首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Beta diversity, and its components of turnover and nestedness, reflects the processes governing community assembly, such as dispersal limitation or biotic interactions, but it is unclear how they operate at the local scale and how their role changes along postfire succession. Here, we analyzed the patterns of beta diversity and its components in a herbaceous plant community after fire, and in relation to dispersal ability, in Central Spain. We calculated multiple‐site beta diversity (βSOR) and its components of turnover (βSIM) and nestedness (βSNE) of all herbaceous plants, or grouped by dispersal syndrome (autochory, anemochory, and zoochory), during the first 3 years after wildfire. We evaluated the relationship between pairwise beta diversity (βsor), and its components (βsim, βsne), and spatial distance or differences in woody plant cover, a proxy of biotic interactions. We found high multiple‐site beta diversity dominated by the turnover component. Community dissimilarity increased with spatial distance, driven mostly by the turnover component. Species with less dispersal ability (i.e., autochory) showed a stronger spatial pattern of dissimilarity. Biotic interactions with woody plants contributed less to community dissimilarity, which tended to occur through the nestedness component. These results suggest that dispersal limitation prevails over biotic interactions with woody plants as a driver of local community assembly, even for species with high dispersal ability. These results contribute to our understanding of postfire community assembly and vegetation dynamics.  相似文献   

2.

Aim

The number of studies investigating the nestedness and turnover components of beta diversity has increased substantially, but our general understanding of the drivers of turnover and nestedness remains elusive. Here, we examined the effects of species traits, spatial extent, latitude and ecosystem type on the nestedness and turnover components of beta diversity.

Location

Global.

Time period

1968–2017.

Major taxa studied

From bacteria to mammals.

Methods

From the 99 studies that partition total beta diversity into its turnover and nestedness components, we assembled 269 and 259 data points for the pairwise and multiple site beta‐diversity metrics, respectively. Our data covered a broad variation in species dispersal type, body size and trophic position. The data were from freshwater, marine and terrestrial realms, and encompassed geographical areas from the tropics to near polar regions. We used linear modelling as a meta‐regression tool to analyse the data.

Results

Pairwise turnover, multiple site turnover and total beta diversity all decreased significantly with latitude. In contrast, multiple site nestedness showed a positive relationship with latitude. Beta‐diversity components did not generally differ among the realms. The turnover component and total beta diversity increased with spatial extent, whereas nestedness was scale invariant for pairwise metrics. Multiple site beta‐diversity components did not vary with spatial extent. Surprisingly, passively dispersed organisms had lower turnover and total beta diversity than flying organisms. Body size showed a relatively weak relationship with beta diversity but had important interactions with trophic position, thus also affecting beta diversity via interactive effects. Producers had significantly higher average pairwise turnover and total beta diversity than carnivores.

Main conclusions

The present results provide evidence that species turnover, being consistently the larger component of total beta diversity, and nestedness are related to the latitude of the study area and intrinsic organismal features. We showed that two beta‐diversity components had generally opposing patterns with regard to latitude. We highlight that beta‐diversity partition may give additional insights into the underlying causes of spatial variability in biotic communities compared with total beta diversity alone.  相似文献   

3.
Partitioning the turnover and nestedness components of beta diversity   总被引:2,自引:0,他引:2  
Aim  Beta diversity (variation of the species composition of assemblages) may reflect two different phenomena, spatial species turnover and nestedness of assemblages, which result from two antithetic processes, namely species replacement and species loss, respectively. The aim of this paper is to provide a unified framework for the assessment of beta diversity, disentangling the contribution of spatial turnover and nestedness to beta-diversity patterns.
Innovation  I derive an additive partitioning of beta diversity that provides the two separate components of spatial turnover and nestedness underlying the total amount of beta diversity. I propose two families of measures of beta diversity for pairwise and multiple-site situations. Each family comprises one measure accounting for all aspects of beta diversity, which is additively decomposed into two measures accounting for the pure spatial turnover and nestedness components, respectively. Finally, I provide a case study using European longhorn beetles to exemplify the relevance of disentangling spatial turnover and nestedness patterns.
Main conclusion  Assigning the different beta-diversity patterns to their respective biological phenomena is essential for analysing the causality of the processes underlying biodiversity. Thus, the differentiation of the spatial turnover and nestedness components of beta diversity is crucial for our understanding of central biogeographic, ecological and conservation issues.  相似文献   

