首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five reproductive classes of cobia Rachycentron canadum , caught along the Gulf of Mexico and the south-east Atlantic coast of the U.S.A., are described during the annual reproductive cycle. These are based upon changes in the testicular germinal epithelium and the stages of germ cells that are present: early maturation, mid maturation, late maturation, regression and regressed. During early maturation, the germinal epithelium is continuous from the testicular ducts to the periphery of the testis and active spermatogenesis occurs throughout the testis. In mid maturation, the germinal epithelium near the ducts becomes discontinuous, but it remains continuous distally. In late maturation, a discontinuous germinal epithelium extends all along the lobules to the testicular periphery; lobules are swollen with sperm and there is minimal spermatogenesis. The regression class is characterized by a discontinuous epithelium throughout the testis, sperm storage and widely scattered spermatocysts. Spermatogonial proliferation also occurs along the lobule walls and at the periphery of the testis. In regressed testes, spermatogonia exist only in a continuous or discontinuous germinal epithelium, although residual sperm are nearly always present in the lobules and ducts. The presence or absence of sperm is not an accurate indicator of reproductive classes. At the periphery of the testis in the regression and regressed classes, the distal portions of lobules elongate as cords of cells containing spermatogonia and Sertoli cells. All reproductive classes can be identified in paraffin sections, although plastic sections provide better resolution. Using maturation classes defined by changes in the germinal epithelium to describe testicular development and spermatogenesis gives a more accurate picture than does using the traditional terminology.  相似文献   

2.
Testis of Hemidactylus flaviviridis, commonly known as Indian wall lizard, displays a lack of cellular and metabolic activity in regressed phase of testis during non-breeding season of the year. Retracted Sertoli cells (Sc), fibroid myoid cells and pre-meiotic resting spermatogonia are observed in such testis. This situation is akin to certain forms of infertility in men where hormone supplementation fails to generate sperm despite the presence of Sc and germ cells (Gc) in testis. In testis of lizard, spermatogenesis is reinitiated upon increased level of hormones during appropriate season (phase of recrudescence). Study of genes associated with generation of sperm, from regressed adult testis in lizard, may provide valuable information for understanding certain forms of male idiopathic infertility. Subtractive hybridization using testicular RNA obtained from the regressed and active phases of lizard reproductive cycle led to identify eight partial mRNA sequences that showed sequence homology with mice genes. We further evaluated the gene expression prolife by real-time PCR in three different reproductive phases of H. flaviviridis: regressed (pre-meiotic), recrudescent (meiotic) and active (post meiotic), for comparison with the corresponding testicular phases found in testis of 5 days (pre-meiotic), 20 days (meiotic) and 60 days (post-meiotic) old mouse. This is the first report where genes associated with progression of spermatogenesis during active phase, which follows a regressed state of adult testis, were identified in lizard and found to be conserved in mouse. Six important genes, Hk1, Nme5, Akap4, Arih1, Rassf7 and Tubb4b were found to be strictly associated with active spermatogenesis in both mouse and lizard. Factors interfering with the expression of any of these genes may potentially abrogate the process of spermatogenesis leading to infertility. Such information may shed light on unknown causes of idiopathic male infertility.  相似文献   

3.
The swamp eel, Synbranchus marmoratus, is a protogynous, diandric species. During sex reversal, the ovarian germinal epithelium, which forms follicles containing an oocyte and encompassing follicle cells during the female portion of the life cycle, produces numerous invaginations, or acini, into the ovarian stroma. Within the acini, the gonia that formerly produced oocytes become spermatogonia, enter meiosis, and produce sperm. The acini are bounded by the basement membrane of the germinal epithelium. Epithelial cells of the female germinal epithelium, which formerly became follicle (granulosa) cells, now become Sertoli cells in the developing testis. Subsequently, lobules and testicular ducts form. The swamp eel testis has a lobular germinal compartment in both primary and secondary males, although the germinal compartment in testes of secondary males resides within the former ovarian lamellae. The germinal compartment, supported by a basement membrane, is composed of Sertoli and germ cells that give rise to sperm. Histological and immunohistochemical techniques were used to describe the five reproductive classes that were observed to occur during the annual reproductive cycle: regressed, early maturation, mid-maturation, late maturation, and regression. These classes are differentiated by the presence of continuous or discontinuous germinal epithelia and by the types of germ cells present. Synbranchus marmoratus has a permanent germinal epithelium. Differences between the germinal compartment of the testes of primary and secondary males were not observed.  相似文献   

