首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leptofauchea rhodymenioides Taylor (Faucheaceae, Rhodymeniales) is reported from Japan for the first time, based on detailed morphological studies and molecular phylogenetic analyses of nuclear‐encoded small subunit ribosomal RNA (SSU rRNA) and plastid‐encoded rbcL gene sequences. This is the first report of male gametophytes and detailed carposporophyte development in the genus Leptofauchea. This species is characterized as follows: (i) flat, membranous, and regularly and dichotomously branched thalli; (ii) the older blades are constricted below the apices; (iii) the cortex is composed of a continuous layer with an irregularly arranged outer layer, and the medulla of two to three incomplete layers; (iv) gametophytes are dioecious; (v) in males, the cortical cells cut off two to three spermatangial mother cells, which produce terminal spermatangia; (vi) in females, the procarp is composed of a three‐celled carpogonial branch and a two‐celled auxiliary cell branch; (vii) upon fertilization, the carpogonium directly contacts the auxiliary cell; (viii) the auxiliary mother cell fuses with vegetative cells, and forms a large trunk‐like fusion cell; (ix) gonimoblast filaments develop outwardly, and transform completely into carposporangia; (x) the carposporophyte is covered with a pericarp with a well‐defined tela arachnoidea; (xi) the mature cystocarp is spherical, has an ostiole, and protrudes from the blade margins; and (xii) the cruciately divided tetrasporangia are formed in nemathecia, produced laterally from paraphyses or terminally on short filaments. Molecular analyses suggest that Leptofauchea forms a strong sister alliance with the genus Webervanbossea. The families Faucheaceae and Lomentariaceae, and the genera Leptofauchea and Webervanbossea are monophyletic, but the latter two genera are not included in the Faucheaceae.  相似文献   

2.
Because of their large sizes and simple shapes, giant‐celled algae have been used to study how the structural and mechanical properties of cell walls influence cell growth. Here we review known relationships between cell wall and cell growth properties that are characteristic of three representative taxa of giant‐celled algae, namely, Valonia ventricosa, internodal cells of characean algae, and Vaucheria frigida. Tip‐growing cells of the genus Vaucheria differ from cells undergoing diffuse growth in V. ventricosa and characean algae in terms of their basic architectures (non‐lamellate vs. multilamellate) and their dependence upon pH and Ca2+ for cell wall extensibility. To further understand the mechanisms controlling cell growth by cell walls, comparative analyses of cell wall structures and/or associated growth modes will be useful. The giant‐celled algae potentially serve as good models for such investigations because of their wide variety of developmental processes and cell shapes exhibited.  相似文献   

3.
Vegetative and reproductive structures of the little‐known red alga, Meristotheca coacta Okamura (Solieriaceae, Gigartinales) were described on the basis of specimens collected from three localities in southern Japan, including an island close to the lectotype locality. Meristotheca coacta was shown to be a strongly supported monophyletic clade in our rbcL analyses. The taxonomic features of this species were reassessed. This species is characterized as follows: (i) the thalli consist of relatively thick (300–1400 μm from the uppermost to basal regions), elastic and rose‐red blades; (ii) the blades are irregularly lobed and branched into variously shaped segments with undulate and crispate margins; (iii) tetrasporangial initials are laterally attached to their parental cells and the lateral pit‐connections remain in mature tetrasporangia; (iv) gametophytes are dioecious; (v) carpogonial branches are three‐celled (occasionally two‐ or four‐celled); (vi) a darkly staining auxiliary cell complex is present and recognizable prior to diploidization; and (vii) cystocarps are produced along (or near) the margins of the blades and on the marginal proliferations and lack spinous outgrowths.  相似文献   

4.
Laurencia marilzae Gil‐Rodríguez, Sentíes et M.T. Fujii sp. nov. is described based on specimens that have been collected from the Canary Islands. This new species is characterized by distinctive yellow–orange as its natural habitat color, a terete thallus, four pericentral cells per vegetative axial segment, presence of secondary pit‐connections between adjacent cortical cells, markedly projecting cortical cells, and also by the presence of corps en cerise (one per cell) present in all cells of the thallus (cortical, medullary, including pericentral and axial cells, and trichoblasts). It also has a procarp‐bearing segment with five pericentral cells and tetrasporangia that are produced from the third and fourth pericentral cells, which are arranged in a parallel manner in relation to fertile branchlets. The phylogenetic position of this taxon was inferred based on chloroplast‐encoded rbcL gene sequence analyses. Within the Laurencia assemblage, L. marilzae formed a distinctive lineage sister to all other Laurencia species analyzed. Previously, a large number of unique diterpenes dactylomelane derivatives were isolated and identified from this taxon. L. marilzae is morphologically, genetically, and chemically distinct from all other related species of the Laurencia complex described.  相似文献   

