首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim To (1) describe termite functional diversity patterns across five tropical regions using local species richness sampling of standardized areas of habitat; (2) assess the relative importance of environmental factors operating at different spatial and temporal scales in influencing variation in species representation within feeding groups and functional taxonomic groups across the tropics; (3) achieve a synthesis to explain the observed patterns of convergence and divergence in termite functional diversity that draws on termite ecological and biogeographical evidence to‐date, as well as the latest evidence for the evolutionary and distributional history of tropical rain forests. Location Pantropical. Methods A pantropical termite species richness data set was obtained through sampling of eighty‐seven standardized local termite diversity transects from twenty‐nine locations across five tropical regions. Local‐scale, intermediate‐scale and large‐scale environmental data were collected for each transect. Standardized termite assemblage and environmental data were analysed at the levels of whole assemblages and feeding groups (using components of variance analysis) and at the level of functional taxonomic groups (using correspondence analysis and canonical correspondence analysis). Results Overall species richness of local assemblages showed a greater component of variation attributable to local habitat disturbance level than to region. However, an analysis accounting for species richness across termite feeding groups indicated a much larger component of variation attributable to region. Mean local assemblage body size also showed the greater overall significance of region compared with habitat type in influencing variation. Ordination of functional taxonomic group data revealed a primary gradient of variation corresponding to rank order of species richness within sites and to mean local species richness within regions. The latter was in the order: Africa > south America > south‐east Asia > Madagascar > Australia. This primary gradient of species richness decrease can be explained by a decrease in species richness of less dispersive functional taxonomic groups feeding on more humified food substrates such as soil. Hence, the transects from more depauperate sites/regions were dominated by more dispersive functional taxonomic groups feeding on less humified food substrates such as dead wood. Direct gradient analysis indicated that ‘region’ and other large‐scale factors were the most important in explaining patterns of local termite functional diversity followed by intermediate‐scale geographical and site variables and, finally, local‐scale ecological variables. Synthesis and main conclusions Within regions, centres of termite functional diversity lie in lowland equatorial closed canopy tropical forests. Soil feeding termite evolution further down food substrate humification gradients is therefore more likely to have depended on the long‐term presence of this habitat. Known ecological and energetic constraints upon contemporary soil feeders lend support for this hypothesis. We propose further that the anomalous distribution of termite soil feeder species richness is partly explained by their generally very poor dispersal abilities across oceans. Evolution, radiation and dispersal of soil feeder diversity appears to have been largely restricted to what are now the African and south American regions. The inter‐regional differences in contemporary local patterns of termite species richness revealed by the global data set point to the possibility of large differences in consequent ecosystem processes in apparently similar habitats on different continents.  相似文献   

2.
Functional diversity is intimately linked with community assembly processes, but its large‐scale patterns of variation are often not well understood. Here, we investigated the spatiotemporal changes in multiple trait dimensions (“trait space”) along vertical intertidal environmental stress gradients and across a landscape scale. We predicted that the range of the trait space covered by local assemblages (i.e., functional richness) and the dispersion in trait abundances (i.e., functional dispersion) should increase from high‐ to low‐intertidal elevations, due to the decreasing influence of environmental filtering. The abundance of macrobenthic algae and invertebrates was estimated at four rocky shores spanning ca. 200 km of the coast over a 36‐month period. Functional richness and dispersion were contrasted against matrix‐swap models to remove any confounding effect of species richness on functional diversity. Random‐slope models showed that functional richness and dispersion significantly increased from high‐ to low‐intertidal heights, demonstrating that under harsh environmental conditions, the assemblages comprised similar abundances of functionally similar species (i.e., trait convergence), while that under milder conditions, the assemblages encompassed differing abundances of functionally dissimilar species (i.e., trait divergence). According to the Akaike information criteria, the relationship between local environmental stress and functional richness was persistent across sites and sampling times, while functional dispersion varied significantly. Environmental filtering therefore has persistent effects on the range of trait space covered by these assemblages, but context‐dependent effects on the abundances of trait combinations within such range. Our results further suggest that natural and/or anthropogenic factors might have significant effects on the relative abundance of functional traits, despite that no trait addition or extinction is detected.  相似文献   