4.
Advances in metacommunity theory have made a significant contribution to understanding the drivers of variation in biological communities. However, there has been limited empirical research exploring the expression of metacommunity theory for two fundamental components of beta diversity: nestedness and species turnover. In this paper, we examine the influence of local environmental and a range of spatial variables (hydrological connectivity, proximity and overall spatial structure) on total beta diversity and the nestedness and turnover components of beta diversity for the entire macroinvertebrate community and active and passively dispersing taxa within pond habitats. High beta diversity almost entirely reflects patterns of species turnover (replacement) rather than nestedness (differences in species richness) in our dataset. Local environmental variables were the main drivers of total beta diversity, nestedness and turnover when the entire community was considered and for both active and passively dispersing taxa. The influence of spatial processes on passively dispersing taxa, total beta diversity and nestedness was significantly greater than for actively dispersing taxa. Our results suggest that species sorting (local environmental variables) operating through niche processes was the primary mechanism driving total beta diversity, nestedness and turnover for the entire community and active and passively dispersing taxa. In contrast, spatial factors (hydrological connectivity, proximity and spatial eigenvectors) only exerted a secondary influence on the nestedness and turnover components of beta diversity.  相似文献   

5.
1.?Environmental sorting, historical factors and neutral dynamics may all drive beta diversity (change in species composition across space), but their relative importance remains unresolved. In the case of European mammals, key potential drivers of large-scale beta diversity include current climate, neutral dynamics and two historical factors: Pleistocene glaciations and peninsular dynamics (immigration from extra-regional eastern faunal source areas and inter-linked relictual survival and evolutionary differentiation in isolated areas). 2.?We assessed the relative importance of these drivers using a novel analytical framework to deconstruct beta diversity of non-volant mammals in Europe (138 species) into its turnover (change in species composition because of species replacements) and nestedness components (change in species composition because of species richness differences) at continental and regional (250,000 km(2) ) scales. 3.?We found continental-scale mammal beta diversity to be mainly caused by spatial turnover (99·9%), with only a small contribution (0·1%) from nestedness. 4.?Current climate emerged as an important driver of beta diversity, given the strong continental-scale turnover, particularly in north-south direction, i.e., in line with the latitudinal climate gradient, and, more directly, the strong correlation of climate with spatial turnover at both continental and regional scales. 5.?However, there was also evidence for the importance of non-climatic drivers. Notably, the compositional variation purely accounted for by space was greater than that purely accounted for by environment for both the turnover and the nestedness component of beta diversity. Furthermore, the strong longitudinal turnover within Southern Europe is in accordance with the region's long-term climatic stability having allowed multiple refugia and local evolutionary diversification. As expected from peninsular dynamics, there was increasing dissimilarity with geographic distance in an east-west direction because of nestedness, but only in Central and Northern Europe. 6.?In conclusion, European mammal beta diversity mainly reflects spatial turnover and only to a limited extent nestedness and is driven by current climate in combination with historical - and perhaps, neutral - dynamics. These findings suggest that a key challenge for climate-change predictive studies will be taking the influence of non-climatic factors into account.  相似文献   

6.
Aim Beta diversity can be partitioned into two components: dissimilarity due to species replacement and dissimilarity due to nestedness ( Baselga, 2010 , Global Ecology and Biogeography, 19 , 134–143). Several contributions have challenged this approach or proposed alternative frameworks. Here, I review the concepts and methods used in these recent contributions, with the aim of clarifying: (1) the rationale behind the partitioning of beta diversity into species replacement and nestedness‐resultant dissimilarity, (2) how, based on this rationale, numerators and denominators of indices have to match, and (3) how nestedness and nestedness‐resultant dissimilarity are related but different concepts. Innovation The rationale behind measures of species replacement (turnover) dictates that the number of species that are replaced between sites (numerator of the index) has to be relativized with respect to the total number of species that could potentially be replaced (denominator). However, a recently proposed partition of Jaccard dissimilarity fails to do this. In consequence, this partition underestimates the contribution of species replacement and overestimates the contribution of richness differences to total dissimilarity. I show how Jaccard dissimilarity can be partitioned into meaningful turnover and nestedness components, and extend these new indices to multiple‐site situations. Finally the concepts of nestedness and nestedness‐resultant dissimilarity are discussed. Main conclusions Nestedness should be assessed using consistent measures that depend both on paired overlap and matrix filling, e.g. NODF, whereas beta‐diversity patterns should be examined using measures that allow the total dissimilarity to be separated into the components of dissimilarity due to species replacement and dissimilarity due to nestedness. In the case of multiple‐site dissimilarity patterns, averaged pairwise indices should never be used because the mean of the pairwise values is unable to accurately reflect the multiple‐site attributes of dissimilarity.  相似文献   