5.
A marine araphid pennate diatom Plagiostriata goreensis is described from the sand grains of Goree Island, Dakar, Republic of Senegal, based on observations of fine structure of its frustule. The most striking feature of the species is its striation, which is angled at approximately 60° across the robust sternum. The other defining features of the species are its one highly reduced rimoportula and apical pores located at both ends of the valve margin. In the 18S rDNA phylogeny, the species appears as a member of a ‘small‐celled clade’ of araphid pennate diatoms that consist of Nanofrustulum, Opephora and Staurosira. The results of the phylogenetic analyses suggest that the distinct characters of the diatom; namely, oblique striae and apical pores, may have been acquired independently. However, it remains unclear whether the rimoportula of P. goreensis is a reduced state or P. goreensis acquired its morphologically curious rimoportula independently after the loss of an ancient rimoportula at the root of the small‐celled clade.  相似文献   

6.
Thalassiosira species are common components of marine planktonic communities worldwide and are used intensively as model experimental organisms. However, data on life cycles and sexuality within the genus are fragmentary. A clone of the cosmopolitan marine diatom Thalassiosira punctigera Cleve emend. Hasle was isolated from the North Sea and oogamous sexual reproduction was observed in culture. Cells approximately 45 μm and smaller became sexualized. Oogonia were produced preferentially and spermatogenesis was infrequent. Unfertilized oogonia always aborted and their development was apparently arrested at prophase of meiosis I. Further progression through meiosis and auxospore formation occurred only after a sperm had penetrated into the oocyte. Many cells of the new large‐celled generation (approximately 90–120 μm in size) immediately became sexualized again but only oogonia were produced. A few of the large oogonia became auxospores and produced initial cells 132–153 μm in diameter. The second step of auxosporulation probably involved fertilization of large‐celled oocytes by the sperm of the small‐celled spermatogonangia that were still present in the culture. An F1 clone obtained after selfing within the small‐celled auxosporulation size range was investigated. Like the parent clone, the F1 clone was homothallic but no auxosporulation was observed: spermatogonangia were unable to produce viable sperm, apparently because of inbreeding depression. Aggregation and interaction of oogonia were documented, and may be relevant for understanding the mechanisms of signaling and recognition between sexualized cells and the evolution of sexuality in pennate diatoms.  相似文献   

7.
A rarely collected shallow‐subtidal Hawaiian macroalga has been determined anatomically and molecularly to belong to an undescribed species of Tylotus J. Agardh, the most widely distributed genus of the small, mostly Australian‐endemic family Dicranemataceae. Thalli are repent and imbricate on calcareous boulders at the type locality on O‘ahu, and are anchored both basally and by haptera arising marginally and ventrally on the (sub‐)dichotomous, linear axes. Simple or forked terete haptera can be a means of perennation by the occasional direct issuing of adventitious blades. Fronds are multiaxial and consist of a broad pseudoparenchymatous medulla of thick‐walled cells surrounded on both sides by a two‐ or three‐layered small‐celled pigmented cortex in which numbers of ‘glandular’ hairs are embedded. Tetrasporangia are zonate, and gametophytes are monoecious. Carpogonial branches are three‐celled, directed to the thallus surface, and borne laterally on inner‐cortical supporting cells; cystocarps are prominently protuberant and scattered sparingly on dorsal frond surfaces, the carposporophytes directed outwardly beneath an ostiolate pericarp and connected to the parent gametophyte across a broad placental base in which the remnant auxiliary cell persists centrally. The inner surface of the pericarp is unusual in producing extensive patches or isolated islands of short gonimoblast filaments with terminal carposporangia as an apparent result of the implantation of gonimoblasts into the tissue of the lining. Anatomy indicates that the new species is more closely related to the East‐Asian Tylotus lichenoides Okamura than to the only other described member of the genus, the type species T. obtusatus (Sonder) J. Agardh from southern Australia. An rbcL phylogeny supports placement of sequences for Hawaiian specimens within the genus Tylotus but distinct from all previously recorded sequences of Tylotus. As is widely reported in other molecular‐phylogenetic analyses of the Gigartinales, we find that support for generic and familial relationships within the order is strong whereas that for between‐family relationships is low.  相似文献   