3.
Aim To investigate how species richness and similarity of non‐native plants varies along gradients of elevation and human disturbance. Location Eight mountain regions on four continents and two oceanic islands. Methods We compared the distribution of non‐native plant species along roads in eight mountainous regions. Within each region, abundance of plant species was recorded at 41–84 sites along elevational gradients using 100‐m2 plots located 0, 25 and 75 m from roadsides. We used mixed‐effects models to examine how local variation in species richness and similarity were affected by processes at three scales: among regions (global), along elevational gradients (regional) and with distance from the road (local). We used model selection and information criteria to choose best‐fit models of species richness along elevational gradients. We performed a hierarchical clustering of similarity to investigate human‐related factors and environmental filtering as potential drivers at the global scale. Results Species richness and similarity of non‐native plant species along elevational gradients were strongly influenced by factors operating at scales ranging from 100 m to 1000s of km. Non‐native species richness was highest in the New World regions, reflecting the effects of colonization from Europe. Similarity among regions was low and due mainly to certain Eurasian species, mostly native to temperate Europe, occurring in all New World regions. Elevation and distance from the road explained little of the variation in similarity. The elevational distribution of non‐native species richness varied, but was always greatest in the lower third of the range. In all regions, non‐native species richness declined away from roadsides. In three regions, this decline was steeper at higher elevations, and there was an interaction between distance and elevation. Main conclusions Because non‐native plant species are affected by processes operating at global, regional and local scales, a multi‐scale perspective is needed to understand their patterns of distribution. The processes involved include global dispersal, filtering along elevational gradients and differential establishment with distance from roadsides.  相似文献   

4.
Trait‐based ecology suggests that abiotic filtering is the main mechanism structuring the regional species pool in different subsets of habitat‐specific species. At more local spatial scales, other ecological processes may add on giving rise to complex patterns of functional diversity (FD). Understanding how assembly processes operating on the habitat‐specific species pools produce the locally observed plant assemblages is an ongoing challenge. Here, we evaluated the importance of different processes to community assembly in an alpine fellfield, assessing its effects on local plant trait FD. Using classical randomization tests and linear mixed models, we compared the observed FD with expectations from three null models that hierarchically incorporate additional assembly constraints: stochastic null models (random assembly), independence null models (each species responding individual and independently to abiotic environment), and co‐occurrence null models (species responding to environmental variation and to the presence of other species). We sampled species composition in 115 quadrats across 24 locations in the central Pyrenees (Spain) that differed in soil conditions, solar radiation and elevation. Overall, the classical randomization tests were unable to find differences between the observed and expected functional patterns, suggesting that the strong abiotic filters that sort out the flora of extreme regional environments blur any signal of other local processes. However, our approach based on linear mixed models revealed the signature of different ecological processes. In the case of seed mass and leaf thickness, observed FD significantly deviated from the expectations of the stochastic model, suggesting that fine‐scale abiotic filtering and facilitation can be behind these patterns. Our study highlights how the hierarchical incorporation of ecological additional constraints may shed light on the dim signal left by local assembly processes in alpine environments.  相似文献   

5.
One of the key hypothesized drivers of gradients in species richness is environmental filtering, where environmental stress limits which species from a larger species pool gain membership in a local community owing to their traits. Whereas most studies focus on small‐scale variation in functional traits along environmental gradient, the effect of large‐scale environmental filtering is less well understood. Furthermore, it has been rarely tested whether the factors that constrain the niche space limit the total number of coexisting species. We assessed the role of environmental filtering in shaping tree assemblages across North America north of Mexico by testing the hypothesis that colder, drier, or seasonal environments (stressful conditions for most plants) constrain tree trait diversity and thereby limit species richness. We assessed geographic patterns in trait filtering and their relationships to species richness pattern using a comprehensive set of tree range maps. We focused on four key plant functional traits reflecting major life history axes (maximum height, specific leaf area, seed mass, and wood density) and four climatic variables (annual mean and seasonality of temperature and precipitation). We tested for significant spatial shifts in trait means and variances using a null model approach. While we found significant shifts in mean species’ trait values at most grid cells, trait variances at most grid cells did not deviate from the null expectation. Measures of environmental harshness (cold, dry, seasonal climates) and lower species richness were weakly associated with a reduction in variance of seed mass and specific leaf area. The pattern in variance of height and wood density was, however, opposite. These findings do not support the hypothesis that more stressful conditions universally limit species and trait diversity in North America. Environmental filtering does, however, structure assemblage composition, by selecting for certain optimum trait values under a given set of conditions.  相似文献   