7.
Baselga [Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19 , 134–143, 2010] proposed pairwise (βnes) and multiple‐site (βNES) beta‐diversity measures to account for the nestedness component of beta diversity. We used empirical, randomly created and idealized matrices to show that both measures are only partially related to nestedness and do not fit certain fundamental requirements for consideration as true nestedness‐resultant dissimilarity measures. Both βnes and βNES are influenced by matrix size and fill, and increase or decrease even when nestedness remains constant. Additionally, we demonstrate that βNES can yield high values even for matrices with no nestedness. We conclude that βnes and βNES are not true measures of the nestedness‐resultant dissimilarity between sites. Actually, they quantify how differences in species richness that are not due to species replacement contribute to patterns of beta diversity. Finally, because nestedness is a special case of dissimilarity in species composition due to ordered species loss (or gain), the extent to which differences in species composition is due to nestedness can be measured through an index of nestedness.  相似文献   

8.
Spatiotemporal variation in community composition is of considerable interest in ecology. However, few studies have focused on seasonal variation patterns in taxonomic and functional community composition at the fine scale. As such, we conducted seasonal high‐density sampling of the submerged macrophyte community in Hongshan Bay of Erhai Lake in China and used the generalized dissimilarity model (GDM) to evaluate the effects of environmental factors and geographic distance on taxonomic and functional beta diversity as well as corresponding turnover and nestedness components. At the fine scale, taxonomic turnover and nestedness as well as functional turnover and nestedness showed comparable contributions to corresponding taxonomic and functional beta diversity, with different importance across seasons. All taxonomic and functional dissimilarity metrics showed seasonal variation. Of note, taxonomic beta diversity was highest in summer and lowest in winter, while functional beta diversity showed the opposite pattern. Taxonomic and functional turnover showed similar change patterns as taxonomic and functional beta diversity. Taxonomic nestedness was low in summer and high in winter. Functional nestedness was also lower in summer. These results suggest that under extreme environmental conditions, both turnover and nestedness can exist at the fine scale and seasonal community composition patterns in submerged macrophytes should be considered. Future investigations on community assembly mechanisms should pay greater attention to long‐term dynamic characteristics and functional information.  相似文献   

9.
小兴安岭阔叶红松林地表甲虫Beta多样性   总被引:2,自引:1,他引:2  
Beta多样性用来衡量集群内物种组成的变异性,可以被分解为空间物种转换和物种集群镶嵌两个组分,是揭示群落构建机制的重要基础。目前开展了较多的地上生态系统beta多样性研究,然而地下生态系统beta多样性进展缓慢。以小兴安岭凉水和丰林自然保护区为研究地区,于2015年8、10月采用陷阱法对阔叶红松林进行调查,揭示地表甲虫(步甲科、隐翅虫科、葬甲科)的beta多样性。结果表明:(1)凉水共发现39种、856只地表甲虫,丰林共发现43种、1182只地表甲虫。8月凉水明显具有较高的全部甲虫(三个科的总和)物种多样性和丰富度,10月正好相反。(2)凉水和丰林之间地表甲虫beta多样性的差异仅发现于8月的步甲科和葬甲科之间。(3)凉水和丰林地表甲虫的beta多样性主要由空间物种转换组成,物种集群镶嵌对beta多样性的贡献很小,说明地表甲虫物种组成变异主要由本地物种之间较高的转换引起。研究表明小兴安岭阔叶红松林地表甲虫的beta多样性主要由空间物种转换组成,在揭示群落构建机制过程中,其内部物种交换和环境调控不容忽视。  相似文献   

