首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Microbial lipid production represents a potential alternative feedstock for the biofuel and oleochemical industries. Since Escherichia coli exhibits many genetic, technical, and biotechnological advantages over native oleaginous bacteria, we aimed to construct a metabolically engineered E. coli strain capable of accumulating high levels of triacylglycerol (TAG) and evaluate its neutral lipid productivity during high cell density fed-batch fermentations.

Results

The Streptomyces coelicolor TAG biosynthesis pathway, defined by the acyl-CoA:diacylglycerol acyltransferase (DGAT) Sco0958 and the phosphatidic acid phosphatase (PAP) Lppβ, was successfully reconstructed in an E. coli diacylglycerol kinase (dgkA) mutant strain. TAG production in this genetic background was optimized by increasing the levels of the TAG precursors, diacylglycerol and long-chain acyl-CoAs. For this we carried out a series of stepwise optimizations of the chassis by 1) fine-tuning the expression of the heterologous SCO0958 and lpp β genes, 2) overexpression of the S. coelicolor acetyl-CoA carboxylase complex, and 3) mutation of fadE, the gene encoding for the acyl-CoA dehydrogenase that catalyzes the first step of the β-oxidation cycle in E. coli. The best producing strain, MPS13/pET28-0958-ACC/pBAD-LPPβ rendered a cellular content of 4.85% cell dry weight (CDW) TAG in batch cultivation. Process optimization of fed-batch fermentation in a 1-L stirred-tank bioreactor resulted in cultures with an OD600nm of 80 and a product titer of 722.1 mg TAG L-1 at the end of the process.

Conclusions

This study represents the highest reported fed-batch productivity of TAG reached by a model non-oleaginous bacterium. The organism used as a platform was an E. coli BL21 derivative strain containing a deletion in the dgkA gene and containing the TAG biosynthesis genes from S. coelicolor. The genetic studies carried out with this strain indicate that diacylglycerol (DAG) availability appears to be one of the main limiting factors to achieve higher yields of the storage compound. Therefore, in order to develop a competitive process for neutral lipid production in E. coli, it is still necessary to better understand the native regulation of the carbon flow metabolism of this organism, and in particular, to improve the levels of DAG biosynthesis.
  相似文献   

2.
Escherichia coli FB-04(pta1), a recombinant l-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (l-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key l-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)ΔpykF, showed a slightly higher l-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, l-tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)ΔpykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)ΔpykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)ΔpykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g?1 during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.  相似文献   

3.

Objectives

To produce rosmarinic acid analogues in the recombinant Escherichia coli BLRA1, harboring a 4-coumarate: CoA ligase from Arabidopsis thaliana (At4CL) and a rosmarinic acid synthase from Coleus blumei (CbRAS).

Results

Incubation of the recombinant E. coli strain BLRA1 with exogenously supplied phenyllactic acid (PL) and analogues as acceptor substrates, and coumaric acid and analogues as donor substrates led to production of 18 compounds, including 13 unnatural RA analogues.

Conclusion

This work demonstrates the viability of synthesizing a broad range of rosmarinic acid analogues in E. coli, and sheds new light on the substrate specificity of CbRAS.
  相似文献   

4.
Escherichia coli does not have the methanol sensing apparatus, was engineered to sense methanol by employing chimeric two-component system (TCS) strategy. A chimeric FlhS/EnvZ (FlhSZ) chimeric histidine kinase (HK) was constructed by fusing the sensing domain of Paracoccus denitrificans FlhS with the catalytic domain of E. coli EnvZ. The constructed chimeric TCS FlhSZ/OmpR could sense methanol by the expression of ompC and gfp gene regulated by ompC promoter. Real-time quantitative PCR analysis and GFP-based fluorescence analysis showed the dynamic response of the chimeric TCS to methanol. The expression of ompC and the gfp fluorescence was maximum at 0.01 and 0.5% of methanol, respectively. These results suggested that E. coli was successfully engineered to sense methanol by the introduction of chimeric HK FlhSZ. This strategy can be employed for the construction of several chimeric TCS based bacterial biosensors for the development of biochemical producing recombinant microorganisms.  相似文献   