8.
Two species of Phycodrys, Phycodrys quercifolia (Bory) Skottsberg and Phycodrys profunda E.Y.Dawson were previously recorded from New Zealand. However, an examination of Phycodrys collections from the New Zealand region showed that all were morphologically different from P. quercifolia (Type locality: the Falkland Islands) and P. profunda (Type locality: CA, USA). RbcL sequence analyses established that the New Zealand Phycodrys species formed a natural assemblage within the genus, consisting of three new species: P. novae-zelandiae sp. nov., P. franiae sp. nov. and P. adamsiae sp. nov. Phycodrys novae-zelandiae is the largest of the three, up to 20 cm in height, with a distinct midrib and multicellular, opposite to subopposite lateral macroscopic veins. It has entirely monostromatic blades except near the midrib and veins, and its procarp contains a three-celled sterile group one (st1) and a one-celled sterile group two (st2). Phycodrys franiae was previously treated as a cryptic species among herbarium collections of P. ‘quercifolia’. It is smaller (4–11 cm high) with weakly developed midribs and veins, the blade is tristromatic throughout, except at the growing margins, and the procarp consists of a four-celled st1 and a two–three-celled st2. Phycodrys adamsiae, previously reported as P. profunda, is a small decumbent or prostrate plant, 1–8 cm long, with a midrib and inconspicuous lateral veins. The blades are tristromatic with serrated margins, two–four-celled surface spines and multicellular marginal holdfasts that differ from those of Californian specimens. The tetrasporangia are borne on marginal bladelets. Phylogenetic analyses place the New Zealand species in a separate group that is distantly removed from most other Phycodrys species.  相似文献   

9.
The taxonomic distinctiveness of the crustose red algal genus Polystrata Heydrich (Peyssonneliaceae) is confirmed on the basis of morphological and molecular data. The vegetative and reproductive morphology of the type species Polystrata dura Heydrich is newly described. Polystrata thalli are thick multi‐layered crusts, each crust of which is composed of a mesothallus, a superior perithallus, and an inferior perithallus. P. dura is characterized by a poorly developed inferior perithallus consisting of single‐celled perithallial filaments and each layer of multi‐layered crusts being closely adherent to the parental layer. This Polystrata species is identical to Peyssonnelia species, the type genus of the Peyssonneliaceae in the morphology of sexual reproductive organs: a carpogonial branch and an auxiliary cell branch are formed laterally on respective nemathecial filaments; the gonimoblasts are developed from connecting filaments and auxiliary cells; the spermatangia are produced in male and female nemathecia; and the spermatangial filament produces a series of one to four paired spermatangia that form a whorl surrounding each central cell (the Peyssonnelia dubyi‐type development). Polystrata fosliei (Weber‐van Bosse) Denizot is clearly distinguished from P. dura by an inferior perithallus as well‐developed as the superior perithallus, and each layer of multi‐layered crusts being loosely adherent to the parental layer. In our small subunit rDNA trees of the Peyssonneliaceae, these Polystrata species formed a clade with low to medium supports, although the phylogenetic position of Polystrata was unresolved in this family. Therefore, the thallus structure of Polystrata may be regarded as an important taxonomic character at the genus rank.  相似文献   

10.
The volvocacean genus Pleodorina has been morphologically characterized as having small somatic cells in spheroidal colonies and anisogamous sexual reproduction with sperm packets. In this study we examined two new species that can be assigned to the genus Pleodorina based on morphology: P. starrii H. Nozaki et al. sp. nov. and P. thompsonii F. D. Ott et al. sp. nov. P. starrii was collected from Japan and had 32‐ or 64‐celled colonies with anterior somatic cells and spheroidal individual cellular sheaths that were weakly attached to each other within the colonial envelope. P. thompsonii from Texas (USA) exhibited four or 12 somatic cells in the anterior pole of 16‐ or 32‐celled colonies, respectively, and had a single large pyrenoid in the chloroplast of mature reproductive cells. The chloroplast multigene phylogeny placed P. starrii and P. indica (Iyenger) H. Nozaki in a clade that was robustly separated from the type species P. californica Shaw and P. japonica H. Nozaki. Pleodorina thompsonii was resolved as a basal branch within a large monophyletic group (Eudorina group) composed of Eudorina, Pleodorina and Volvox (excluding section Volvox). Thus, Pleodorina was found among three separate lineages within the Eudorina group in which Eudorina and Volvox were also resolved as nonmonophyletic. The DNA sequences from additional species/strains as well as recognition of morphological attributes that characterize the monophyletic groups within the Eudorina group are needed to construct a natural generic classification within these members of the Volvocaceae.  相似文献   