10.
采用野外空间多点同步取样,分析了高原鼠兔干扰对高寒草甸植物物种beta多样性和植物功能性状beta多样性的影响,确定了高原鼠兔干扰下高寒草甸植物物种和功能性状beta多样性的变化途径,分别提出了高原鼠兔干扰区域内,基于植物物种多样性和功能性状多样性的高寒草甸植物多样性维持策略。结果表明,高原鼠兔干扰使高寒草甸植物物种相似性显著降低了28.1%,植物功能相似性降低了28.7%。尽管高原鼠兔干扰没有改变高寒草甸植物物种和功能性状beta多样性的变化途径,且对植物物种和功能性状的嵌套组分不存在显著影响,但高原鼠兔干扰显著降低了植物物种和功能性状周转组分所占的比例,降幅分别为36.6%和34.3%。高原鼠兔干扰区域内,高寒草甸植物物种beta多样性的变化以周转为主导(周转占比81.4%;嵌套占比:18.6%),植物功能性状beta多样性的变化以嵌套为主导(嵌套占比64.9%;周转占比35.1%)。因此,针对划定的高原鼠兔干扰区,需要同时保护区域内所有高原鼠兔栖息地(多位点保护),以达到维持植物物种多样性的目的,而可以仅通过保护该区域内植物功能性状丰富的位点,即可维持较高的植物功能多样性。  相似文献   

11.
Aim We test the prediction that beta diversity (species turnover) and the decay of community similarity with distance depend on spatial resolution (grain). We also study whether patterns of beta diversity are related to variability in climate, land cover or geographic distance and how the independent effects of these variables depend on the spatial grain of the data. Location Europe, Great Britain, Finland and Catalonia. Methods We used data on European birds, plants, butterflies, amphibians and reptiles, and data on British plants, Catalonian birds and Finnish butterflies. We fitted two or three nested grids of varying resolutions to each of these datasets. For each grid we calculated differences in climate, differences in land‐cover composition (CORINE) and beta diversity (βsim, βJaccard) between all pairs of grid cells. In a separate analysis we looked specifically at pairs of adjacent grid cells (the first distance class). We then used variation partitioning to identify the magnitude of independent statistical associations (i.e. independent effects in the statistical sense) of climate, land cover and geographic distance with spatial patterns of beta diversity. Results Beta diversity between grid cells at any given distance decreased with increasing grain. Geographic distance was always the most important predictor of beta diversity for all pairwise comparisons at the extent of Europe. Climate and land cover had weaker but distinct and grain‐dependent effects. Climate was more important at relatively coarse grains, whereas land‐cover effects were stronger at finer grains. In the country‐wide analyses, climate and land cover were more important than geographic distance. Climatic and land‐cover models performed poorly and showed no systematic grain dependence for beta diversity between adjacent grid cells. Main conclusions We found that relationships between geographic distance and beta diversity, as well as the environmental correlates of beta diversity, are systematically grain dependent. The strong independent effect of distance indicates that, contrary to the current belief, a substantial fraction of species are missing from areas with a suitable environment. Moreover, the effects of geographic distance (at continental extents) and land cover (at fine grains) indicate that any species distribution modelling should take both environment and dispersal limitation into account.  相似文献   

12.
Beta diversity describes changes in species composition among sites in a region and has particular relevance for explaining ecological patterns in fragmented habitats. However, it is difficult to reveal the mechanisms if broad sense beta-diversity indices (i.e. yielding identical values under nestedness and species replacement) are used. Partitioning beta diversity into turnover (caused by species replacement from site to site) and nestedness-resultant components (caused by nested species losses) could provide a unique way to understand the variation of species composition in fragmented habitats. Here, we collected occupancy data of breeding birds and lizards on land-bridge islands in an inundated lake in eastern China. We decomposed beta diversity of breeding bird and lizard communities into spatial turnover and nestedness-resultant components to assess their relative contributions and respective relationships to differences in island area, isolation, and habitat richness. Our results showed that spatial turnover contributed more to beta diversity than the nestedness-resultant component. The degree of isolation had no significant effect on overall beta diversity or its components, neither for breeding birds nor for lizards. In turn, in both groups the nestedness-resultant component increased with larger differences in island area and habitat richness, respectively, while turnover component decreased with them. The major difference among birds and lizards was a higher relevance of nestedness-resultant dissimilarity in lizards, suggesting that they are more prone to local extinctions derived from habitat fragmentation. The dominance of the spatial turnover component of beta diversity suggests that all islands have potential conservation value for breeding bird and lizard communities.  相似文献   