5.
Nucleotide and amino acid sequences of Corynebacterium glutamicum recA genes, from GenBank, were compared in silico. On the basis of the identity found between sequences, two degenerate primers were designed on the two sides of the deduced open reading frame (ORF) of the recA gene. PCR experiments, for amplifying the recA ORF region, were done. pGEM®-T Easy vector was selected to be used for cloning PCR products. Then recA ORF was placed under the control of Escherichia coli hybrid trc promoter, in pKK388-1 vector. pKK388-1 vector, containing recA ORF, was transformed to E. coli DH5α ΔrecA (recombinant deficient strain), in an attempt to phenotypically complement it. Ultraviolet (u.v.) exposure experiments of the transformed and non-transformed E. coli DH5α ΔrecA cells revealed tolerance of transformed cells up to dose 0.24 J/cm2, while non-transformed cells tolerated only up to dose 0.08 J/cm2. It is concluded that phenotypic complementation of E. coli DH5α ΔrecA with recA ORF of C. glutamicum, could be achieved and RecA activity could be restored.  相似文献   

6.
Plants synthesize various phenol amides. Among them, hydroxycinnamoyl (HC) tryptamines and serotonins exhibit antioxidant, anti-inflammatory, and anti-atherogenic activities. We synthesized HC–tryptamines and HC–serotonin from several HCs and either tryptamine or serotonin using Escherichia coli harboring the 4CL (4-coumaroyl CoA ligase) and CaHCTT [hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase] genes. E. coli was engineered to synthesize N-cinnamoyl tryptamine from glucose. TDC (tryptophan decarboxylase) and PAL (phenylalanine ammonia lyase) along with 4CL and CaHCTT were introduced into E. coli and the phenylalanine biosynthetic pathway of E. coli was engineered. Using this strategy, approximately 110.6 mg/L of N-cinnamoyl tryptamine was synthesized. By feeding 100 μM serotonin into the E. coli culture, which could induce the synthesis of cinnamic acid or p-coumaric acid, more than 99 μM of N-cinnamoyl serotonin and N-(p-coumaroyl) serotonin were synthesized.  相似文献   

7.
In an attempt to develop a high-throughput screening system for screening microorganisms which produce high amounts of malate, a MalKZ chimeric HK-based biosensor was constructed. Considering the sequence similarity among Escherichia coli (E. coli) MalK with Bacillus subtilis MalK and E. coli DcuS, the putative sensor domain of MalK was fused with the catalytic domain of EnvZ. The chimeric MalK/EnvZ TCS induced the ompC promoter through the cognate response regulator, OmpR, in response to extracellular malate. Real-time quantitative PCR and GFP fluorescence studies showed increased ompC gene expression and GFP fluorescence as malate concentration increased. By using this strategy, various chimeric TCS-based bacteria biosensors can be constructed, which may be used for the development of biochemical-producing recombinant microorganisms.  相似文献   

8.

Objectives

To evaluate the crystallinity index of the cellulose produced by Escherichia coli Nissle 1917 after heterologous expression of the cellulose synthase subunit D (bcsD) gene of Gluconacetobacter xylinus BPR2001.

Results

The bcsD gene of G. xylinus BPR2001 was expressed in E. coli and its protein product was visualized using SDS-PAGE. FTIR analysis showed that the crystallinity index of the cellulose produced by the recombinants was 0.84, which is 17% more than that of the wild type strain. The increased crystallinity index was also confirmed by X-ray diffraction analysis. The cellulose content was not changed significantly after over-expressing the bcsD.

Conclusion

The bcsD gene can improve the crystalline structure of the bacterial cellulose but there is not any significant difference between the amounts of cellulose produced by the recombinant and wild type E. coli Nissle 1917.
  相似文献   

9.
Chitosanase (CSN) from Aspergillus fumigatus has good thermal stability, wide pH range duration, and effective hydrolysis for chitosan. Inhere, CSN was successfully expressed in Escherichia coli followed by extracellular secretion under the guidance of an N-terminal signal peptide PelB, which effectively prompted its secretion out of E. coli cells. To facilitate its later purification, N-terminal or C-terminal 6xHis epitope tag was added to the PelB-CSN protein complex. Our results indicated that PelB-CSN without 6xHis-tag (PelB-CSN) or with N-terminal 6xHis-tag (PelB-CSN-N) can both be effectively secreted into the medium, while CSN with 6xHis-tag anchored at C-terminus was expressed as inclusion bodies. Process optimization strategies were further developed to improve the secretion efficiency of recombinant PelB-CSN-N in E. coli. Under the induction of 10 g/L lactose in shake-flask culture, the extracellular activity of CSN reached 6015 U/mL at 25 °C in TB medium containing 1 % glycine. Moreover, a fed-batch fermentation strategy for high-cell-density cultivation was applied in a 5-L fermenter, increasing the extracellular CSN activity to 14,000 U/mL in 2-day fermentation with the optimal addition of lactose and glycine.  相似文献   