11.
Bulbochaete allahabadensis sp. nov. is described from a temporary pond at Allahabad. Most of its life-cycle stages have been observed. It differs from other known species of the genus Bulbochaete in having characteristic oospores and interesting behaviour of androspores. Andropores after liberation from normal vegetative cells may germinate anywhere and form dwarf males or produce several celled branched germlings with precocious formation of antheridia. Such zoospore-like behaviour of androspores confirms the observations made by other workers under culture conditions.  相似文献   

12.
Systematics of the red algal order Rhodymeniales was investigated using combined large‐subunit nuclear ribosomal DNA (LSU) and elongation factor 2 (EF2) analyses. These data were subjected to distance, parsimony, and Bayesian analyses, and the resulting phylogenies were largely congruent with previously published SSU results in that the four currently recognized rhodymenialean families (Champiaceae, Faucheaceae, Lomentariaceae, and Rhodymeniaceae) were resolved as monophyletic lineages (with the exception of Coelothrix, which is here transferred to the Champiaceae from the Rhodymeniaceae). In addition, taxa presently considered as incertae sedis consisted of two lineages (Fryeella lineage and Hymenocladia lineage). Based on these results, two new families are proposed: (i) the Fryeellaceae fam. nov. to accommodate the genera Fryeella, Hymenocladiopsis, and a new taxon from Tasmania, Australia; and (ii) the Hymenocladiaceae fam. nov., to accommodate Asteromenia, Hymenocladia, and Erythrymenia. In addition to resolving familial relationships, these analyses resolved some novel interspecific affinities, and we propose a new genus, Neogastroclonium gen. nov., for Gastroclonium subarticulatum, a species that differs significantly in both morphology and molecular data from genuine species of Gastroclonium. Relationships among additional faucheacean and lomentariacean taxa were investigated using LSU data only, and these results are discussed. The familial classification of the Rhodymeniales proposed herein is discussed in light of vegetative and reproductive anatomy, most notably the ontogeny of the tetrasporangia.  相似文献   

13.
Ascospores are the primary inoculum in Fusarium graminearum. Interestingly, 70 of its genes have premature stop codons (PSC) and require A‐to‐I editing during sexual reproduction to encode full‐length proteins, including the ortholog of yeast Ama1, a meiosis‐specific activator of APC/C. In this study, we characterized the function of FgAMA1 and its PSC editing. FgAMA1 was specifically expressed during sexual reproduction. The Fgama1 mutant was normal in growth and perithecium formation but defective in ascospogenesis. Instead of forming four‐celled, uninucleate ascospores, Fgama1 mutant produced oval, single‐celled, binucleated ascospores by selfing. Some mutant ascospores began to bud and underwent additional mitosis inside asci. Expression of the wild‐type or edited FgAMA1 but not the uneditable allele complemented Fgama1. In the Fgama1 x mat‐1‐1 outcross, over 60% of the asci had eight Fgama1 or intermediate (elongated but single‐celled) ascospores, suggesting efficient meiotic silencing of unpaired FgAMA1. Deletion of FgPAL1, one of the genes upregulated in Fgama1 also resulted in defects in ascospore morphology and budding. Overall, our results showed that FgAMA1 is dispensable for meiosis but important for ascospore formation and discharge. In F. graminearum, whereas some of its targets are functional during meiosis, FgAma1 may target other proteins that function after spore delimitation.  相似文献   

14.
A new red alga, Dasya enomotoi, is described from Japan. This species is characterized by having a large thallus consisting of an elongated axis and many, radially arranged, polysiphonous branches both of which are heavily corticated and densely covered with numerous, soft monosiphonous filaments. It is distinguished from several similar species by the combination of the following: (i) indistinct pericentral cells in transverse sections except near the apices, (ii) the presence of enlarged, inner cortical cells, (iii) radially arranged adventitious monosiphonous filaments, (iv) three‐celled carpogonial branches, (v) six (sometimes five) tetrasporangia in each fertile segment of the stichidia, and (vi) three tetrasporangial cover cells that are not elongated longitudinally and usually not divided transversely. This species may have been identified as D. villosa Harvey by previous investigators in Japan.  相似文献   