13.
Aim To distinguish the effects of geographic distance and environmental dissimilarity on global patterns of species turnover in four classes of terrestrial vertebrates (mammals, birds, reptiles and amphibians). Location Six hundred and sixty terrestrial ecoregions across the globe. Methods We calculated species turnover between each pair of ecoregions, using the Jaccard index (J). We selected seven variables to quantify environment in each ecoregion, and subjected the environmental values to a principal components analysis. For each realm, we applied multiple regression analysis relating the natural logarithm of the Jaccard index (lnJ) to geographic distance alone and in combination with differences in the environment variables measured as principal components (PC). We used partial correlations to partition variance in lnJ between unique contributions of distance and environmental PC scores, the covariation between distance and environment, and unexplained variance. To examine the latitude and species turnover relationship, we regressed lnJ on latitude with distance between ecoregions being included as a covariate. Results The natural logarithm of the Jaccard index (lnJ) decreased significantly with increasing geographic distance for all vertebrate classes in each zoogeographic realm, and the slopes of the relationships per 1000 km ranged from ?0.251 to ?1.043. With environmental differences included in the analysis, both geographic distance and environmental differences were substantial predictors of lnJ for every combination of taxon and realm. On average, the unique contribution of geographic distance to variation in species turnover between ecoregions was about 1.4 times that of the environmental differences between ecoregions. Species turnover generally decreased with increasing latitude when controlling for geographic distance. The value of lnJ for each vertebrate class was highly and positively correlated with those of the other vertebrate classes. Main conclusions Our analyses suggest that both dispersal‐based and niche‐based processes have played important roles in determining faunal similarities among vertebrate assemblages at the spatial scale examined. Furthermore, reptiles and amphibians exhibited greater distance‐independent faunal heterogeneity among ecoregions and greater turnover among ecoregions with respect to geographic and environmental distance than birds and mammals.  相似文献   

14.
Beta diversity is the change in species composition among areas in a geographic region. The proportion of species shared between two areas often decreases when the distance separating them increases, leading to an increase in beta diversity. This study compares beta diversity among four classes of terrestrial vertebrates (mammals, birds, reptiles, and amphibians) at both regional (biogeographic realm) and global extents, using the same sets of faunal sample units for all four groups in each comparison. Beta diversity is lower for the two endothermic taxa (birds and mammals) than for the two ectothermic taxa (reptiles and amphibians) in all six biogeographic realms examined. When the four taxa in the six biogeographic realms are combined, beta diversity at the species rank is higher than that of the genus rank by a factor of 1.24, and is higher than that of the family rank by a factor of 1.85. The ratio of beta diversity at the genus rank to that at the family rank is 1.50. Beta diversity is slightly higher for ecoregions of 5000-99,999 km^2 than for ecoregions of 100,000-5,000,000 km^2.  相似文献   

15.
16.
Current patterns of biodiversity distribution result from a combination of historical and contemporary processes. Here, we compiled checklists of amphibian species to assess the roles of long-term climate stability (Quaternary oscillations), contemporary environmental gradients and geographical distance as determinants of change in amphibian taxonomic and phylogenetic composition in the Brazilian Atlantic Forest. We calculated beta diversity as both variation in species composition (CBD) and phylogenetic differentiation (PBD) among the assemblages. In both cases, overall beta diversity was partitioned into two basic components: species replacement and difference in species richness. Our results suggest that the CBD and PBD of amphibians are determined by spatial turnover. Geographical distance, current environmental gradients and long-term climatic conditions were complementary predictors of the variation in CBD and PBD of amphibian species. Furthermore, the turnover components between sites from different regions and between sites within the stable region were greater than between sites within the unstable region. On the other hand, the proportion of beta-diversity due to species richness difference for both CBD and PBD was higher between sites in the unstable region than between sites in the stable region. The high turnover components from CBD and PBD between sites in unstable vs stable regions suggest that these distinct regions have different biogeographic histories. Sites in the stable region shared distinct clades that might have led to greater diversity, whereas sites in the unstable region shared close relatives. Taken together, these results indicate that speciation, environmental filtering and limited dispersal are complementary drivers of beta-diversity of amphibian assemblages in the Brazilian Atlantic Forest.  相似文献   