4.
An understanding of testicular anatomy, development, and seasonality has implications for studies of morphology, behavior, physiology, and bioenergetics of males. Ontogenetic testicular development and spermatogenesis is essentially unknown for chondrichthyans. We examined embryo, juvenile, and adult male Cownose Rays (Rhinoptera bonasus) during development and throughout the annual reproductive cycle. Spermatogonia and Sertoli cells originated from germ cells and somatic cells, respectively, in the embryonic testicular germinal epithelium. In embryos and small juveniles, discrete regions of spermatocyst production appeared within a series of papillae that projected from the dorsal surface of each testis. Because these papillary germinal zones appeared to proliferate through ontogeny, we hypothesize that (1) the germinal zones of juvenile and adult testes are derived from embryonic testicular papillae that form from the germinal epithelium and (2) the papillae become the dorso-central portion of the distinct testicular lobes that form at maturation due to increased spermatocyst production. Our observations indicate that testicular development and the process of spermatogenesis began during embryonic development and increased in scale through ontogeny until maturation, when distinct testicular lobes formed and began enlarging or shrinking based on the annual reproductive cycle. Gonadosomatic indices peaked corresponding to seasonal increased sperm production between January and April, just prior to the April–June mating period. In all life stages, spermatocysts had efferent ducts associated with them from their formation through all stages of development. Year-round presence in the Charlotte Harbor estuarine system, Florida made R. bonasus a good model for beginning to understand ontogenetic gonad development and spermatogenesis in chondrichthyans, especially viviparous rays.  相似文献   

5.
Testes, spermatogenesis and sperm morphology have been analysed in four species of the Syngnathus genus. All species show testes of unrestricted lobular type, characterized by a single germinal compartment, with central lumen, and an external tunica albuginea. The spermatogenesis occurs throughout a process of semicystic type, in which germinal spermatocysts open precociously, so germ cells complete maturation in the testis lumen. Amongst them, aflagellate and flagellate multinucleate cells are recognizable. This type of spermatogenesis may be therefore related to the reduced number of simultaneously mature sperm produced by syngnathids. Only one type of mature sperm has been identified in all examined species. It is always a monoflagellate cell, characterized by an elongated head. Elongated head has generally been correlated with the internal fertilization and/or to the production of spermatophore. As this is not the case of syngnathids, a possible function to explain the particularly elongated head of syngnathids is discussed.  相似文献   

6.
Testicular maturation and regression in the common snook   总被引:4,自引:0,他引:4  
During the annual reproductive cycle, the lobular testis of Centropomus undecimalis undergoes height, width, and morphological changes which reflect five reproductive classes: regressed; early, mid-, and late maturation; and regression. Histological criteria, particularly differences between continuous and discontinuous germinal epithelia, are used to distinguish these five classes, even though they are only reference points within the annual gonadal cycle. A mechanism for lobular growth during early, mid-, and late maturation is presented; and it is hypothesized that a permanent germinal epithelium first appeared in the fishes. Throughout the year, periodic acid-Schiff-positive macro-melanophage centres and PAS-positive granulocytes are observed in the testis. They are most abundant after the breeding season, and they may be involved in focal tissue degradation.  相似文献   

7.
Spermatogenesis in male Atlantic halibut (Hippoglossus hippoglossus L.) was investigated by sampling blood plasma and testicular tissue from 15-39-month-old fish. The experiment covered a period in which all fish reached puberty and completed sexual maturation at least once. The germinal compartment in Atlantic halibut testis appears to be organized in branching lobules of the unrestricted spermatogonial type, because spermatocysts with spermatogonia were found throughout the testis. Spermatogenesis was characterized histologically, and staged according to the most advanced type of germ cell present: spermatogonia (Stage I), spermatogonia and spermatocytes (Stage II), spermatogonia, spermatocytes and spermatids (Stage III), spermatogonia, spermatocytes, spermatids and spermatozoa (Stage IV), and regressing testis (Stage V). Three phases could be distinguished: first, an initial phase with low levels of circulating testosterone (T; quantified by RIA) and 11-ketotestosterone (11-KT; quantified by ELISA), spermatogonial proliferation, and subsequently the initiation of meiosis marked by the formation of spermatocytes (Stage I and II). Secondly, a phase with increasing T and 11-KT levels and with haploid germ cells including spermatozoa present in the testis (Stage III and IV). Thirdly, a phase with low T and 11-KT levels and a regressing testis with Sertoli cells displaying signs of phagocytotic activity (Stage V). Circulating levels of 11-KT were at least four-fold higher than those of T during all stages of spermatogenesis. Increasing plasma levels of T and 11-KT were associated with increasing testicular mass throughout the reproductive cycle. The absolute level of, or the relation between, testis growth and circulating androgens were not significantly different in first time spawners compared to fish that underwent their second spawning season. These results provide reference levels for Atlantic halibut spermatogenesis.  相似文献   