10.
Recombinant Crocodylus siamensis hemoglobin (cHb) has been constructed and expressed using Escherichia coli as the expression system in conjunction with a trigger factor from the Cold-shock system as the fusion protein. While successful processing as soluble protein in E. coli was achieved, the net yields of active protein from downstream purification processes remained still unsatisfactory. In this study, cHb was constructed and expressed in the eukaryotic expression system Pichia pastoris. The results showed that cHb was excreted from P. pastoris as a soluble protein after 72 h at 25 °C. The amino acid sequence of recombinant cHb was confirmed using LC–MS/MS. Indeed, the characteristic of Hb was investigated by external heme incorporation. The UV–Vis profile showed a specific pattern of the absorption at 415 nm, indicating the recombinant cHb was formed complex with heme, resulting in active oxyhemoglobin (OxyHb). This result suggests that the heme molecules were fully combined with heme binding site of the recombinant cHb, thus producing characteristic red color for the OxyHb at 540 and 580 nm. The results revealed that the recombinant cHb was prosperously produced in P. pastoris and exhibited a property as protein–ligand binding. Thus, our work described herein offers a great potential to be applied for further studies of heme-containing protein expression. It represents further pleasing option for protein production and purification on a large scale, which is important for determination and characterization of the authenticity features of cHb proteins.  相似文献   

11.
Sokawa et al. suggest that rel- strains of Escherichia coli possess abnormal protein synthesizing machinery, which cannot carry out normal protein synthesis when the supply of amino-acids is limited.  相似文献   

12.
The yajC gene (Lbuc_0921) from Lactobacillus buchneri NRRL B-30929 was identified from previous proteomics analyses in response to ethanol treatment. The YajC protein expression was increased by 15-fold in response to 10 % ethanol vs 0 % ethanol. The yajC gene encodes the smaller subunit of the preprotein translocase complex, which interacts with membrane protein SecD and SecF to coordinate protein transport and secretion across cytoplasmic membrane in Escherichia coli. The YajC protein was linked to sensitivity to growth temperatures in E. coli, involved in translocation of virulence factors during Listeria infection, and stimulating a T cell-mediated response of Brucella abortus. In this study, the L. buchneri yajC gene was over-expressed in E. coli. The strain carrying pET28byajC that produces YajC after isopropyl β-d-1-thiogalactopyranoside induction showed tolerance to 4 % ethanol in growth media, compared to the control carrying pET28b. This is the first report linking YajC to ethanol stress and tolerance.  相似文献   

13.
Various flavonoid glycosides are found in nature, and their biological activities are as variable as their number. In some cases, the sugar moiety attached to the flavonoid modulates its biological activities. Flavonoid glycones are not easily synthesized chemically. Therefore, in this study, we attempted to synthesize quercetin 3-O-glucosyl (1→2) xyloside and quercetin 3-O-glucosyl (1→6) rhamnoside (also called rutin) using two uridine diphosphate-dependent glycosyltransferases (UGTs) in Escherichia coli. To synthesize quercetin 3-O-glucosyl (1→2) xyloside, sequential glycosylation was carried out by regulating the expression time of the two UGTs. AtUGT78D2 was subcloned into a vector controlled by a Tac promoter without a lacI operator, while AtUGT79B1 was subcloned into a vector controlled by a T7 promoter. UDP-xyloside was supplied by concomitantly expressing UDP-glucose dehydrogenase (ugd) and UDP-xyloside synthase (UXS) in the E. coli. Using these strategies, 65.0 mg/L of quercetin 3-O-glucosyl (1→2) xyloside was produced. For the synthesis of rutin, one UGT (BcGT1) was integrated into the E. coli chromosome and the other UGT (Fg2) was expressed in a plasmid along with RHM2 (rhamnose synthase gene 2). After optimization of the initial cell concentration and incubation temperature, 119.8 mg/L of rutin was produced. The strategies used in this study thus show promise for the synthesis of flavonoid diglucosides in E. coli.  相似文献   