15.
The indehiscent fruitlets of the apparently basalmost extant angiosperm, Amborella trichopoda, have a pericarp that is differentiated into five zones, a thin one‐cell‐layered skin (exocarp), a thick fleshy zone of 25–35 cell layers (outer mesocarp), a thick, large‐celled sclerenchymatous zone (unlignified) of 6–18 cell layers (middle mesocarp), a single cell layer with thin‐walled (silicified?) cells (inner mesocarp), and a 2–4‐cell‐layered, small‐celled sclerenchymatous zone (unlignified) derived from the inner epidermis (endocarp). The border between inner and outer mesocarp is not even but the inner mesocarp forms a network of ridges and pits; the ridges support the vascular bundles, which are situated in the outer mesocarp. In accordance with previous observations by Bailey & Swamy, no ethereal oil cells were observed in the pericarp; however, lysigenous cavities as mentioned by these authors are also lacking; they seem to be an artefact caused by re‐expanding dried fruits. The seed coat is not sclerified. The fruitlets of Amborella differ from externally similar fruits or fruitlets in other basal angiosperms, such as Austrobaileyales or Laurales, in their histology. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 148 , 265–274.  相似文献   

16.
Abstract

Cordylecladia guiryi sp. nov. is described from the Mediterranean Sea, after a comparison of habit, morphology and reproduction with C. erecta, the only species of the genus. The species is characterized by the small dimension of its axes which arise single from the basal crust and by its habitat, growing epiphytically on Posidonia oceanica Delile leaves. Tetrasporangial and gametangial plants as well as the development of the carposporophyte have been studied in detail. The carpogonial branch is 4-celled and it is formed on a supporting cell that also bears a 3-celled auxiliary branch. Tetrasporangia are cruciately divided. The reproductive details confirm Sparling's view about the great variation existing in the organization of the procarp in members of this order.  相似文献   

17.
Phytoplankton primary productivity in the Southern Ocean is controlled by complex interactions among iron, light, and grazing. This project interfaced with the Southern Ocean iron experiment (SOFeX) that created two iron‐enriched patches north and south of the Polar Front each with distinct silicic acid concentrations. We used pulse amplitude modulated fluorometry and measured the recovery of the maximum quantum yield of photochemistry (Fv/Fm) for three size fractions (whole, <5, <20 μm) and light adapted quantum yield (ΔF/Fm) for single phytoplankton cells. The rates of recovery from iron stress were found to be unrelated to average cell size for both size‐fractioned and single‐celled measurements. The smallest cells appeared to exhibit more severe iron stress at the onset of the experiment than the larger taxa. The largest response detected in regression parameters was that of the pennate diatoms, which took only ~3.4 days to reach the maximum quantum yield, whereas the centric diatom Asteromphalus sp. reached maximum ΔF/Fm after ~10.4 days. The north patch measurements showed a different response; the smallest cells never reached maximum ΔF/Fm, whereas the size fraction containing the largest cells did. Single‐celled measurements made nearly 30 days after the initial iron enrichment suggested that diatoms were experiencing either silicic acid or iron limitation, whereas measurements of Phaeocystis sp. did not. These data represent the first study of in situ recovery rates of PSII for groups of diatoms, and may help elucidate the mechanisms of species change in response to environmental perturbation.  相似文献   

18.
Synarthrophyton gen. nov. is described based on southern Australian material of Melobesia patena Hooker fils & Harvey, which shows features intermediate between Mesophyllum Lemoine and Lithothamnium Philippi. It has the thin-walled rounded epithallial cells and coaxial hypothallium characteristic of Mesophyllum and the type of procarp and male structures common to Lithothamnium. Synarthrophyton is unique within the subfamily Melobesioideae (J. E. Areschoug) Yendo because it displays secondary pit connections. Details of the vegetative and reproductive morphology of S. patena (Hooker fils. & Harvey) comb. nov. are given and its taxonomic position in the Corallinaceae Lamouroux discussed.  相似文献   

19.
20.
After detailed observations of type material and other collections, five Hawaiian species of Polysiphonia Greville, nom. cons. are recognized to be species of Neosiphonia M. S. Kim et I. K. Lee; namely, Neosiphonia apiculata (Hollenberg) Masuda et Kogame, Neosiphonia beaudettei (Hollenberg) M. S. Kim et Abbott, comb. nov., Neosiphonia hawaiiensis (Hollenberg) M. S. Kim et Abbott, comb. nov., Neosiphonia profunda (Hollenberg) M. S. Kim et Abbott, comb. nov., and Neosiphonia rubrorhiza (Hollenberg) M. S. Kim et Abbott, comb. nov. These five species are ecorticate, having lateral branch initials and trichoblasts produced on successive segments, rhizoids separated from pericentral cells by a cross wall, three‐celled carpogonial branches (not seen in N. beaudettei and N. rubrorhiza), spermatangial branches arising on a primary branch of the trichoblasts, and tetrasporangia in a spiral series. Although certain characters were not available for some species, all other characters occur in a combination that is unique for members of Neosiphonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号