8.
9.
The spined loach Cobitis taenia L. creates exclusively diploid and mixed diploid–polyploid populations. Allotriploid females, which co-exist with C. taenia or C. elongatoides and a few tetraploid males and females dominate in most Cobitis mixed populations. They reproduce gynogenetically and produce triploid eggs that are stimulated to development by sperm from Cobitis males. Some of these eggs are fertilized, which leads to the production of bisexual tetraploids. Males of C. taenia (2n = 48) from a diploid population in Lake Klawój, Northern Poland (46 individuals) and from a mixed Cobitis population in the Bug River, Eastern Poland (7 individuals), and three tetraploid males (4n = 98) from the same mixed population were examined. All the fish were analyzed karyologically and histologically. Tubules with cysts of the testes of C. taenia from both populations were filled with germ cells at various developmental stages. Among fishes from Lake Klawój sperm maturation in batches simultaneous with the batch spawning of C. taenia females was found. The testes of the loach C. taenia, from a mixed population in the Bug River, were filled with spermatozoa over the entire reproductive season. Sperm maturation in batches was not observed. Sperm maturation in batches seems to be only connected with a few diploid males in this population. So, a continuous process of spermatogenesis in their testes is required. Only in the testes of all tetraploid Cobitis males were cells characteristic of the early stages of spermatogenesis observed, i.e. without spermatids and spermatozoa. Furthermore, the histological sections of the testis of a male captured in August, revealed fragments with connective tissue between the germ cells. However the participation of tetraploid, infertile Cobitis males in the process of reproduction in the investigated mixed population remains controversial. The results obtained so far, reveal that even the infertile sperm of tetraploid males may induce gynogenesis in Cobitis triploid females.  相似文献   

10.
 Testis organization and spermatogenesis, with the emphasis on spermiogenesis, in Opistognathus whitehurstii are described by ultrastructural and histochemical methods. The germinal epithelium is extremely reduced and restricted to the periphery of the testis, while most of the organ is occupied by a highly developed system of testicular efferent ducts. A semicystic type of spermatogenesis is observed and in the germinal epithelium spermatogenesis occurs only until the spermatidal stage. Young spermatids are released into the lumen of the testicular lobules and mature to sperm within the efferent duct system. The epithelial cells of these ducts are involved in protein and glycogen secretion and in phagocytosis of degenerating germ cells and residual bodies cast off by developing spermatids. On the basis of these functions, the testicular efferent duct system cells are considered to be homologous to the Sertoli cells. A correlation between a highly developed testicular efferent duct system and semicystic spermatogenesis is examined and a possible functional meaning of this apparently unusual mode of sperm production is proposed. Accepted: 18 March 1997  相似文献   

11.
The objective of this study was to assess testicular morphology and spermatozoal structure spatially within the reproductive tract and temporally among seasons in the sauger (Sander canadensis). The testis exists as two separate lobes joined at the urogenital pore and were characterised as unrestricted lobular with seminiferous tubules terminating at the ventral periphery and coalescing dorsally on the main sperm duct. Differences were observed between the pre-breeding season (November) and breeding season (March), with every stage of spermatogenesis occurring in spermatocysts in pre-breeding season in contrast to only spermatozoa being present in the tubules and main duct during the breeding season. Longitudinal folds in the main duct epithelium increased in number with increasing proximity to the urogenital pore, greatly increasing epithelial height regardless of season. Sauger spermatozoa consisted of an ovoid head, a midpiece containing 2 – 4 mitochondria incorporated into the head and a single flagellum containing an asymmetrical lateral ribbon. Motile spermatozoa were found throughout the testis during the breeding season. A decrease in sperm concentration was quantified moving proximally, suggesting a hydration effect by the main duct epithelium during the breeding season. These observations fill an important knowledge gap regarding reproductive biology of this impactful recreational fish species.  相似文献   