6.
Local species coexistence is the outcome of abiotic and biotic filtering processes which sort species according to their trait values. However, the capacity of trait‐based approaches to predict the variation in realized species richness remains to be investigated. In this study, we asked whether a limited number of plant functional traits, related to the leaf‐height‐seed strategy scheme and averaged at the community level, is able to predict the variation in species richness over a flooding disturbance gradient. We further investigated how these mean community traits are able to quantify the strength of abiotic and biotic processes involved in the disturbance–productivity–diversity relationship. We thus tested the proposal that the deviation between the fundamental species richness, assessed from ecological niche‐based models, and realized species richness, i.e. field‐observed richness, is controlled by species interactions. Flooding regime was determined using a detailed hydrological model. A precise vegetation sampling was performed across 222 quadrats located throughout the flooding gradient. Three core functional traits were considered: specific leaf area (SLA), plant height and seed mass. Species richness showed a hump‐shaped response to disturbance and productivity, but was better predicted by only two mean community traits: SLA and height. On the one hand, community SLA that increased with flooding, controlled the disturbance‐diversity relationship through habitat filtering. On the other hand, species interactions, the strength of which was captured by community height values, played a strong consistent role throughout the disturbance gradient by reducing the local species richness. Our study highlights that a limited number of simple, quantitative, easily measurable functional traits can capture the variation in plant species richness at a local scale and provides a promising quantification of key community assembly mechanisms.  相似文献   

7.
Systematically quantifying diversity across landscapes is necessary to understand how clade history and ecological heterogeneity contribute to the origin, distribution, and maintenance of biodiversity. Here, we chart the spatial structure of diversity among all species in the sedge family (Cyperaceae) throughout the USA and Canada. We first identify areas of remarkable species richness, phylogenetic diversity, and functional trait diversity, and highlight regions of conservation priority. We then test predictions about the spatial structure of this diversity based on the historical biogeography of the family. Incorporating a phylogeny, over 400 000 herbarium records, and a database of functional traits mined from online floras, we find that species richness and functional trait diversity peak in the Northeastern USA, while phylogenetic diversity peaks along the Gulf of Mexico. Floristic turnover among assemblages increases significantly with distance, but phylogenetic turnover is twice as rapid along latitudinal gradients as along longitudinal gradients. These patterns reflect the expected distribution of Cyperaceae, which originated in the tropics but radiated in temperate regions. We identify assemblages with an abundance of rare, range‐restricted lineages, and assemblages composed of species generally lacking from diverse regions. We argue that both of these metrics are useful for developing targeted conservation strategies. We use the data generated here to establish future research priorities, including the testing of a series of hypotheses regarding the distribution of chromosome numbers, photosynthetic pathways, and resource partitioning in sedges.  相似文献   