17.
Here, we employ an additive partitioning framework to disentangle the contribution of spatial turnover and nestedness to beta diversity patterns in the global freshwater fish fauna. We find that spatial turnover and nestedness differ geographically in their contribution to freshwater fish beta diversity, a pattern that results from contrasting influences of Quaternary climate changes. Differences in fish faunas characterized by nestedness are greater in drainage basins that experienced larger amplitudes of Quaternary climate oscillations. Conversely, higher levels of spatial turnover are found in historically unglaciated drainage basins with high topographic relief, these having experienced greater Quaternary climate stability. Such an historical climate signature is not clearly detected when considering the overall level of beta diversity. Quantifying the relative roles of historical and ecological factors in explaining present-day patterns of beta diversity hence requires considering the different processes generating these patterns and not solely the overall level of beta diversity.  相似文献   

18.
理解沿环境或空间梯度的群落组成变化(即beta多样性)一直是生态学和保护生物学的中心问题, 且beta多样性的形成机制及其对环境的响应已成为当前生物多样性研究的热点问题。本文以西藏横断山区怒江和澜沧江两个流域入江溪流中的细菌为研究对象, 使用Baselga的beta多样性分解方法, 基于Sørensen相异性指数将细菌的beta多样性分解为周转(turnover)和嵌套(nestedness)两个组分, 探究了细菌beta多样性及其分解组分随海拔距离的分布模式, 并且衡量了环境、气候和空间因子的相对重要性。结果表明, 两个流域中细菌的群落结构显著不同。两个流域的细菌总beta多样性和周转组分随海拔距离的增加而增加, 周转组分占总beta多样性的比例较大。气候和环境因子是两个流域中细菌总beta多样性及周转过程的重要预测因子, 并且所有的显著因子均为正相关, 其中环境因子中相关性最高的为海拔距离(R 2= 0.408, P < 0.001), 而气候因子中相关性最高的为年均温差(R 2= 0.417, P < 0.001)。方差分解结果暗示嵌套组分主要受空间扩散的影响; 总beta多样性和周转组分在环境较恶劣的澜沧江主要受环境过滤的影响, 而在环境较温和的怒江主要受空间扩散和环境过滤的共同影响。此外, 较为恶劣的环境条件会增加细菌的总beta多样性和周转率, 并且会形成更强的环境筛选作用去影响细菌群落的物种组成。我们的研究表明对西藏横断山区水体细菌多样性的保护需要从整个流域入手, 而非少量的生物多样性热点地区。  相似文献   

19.
Understanding the processes that drive patterns of beta diversity is crucial for planning conservation policies and for designing networks of protected area (PAs). Beta diversity can be decomposed into two components: 1—species turnover, the replacement of species by others resulting in a low proportion of shared species; 2—species nestedness—the result of differences in species richness, when a poorer community is a subset of species from a richer community. We aimed to evaluate beta diversity patterns and how they are represented in the network of PAs in southern Brazilian, regarding three forest types: Atlantic Forest s.s., Araucaria Forest, and Seasonal Forest. Beta diversity was partitioned into the turnover and nestedness components. Additionally, we examined spatial patterns of site similarity using distance decay curves. Beta diversity was mainly caused by species turnover (approx. 86%), with only a small contribution of nestedness (approx. 5%) in all three forests types. The patterns of distance decay curves revealed that even at small distances (50–100 km), we found a considerable decrease in similarities, reinforcing turnover patterns. As turnover brought the larger contribution to beta diversity, additional conservation efforts must target an increase in the number of PAs, that should be spread across each one of the regions, to maximize the protection of species diversity. Most of the PAs are currently limited to the eastern region and prioritize the Atlantic Forest s.s. Thus Araucaria Forest and Seasonal Forest should deserve special priority in new conservation actions, as they also contain high levels of species turnover.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号