12.
The structure of the testes and maturity stages in the male silvery croaker, Otolithes ruber were investigated from March 1999 to March 2000. Based on the location of spermatogonia within the germinal epithelium, the testis structure is classified as the unrestricted spermatogonial testicular type. Germ cells proliferate through mitotic divisions of spermatogonia, giving rise to primary and secondary spermatocytes, which through meiotic divisions transform into spermatids. As spermatogenesis progresses, an elongation of the testicular lobules takes place. During final spermiogenesis, spermatids are arranged in clusters, with heads in one direction and tails in the opposite. Spermatozoa are then liberated from these structures into the lobula lumina. The testicular lobules further elongate, and many of them form a continuum within the germinal epithelium, extending toward the periphery. The walls of the other lobules fuse, producing anastomosing sperm-filled lobular compartments. A main sperm duct is formed into which spermatozoa from the lobules are voided. A time lapse between sexual maturity and onset of spawning was observed, thus supporting the existing view that the anastomosing compartments are used for sperm storage during the latter part of the maturation process. Six maturity stages of the testis are delineated during the annual reproductive cycle based on macroscopic and histological characteristics. Results show that male O. ruber spawns from March through April in Kuwaiti waters.  相似文献   

13.
Mammalian spermatogenesis is a complex developmental program in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. One intriguing aspect of sperm production is the dynamic change in membrane lipid composition that occurs throughout spermatogenesis. Cholesterol content, as well as its intermediates, differs vastly between the male reproductive system and nongonadal tissues. Accumulation of cholesterol precursors such as testis meiosis-activating sterol and desmosterol is observed in testes and spermatozoa from several mammalian species. Moreover, cholesterogenic genes, especially meiosis-activating sterol-producing enzyme cytochrome P450 lanosterol 14α-demethylase, display stage-specific expression patterns during spermatogenesis. Discrepancies in gene expression patterns suggest a complex temporal and cell-type specific regulation of sterol compounds during spermatogenesis, which also involves dynamic interactions between germ and Sertoli cells. The functional importance of sterol compounds in sperm production is further supported by the modulation of sterol composition in spermatozoal membranes during epididymal transit and in the female reproductive tract, which is a prerequisite for successful fertilization. However, the exact role of sterols in male reproduction is unknown. This review discusses sterol dynamics in sperm maturation and describes recent methodological advances that will help to illuminate the complexity of sperm formation and function.  相似文献   

14.
The aims of the present study were to analyze the gonadal structure of Pseudoplatystoma fasciatum males during their annual cycle to enhance understanding of their reproductive biology and to improve the hormonally induced reproduction and culture of this species in hatcheries. We adopted the recently proposed method that establishes reproductive classes that are based on variations of the germinal epithelium within the year. Five reproductive classes were established: maturation (early, middle, and late), regression and recrudescence. Our observations revealed that in the spawning season P. fasciatum testes display two main functions: sperm production and sperm storage. We also concluded that the analysis of the variation of germinal epithelium was satisfactory when applied to this freshwater catfish and should be adopted for other fish species.  相似文献   

15.
Testosterone (T) is an absolute requirement for spermatogenesis and is supplied by mature Leydig cells stimulated by LH. We previously showed in gonadotropin-deficient hpg mice that T alone initiates qualitatively complete spermatogenesis bypassing LH-dependent Leydig cell maturation and steroidogenesis. However, because maximal T effects do not restore testis weight or germ cell number to wild-type control levels, additional Leydig cell factors may be involved. We therefore examined 1). whether chronic hCG administration to restore Leydig cell maturation and steroidogenesis can restore quantitatively normal spermatogenesis and testis development and 2). whether nonandrogenic Leydig cell products are required to initiate spermatogenesis. Weanling hpg mice were administered hCG (0.1-100 IU i.p. injection three times weekly) or T (1-cm subdermal Silastic implant) for 6 weeks, after which stereological estimates of germinal cell populations, serum and testicular T content, and testis weight were evaluated. Human CG stimulated Leydig cell maturation and normalized testicular T content compared with T treatment where Leydig cells remained immature and inactive. The maximal hCG-induced increases in testis weight and serum T concentrations were similar to those for T treatment and produced complete spermatogenesis characterized by mature, basally located Sertoli cells (SCs) with tripartite nucleoli, condensed haploid sperm, and lumen development. Compared with T treatment, hCG increased spermatogonial numbers, but both hCG and T had similar effects on numbers of spermatocytes and round and elongated spermatids per testis as well as per SC. Nevertheless, testis weight and germ cell numbers per testis and per SC remained well below phenotypically normal controls, confirming the involvement of non-Leydig cell factors such as FSH for quantitative normalization of spermatogenesis. We conclude that hCG stimulation of Leydig cell maturation and steroidogenesis is not required, and that T alone mostly replicates the effects of hCG, to initiate spermatogenesis. Because T is both necessary and sufficient for initiation of spermatogenesis, it is likely that T is the main Leydig cell secretory product involved and that additional LH-dependent Leydig cell factors are not essential for induction of murine spermatogenesis.  相似文献   