8.
1. The species composition of stream fish assemblages changes across the longitudinal fluvial gradient of large river basins. These changes may reflect both zonation in species distributions and environmental filtering of fish traits as stream environments change from the uplands to the lowlands of large catchments. Previous research has shown that taxonomic diversity generally increases in larger, lowland streams, and the River Continuum Concept, the River Habitat Template and other frameworks have provided expectations for what functional groups of fishes should predominate in certain stream types. However, studies addressing the functional trait composition of fish assemblages across large regions are lacking, particularly in tropical river basins. 2. We examined functional trait–environment relationships and functional diversity of stream fish assemblages in the Río Grijalva Basin in southern Mexico. Traits linked to feeding, locomotion and life history strategy were measured in fishes from streams throughout the catchment, from highland headwaters to broad, lowland streams. Relationships between functional traits and environmental variables at local and landscape scales were examined using multivariate ordination, and the convex hull volume of trait space occupied by fish assemblages was calculated as a measure of functional diversity. 3. Although there were a few exceptions, functional diversity of assemblages increased with species richness along the gradient from uplands to lowlands within the Grijalva Basin. Traits related to swimming, habitat preference and food resource use were associated with both local (e.g. substratum type, pool availability) and landscape‐scale (e.g. forest cover) environmental variables. 4. Along with taxonomic structure and diversity, the functional composition of fish assemblages changed across the longitudinal fluvial gradient of the basin. Trait–environment relationships documented in this study partially confirmed theoretical expectations and revealed patterns that may help in developing a better understanding of general functional responses of fish assemblages to environmental change.  相似文献   

9.
Understanding variation in key functional traits across gradients in high diversity systems and the ecology of community changes along gradients in these systems is crucial in light of conservation and climate change. We examined inter‐ and intraspecific variation in leaf mass per area (LMA) of sun and shade leaves along a 3330‐m elevation gradient in Peru, and in sun leaves across a forest–savanna vegetation gradient in Brazil. We also compared LMA variance ratios (T‐statistics metrics) to null models to explore internal (i.e., abiotic) and environmental filtering on community structure along the gradients. Community‐weighted LMA increased with decreasing forest cover in Brazil, likely due to increased light availability and water stress, and increased with elevation in Peru, consistent with the leaf economic spectrum strategy expected in colder, less productive environments. A very high species turnover was observed along both environmental gradients, and consequently, the first source of variation in LMA was species turnover. Variation in LMA at the genus or family levels was greater in Peru than in Brazil. Using dominant trees to examine possible filters on community assembly, we found that in Brazil, internal filtering was strongest in the forest, while environmental filtering was observed in the dry savanna. In Peru, internal filtering was observed along 80% of the gradient, perhaps due to variation in taxa or interspecific competition. Environmental filtering was observed at cloud zone edges and in lowlands, possibly due to water and nutrient availability, respectively. These results related to variation in LMA indicate that biodiversity in species rich tropical assemblages may be structured by differential niche‐based processes. In the future, specific mechanisms generating these patterns of variation in leaf functional traits across tropical environmental gradients should be explored.  相似文献   

10.
To compare community assemblage patterns in tropical northeastern and subtropical central eastern Australia across selected gradients and scales, we tested the relationship of species traits with phylogenetic structure, and niche breadth. We considered phylogenetic relationships across current‐day species in assemblages in relation to rain forest species pool sizes, and trait values along gradients including elevation and latitude. Trait values were quantified across scales for seed size, leaf area, wood density and maximum height at maturity for 1137 species and 596 assemblages using trait gradient analysis (TGA). Local assemblages of subtropical species had narrower trait ranges, and higher niche breadth values than corresponding assemblages of tropical species. Leaf size and seed size increased at low latitudes, and community phylogenetic structure was most strongly correlated with seed traits in the subtropics, reflecting dispersal and re‐colonization processes. Elevation accounted for little of the variance in community phylogenetic structure or trait variation across local and regional scales. Stable moist forest areas retained many species from ancestral rain forest lineages across a range of temporally conserved habitats; species within assemblages were less related; and rain forest assemblages had higher functional diversity, but lower niche breadth. This suggests that on average, assemblages of species in stable areas had greater trait variation and narrower distributions. Historic and recent rain forest contraction and re‐expansion can result in recolonized areas that are dominated by species that are more related (phylogenetically) than by chance, have smaller, widely dispersed seeds, and greater niche breadth (broader distributions).  相似文献   

