box traps used in this study .  相似文献   

20.
Particulate elemental ratios (C:N, N:P and C:Chl a) of seston in hypersaline (70–90 g kg–1) Mono Lake, California, were examined over an 11-year period (1990–2000) which included the onset and persistence of a 5-year period of persistent chemical stratification. Following the onset of meromixis in mid-1995, phytoplankton and dissolved inorganic nitrogen were substantially reduced with the absence of a winter period of holomixis. C:N, N:P and C:Chl a ratios ranged from 5 to 18 mol mol–1, 2 to 19 mol mol–1 and 25 to 150 g g–1, respectively, and had regular seasonal patterns. Deviations from those expected of nutrient-replete phytoplankton indicated strong nutrient limitation in the summer and roughly balanced growth during the winter prior to the onset of meromixis. Following the onset of meromixis, winter ratios were also indicative of modest nutrient limitation. A 3-year trend in C:N and N:P ratios toward more balanced growth beginning in 1998 suggest the impacts of meromixis weakened due to increased upward fluxes of ammonium associated with weakening stratification and entrainment of ammonium-rich monimolimnetic water. A series of nutrient enrichment experiments with natural assemblages of Mono Lake phytoplankton conducted during the onset of a previous episode of meromixis (1982–1986) confirm the nitrogen will limit phytoplankton before phosphorus or other micronutrients. Particulate ratios of a summer natural assemblage of phytoplankton collected under nitrogen-depleted conditions measured initially, following enrichment, and then after return to a nitrogen-depleted condition followed those expected based on Redfield ratios and laboratory studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号