16.
The brook stickleback, Culaea inconstans (Kirtland), in common with other bony fishes, lacks a germinal epithelium in the tubules of the testis, and the tubule wall is composed of a thin, discontinuous layer of myoid cells and collagenous fibers. Labelling of germ cells with tritiated thymidine has shown that the germ cells are derived from clumps of spermatogonia in the interstitial area. Large companion cells within the lumina of the tubules extend their processes to engulf spermatogonia from the interstitium which then enter the lumen of the tubule. Subsequent development of the germ cells takes place within individual compartments formed by folds of the plasma membrane of a companion cell. The companion cell, together with its complement of germ cells, constitutes a cyst. A companion cell may surround spermatogonia in the interstitium and at the same time encompass residual sperm of the previous season within the lumen. The plasma membranes of the germ cells and the companion cells remain discrete. Mature sperm are released into the lumen of the tubule and the companion cell again extends its processes into the interstitium and engulfs more spermatogonia for the following year. Companion cells may be homologous to the Sertoli cells of higher vertebrates although their processes penetrate the interstitium during the initial stages of spermatogenesis and they do not contain a permanent stock of spermatogonia.  相似文献   

17.
Goldfish testes were nutritionally regressed in about 115 days regardless of season and without controlled light or temperature. A gonosomatic index (testes weight ″ 100/body weight) of the regressed fish was about one tenth that of spawning fish. The regressed testes were primarily composed of spermatogonia, spermatocytes, and connective tissue. Fish testes were maintained in a regressed state for over 200 days with no change in gonosomatic index. Fish with regressed testes appeared to be in a state of “pseudohypophysectomy” with respect to gonadotropin. Pituitary replacement and a diet of 5% of the body weight per day initiated spermatogenesis and brought the regressed testes to functional maturity in one month. The results suggest that spermatogonial proliferation and the maturation of sperm have different regulatory requirements.  相似文献   

18.
19.
The gilthead seabream is a protandrous hermaphrodite seasonal breeding teleost with a bisexual gonad that offers an interesting model for studying the testicular regression process that occurs in both seasonal testicular involution and sex change. Insofar as fish reproduction is concerned, little is known about cell renewal and elimination during the reproductive cycle of seasonal breeding teleosts with asynchronous spermatogenesis. We have previously described how acidophilic granulocytes infiltrate the testis during postspawning where, surprisingly, they produce interleukin-1beta, a known growth factor for mammalian spermatogonia, rather than being directly involved in the elimination of degenerative germ cells. In this study, we are able to discriminate between spermatogonia stem cells and primary spermatogonia according to their nuclear and cytoplasmic diameters and location in the germinal epithelium, finding that these two cell types, together with Sertoli cells, proliferate throughout the reproductive cycle with a rate that depends on the reproductive stage. Thus, during spermatogenesis the spermatogonia stem cells, the Sertoli cells, and the developing germ cells (primary spermatogonia, A and B spermatogonia, and spermatocytes) in the germinal compartment, and cells with fibroblast-shaped nuclei in the interstitial tissue proliferate. However, during spawning, the testis shows few proliferating cells. During postspawning, the resumption of proliferation, the occurrence of apoptotic spermatogonia, and the phagocytosis of nonshed spermatozoa by Sertoli cells lead to a reorganization of both the germinal compartment and the interstitial tissue. Finally, the proliferation of spermatogonia increases during resting when, unexpectedly, both oogonia and oocytes also proliferate. This proliferative pattern was correlated with the gonadosomatic index, testicular morphology, and testicular and gonad areas, suggesting that complex mechanisms operate in the regulation of gonocyte proliferation in hermaphrodite fish.  相似文献   

20.
The authors examined testis tissues and blood which were collected from free-ranging Japanese monkeys of the Takasakiyama troop during four periods in 1971 (mating season: late January-early February; early birth season: June; late birth season: August; and intermediate season between birth season and mating season: October), and studied their sexual maturation and seasonal changes in reproductive phenomena. Results of observations on the testis and plasma testosterone concentration were in agreement with each other. Except in a few cases, the testis was infantile until October at 4 years old and developed rapidly during the following two months, and spermatogenesis started in the mating season at 4 years old (in exceptional cases, it started one year earlier). After the following two-year process of sexual maturation, monkeys attained full maturation in the mating season at 6 years old. For seasonal changes in reproductive phenomena also, results of observations on the testis and the plasma testosterone were in agreement with each other. Activity of the testis repeated an annual cycle of being maximal in the mating season, regressing in the birth season, and redeveloping toward the following mating season. Such seasonal changes were noticeably observed with 4- to 6-year-old animals, which are in the process of sexual maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号