14.
Bacillus sphaericus produces a two-chain binary toxin composed of BinA (42 kDa) and BinB (51 kDa), which are deposited as parasporal crystals during sporulation. The toxin is highly active against Culex larvae and Aedes and Anopheles mosquitoes, which are the principal vectors for the transmission of malaria, yellow fever, encephalitis, and dengue. The use of B. sphaericus and Bacillus thuringiensis in mosquito control programs is limited by their sedimentation in still water. In this study, the binA and binB genes were cloned and the recombinant BinAB protein was expressed in three strains of Escherichia coli. These recombinant strains were used in a toxicity assay against Culex quinquefasciatus larvae. The highest expression level was achieved when both proteins were expressed in a single operon construct. The BinAB protein expressed in the E. coli Arctic strain showed higher larvicidal activity than either of the recombinant proteins from the E. coli Ril or pLysS strains. Furthermore, it had the highest oviposition attraction (49.1%, P?相似文献   

15.
The present article reviews several approaches for inducing flocculation of Escherichia coli cells. The common industrially used bacterium E. coli does not naturally have floc-forming ability. However, there are several approaches to induce flocculation of E. coli cells. One is induction by flocculants—polyvalent inorganic salts, synthetic polymeric flocculants, or bio-based polymeric materials, including polysaccharide derivatives. Another method is the induction of spontaneous flocculation by changing the phenotypes of E. coli cells; several studies have shown that physical treatment or gene modification can endow E. coli cells with floc-forming ability. Coculturing E. coli with other microbes is another approach to induce E. coli flocculation. These approaches have particular advantages and disadvantages, and remain open to clarification of the flocculation mechanisms and improvement of the induction processes. In this review, several approaches to the induction of E. coli flocculation are summarized and discussed. This review will be a useful guide for the future development of methods for the flocculation of non-floc-forming microorganisms.  相似文献   

16.
We previously demonstrated efficient transformation of the thermophile Geobacillus kaustophilus HTA426 using conjugative plasmid transfer from Escherichia coli BR408. To evaluate the versatility of this approach to thermophile transformation, this study examined genetic transformation of various thermophilic Bacillus and Geobacillus spp. using conjugative plasmid transfer from E. coli strains. E. coli BR408 successfully transferred the E. coliGeobacillus shuttle plasmid pUCG18T to 16 of 18 thermophiles with transformation efficiencies between 4.1 × 10?7 and 3.8 × 10?2/recipient. Other E. coli strains that are different from E. coli BR408 in intracellular DNA methylation also generated transformants from 9 to 15 of the 18 thermophiles, including one that E. coli BR408 could not transform, although the transformation efficiencies of these strains were generally lower than those of E. coli BR408. The conjugation was performed by simple incubation of an E. coli donor and a thermophile recipient without optimization of experimental conditions. Moreover, thermophile transformants were distinguished from abundant E. coli donor only by high temperature incubation. These observations suggest that conjugative plasmid transfer, particularly using E. coli BR408, is a facile and versatile approach for plasmid introduction into thermophilic Bacillus and Geobacillus spp., and potentially a variety of other thermophiles.  相似文献   

17.
The lipopolysaccharide (LPS) of Escherichia coli 126 was isolated and studied. The lipid A fatty acid composition of the investigated LPS was similar to that of other members of the family Enterobacteriaceae. The E. coli 126 LPS was more toxic than the LPSs of previously studied E. coli strains and of other members of the Enterobacteriaceae (Budvicia aquatica and Pragia fontium), and was less pyrogenic than pyrogenal. SDS-PAG electrophoresis showed a bimodal distribution typical of S-form LPSs. The LPS of E. coli 126 decreased the adhesive index indicating a possible competition between LPS molecules of E. coli 126 and adhesins of E. coli F-50 on rabbit erythrocytes. The LPS of E. coli 126 in a homologous system showed antigenic activity in the reactions of double immunodiffusion in agar by Ouchterlony. No serological cross-reaction of the LPS of other E. coli strains, as well as of that of the B. aquatica type strain, with the antiserum to E. coli 126 was observed. The structural components of the lipopolysaccharide obtained by mild acid hydrolysis were lipid A, the core oligosaccharide, and the O-specific polysaccharide. Based on the data of monosaccharide analysis and 1H and 13C NMR spectroscopy it was found that the O-specific polysaccharide had the structure characteristic of the representatives of E. coli serogroup O15.  相似文献   

18.