11.
The unified neutral theory of biodiversity and biogeography provides a promising framework that can be used to integrate stochastic and ecological processes operating in ecological communities. Based on a mechanistic non‐neutral model that incorporates density‐dependent mortality, we evaluated the deviation from a neutral pattern in tree species abundance distributions and explored the signatures of historical and ecological processes that have shaped forest biomes. We compiled a dataset documenting species abundance distributions in 1168 plots encompassing 16 973 tree species across tropical, temperate, and boreal forests. We tested whether deviations from neutrality of species abundance distributions vary with climatic and historical conditions, and whether these patterns differ among regions. Non‐neutrality in species abundance distributions was ubiquitous in tropical, temperate, and boreal forests, and regional differences in patterns of non‐neutrality were significant between biomes. Species abundance evenness/unevenness caused by negative density‐dependent or abiotic filtering effects had no clear macro‐scale climatic drivers, although temperature was non‐linearly correlated with species abundance unevenness on a global scale. These findings were not significantly biased by heterogeneity of plot data (the differences of plot area, measurement size, species richness, and the number of individuals sampled). Therefore, our results suggest that environmental filtering is not universally increasing from warm tropical to cold boreal forests, but might affect differently tree species assembly between and within biomes. Ecological processes generating particularly dominant species in local communities might be idiosyncratic or region‐specific and may be associated with geography and climate. Our study illustrates that stochastic dynamical models enable the analysis of the interplay of historical and ecological processes that influence community assemblies and the dynamics of biodiversity.  相似文献   

12.
Pteridophytes (ferns and fern‐allies) represent the second‐largest group of vascular plants, but their global biogeography remains poorly studied. Given their functional biology, pteridophytes are expected to show a more pronounced relation to water availability and a higher dispersal ability compared to seed plants. We test these assertions and document the global pattern of pteridophyte richness across 195 mainland and 106 island regions. Using non‐spatial and spatial simple and multiple regression models, we analyze geographic trends in pteridophyte and seed plant richness as well as pteridophyte proportions in relation to environmental and regional variables. We find that pteridophyte and seed plant richness are geographically strongly correlated (all floras: r=0.68, mainland: r=0.82, island floras: r=0.77), but that the proportions of pteridophytes in vascular plant floras vary considerably (0–70%). Islands (mean=15.3%) have significantly higher proportions of pteridophytes than mainland regions (mean=3.6%). While the relative proportions of pteridophytes on islands show a positive relationship with geographic isolation, proportions in mainland floras increase most strongly along gradients of water availability. Pteridophyte richness peaks in humid tropical mountainous regions and is lowest in deserts, arctic regions, and on remote oceanic islands. Regions with Mediterranean climate, outstanding extra‐tropical centres of seed plant richness, are comparatively poor in pteridophytes. Overall, water‐energy variables and topographical complexity are core predictors of both mainland pteridophyte and seed plant richness. Significant residual richness across biogeographic regions points to an important role of idiosyncratic regional effects. Although the same variables emerge as core predictors of pteridophyte and seed plant richness, water availability is clearly a much stronger constraint of pteridophyte richness. We discuss the different limitations of gametophytes and sporophytes that might have limited the ability of pteridophytes to extensively diversify under harsh environmental conditions. Our results point to an important role of taxon‐specific functional traits in defining global richness gradients.  相似文献   

13.
Trade‐offs maintain diversity and structure communities along environmental gradients. Theory indicates that if covariance among functional traits sets a limit on the number of viable trait combinations in a given environment, then communities with strong multidimensional trait constraints should exhibit low species diversity. We tested this prediction in winter annual plant assemblages along an aridity gradient using multilevel structural equation modelling. Univariate and multivariate functional diversity measures were poorly explained by aridity, and were surprisingly poor predictors of community richness. By contrast, the covariance between maximum height and seed mass strengthened along the aridity gradient, and was strongly associated with richness declines. Community richness had a positive effect on local neighbourhood richness, indicating that climate effects on trait covariance indirectly influence diversity at local scales. We present clear empirical evidence that declines in species richness along gradients of environmental stress can be due to increasing constraints on multidimensional phenotypes.  相似文献   