Objective

To characterize a novel xanthine dehydrogenase (XDH) from Acinetobacter baumannii by recombinant expression in Escherichia coli and to assess its potential for industrial applications.

Results

The XDH gene cluster was cloned from A. baumannii CICC 10254, expressed heterologously in E. coli and purified to homogeneity. The purified recombinant XDH consisted of two subunits with the respective molecular weights of 87 kDa and 56 kDa according to SDS-PAGE. XDH catalysis was optimum at pH 8.5 and 40–45 °C, was stable under alkaline conditions (pH 7–11) and the half-inactivation temperature was 60 °C. The K m, turnover number and catalytic efficiency for xanthine were 25 μM, 69 s?1 and 2.7 μM?1 s?1, respectively, which is an improvement over XDHs characterized previously. A. baumannii XDH is less than 50 % identical to previously identified XDH orthologs from other species, and is the first from the Acinetobacter genus to be characterized.

Conclusion

The novel A. baumannii enzyme was found to be among the most active, thermostable and alkaline-tolerant XDH enzymes reported to date and has potential for use in industrial applications.
  相似文献   

19.
Listeria monocytogenes is a Gram-positive bacterium commonly associated with foodborne diseases. Due its ability to survive under adverse environmental conditions and to form biofilm, this bacterium is a major concern for the food industry, since it can compromise sanitation procedures and increase the risk of post-processing contamination. Little is known about the interaction between L. monocytogenes and Gram-negative bacteria on biofilm formation. Thus, in order to evaluate this interaction, Escherichia coli and L. monocytogenes were tested for their ability to form biofilms together or in monoculture. We also aimed to evaluate the ability of L. monocytogenes 1/2a and its isogenic mutant strain (ΔprfA ΔsigB) to form biofilm in the presence of E. coli. We assessed the importance of the virulence regulators, PrfA and σB, in this process since they are involved in many aspects of L. monocytogenes pathogenicity. Biofilm formation was assessed using stainless steel AISI 304 #4 slides immersed into brain heart infusion broth, reconstituted powder milk and E. coli preconditioned medium at 25 °C. Our results indicated that a higher amount of biofilm was formed by the wild type strain of L. monocytogenes than by its isogenic mutant, indicating that prfA and sigB are important for biofilm development, especially maturation under our experimental conditions. The presence of E. coli or its metabolites in preconditioned medium did not influence biofilm formation by L. monocytogenes. Our results confirm the possibility of concomitant biofilm formation by L. monocytogenes and E. coli, two bacteria of major significance in the food industry.  相似文献   

20.
Geranyl diphosphate (GPP), the unique precursor for all monoterpenoids, is biosynthesized from isopentenyl diphosphate and dimethylallyl diphosphate via the head-to-tail condensation reaction catalyzed by GPP synthase (GPPS). Herein a homomeric GPPS from Camptotheca acuminata, a camptothecin-producing plant, was obtained from 5′- and 3′-rapid amplification of cDNA ends and subsequent overlap extension and convenient PCR amplifications. The truncate CaGPPS was introduced to replace ispA of pBbA5c-MevT(CO)-MBIS(CO, ispA), a de novo biosynthetic construct for farnesyl diphosphate generation, and overexpressed in Escherichia coli, together with the truncate geraniol synthase-encoding gene from C. acuminata (tCaGES), to confirm CaGPPS-catalyzed reaction in vivo. A 24.0 ± 1.3 mg L?1 of geraniol was produced in the recombinant E. coli. The production of GPP was also validated by the direct UPLC-HRMSE analyses. The tCaGPPS and tCaGES genes with different copy numbers were introduced into E. coli to balance their catalytic potential for high-yield geraniol production. A 1.6-fold increase of geraniol production was obtained when four copies of tCaGPPS and one copy of tCaGES were introduced into E. coli. The following fermentation conditions optimization, including removal of organic layers and addition of new n-decane, led to a 74.6 ± 6.5 mg L?1 of geraniol production. The present study suggested that the gene copy number optimization, i.e., the ratio of tCaGPPS and tCaGES, plays an important role in geraniol production in the recombinant E. coli. The removal and addition of organic solvent are very useful for sustainable high-yield production of geraniol in the recombinant E. coli in view of that the solubility of geraniol is limited in the fermentation broth and/or n-decane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号