14.
Aim Niche partitioning within species assemblages is thought to influence species packing and/or total niche space occupied. The evolution of dung beetles (Scarabaeinae) is likely to have been strongly influenced by inter‐specific competition, leading to niche partitioning. We consider whether local‐scale processes leave a signature in regional patterns of functional diversity in dung beetle assemblages, and investigate the correlation between total exploited ecomorphological space and density of species packing with increased species richness. We test whether ecomorphological space occupied by local assemblages reflects that of their regional species pool, and the extent to which ecomorphological space is convergent or divergent within functional groups across regional pools. Location Neotropics, Africa, Australia and Madagascar. Methods Dung beetle assemblages were collected in a standardized manner from four biogeographic regions. Ecomorphological similarity among the assemblages was assessed by multivariate analysis of 19 linear measurements for 300 species and three functional nesting types (roller, tunneller or dweller), firstly on a local level within the Neotropics and Afrotropics, and then between the regional species pools. Results Key body measurements, in particular the hind tibia, separated rollers and tunnellers into largely non‐overlapping entities along the first three axes of the shape analysis. Three Neotropical assemblages, which vary widely in species numbers, each harboured a similar amount of morphometric variation, resulting in increasingly dense species packing with greater species richness. Similar findings were obtained in two South African assemblages. Assemblages in the four biogeographic regions showed largely similar distributions of ecomorphological variation, including the separation of rollers and tunnellers, despite their distant phylogenetic relationships. Ecomorphological similarity among regions was particularly high in tunnellers, whilst the rollers exhibited greater regional differentiation. Main conclusions Local assemblages evidently represent the full diversity of functional groups available in the regional pool, even in species‐poor assemblages. There is a strong trend towards convergence in morphology separating tunnellers and rollers in phylogenetically independent lineages. The ecomorphological similarity of regional assemblages suggests that morphological convergence is the result of common selective forces active within the assemblages themselves. This lends support to the widely hypothesized effect of inter‐specific interactions and niche partitioning in determining assemblage composition and lineage evolution in the Scarabaeinae.  相似文献   

15.
16.
Over the last two decades, although much has been learned regarding the multifaceted nature of biodiversity, relatively little is known regarding spatial variation in constituents other than species richness. This is particularly true along extensive environmental gradients such as latitude. Herein, we describe latitudinal gradients in the functional diversity of New World bat communities. Bat species from each of 32 communities were assigned to one of seven functional groups. Latitudinal gradients existed for the richness, diversity and scaled‐dominance of functional groups. No significant patterns were observed for evenness of functional groups. Measures of functional diversity were different in magnitude and increased towards the equator at a faster rate than expected given the underlying spatial variation in species richness. Thus, latitudinal gradient in species richness alone do not cause the latitudinal gradient in functional diversity. When variation in species composition of the regional fauna of each community was incorporated into analyses, many differences between observed and simulated patterns of functional diversity were not significant. This suggests that those processes that determine the composition of regional faunas strongly influence the latitudinal gradient in functional diversity at the local level. Nonetheless, functional diversity was lower than expected across observed sites. Community‐wide responses to variation in the quantity and quality of resources at the local level probably contribute to differences in functional diversity at local and regional scales and enhance beta diversity.  相似文献   

17.
Aim Understanding large scale patterns in trait variation in climbing plants (lianas, vines, scramblers, twiners) is important for the development of a stronger theoretical understanding of climbing plant ecology and for more applied issues such as prediction of community assembly under changing climatic conditions. We compared values of five key functional traits for 388 species of climbing plant from tropical and temperate regions of Australia to quantify variation between these two biogeographic regions. Location Australia. Methods Data on dispersal mode, growth habit, leaf form, leaf size and seed mass were compiled from field measurements and published sources. Comparative analyses were performed in three ways: (1) across species where each species was treated as an independent data point, (2) using evolutionary divergence analyses for each trait, and (3) in multidimensional space using a matrix of similarities between species. Results Tropical climbing plants had 22‐fold greater seed mass and four times greater leaf size than did temperate species. Tropical climbers were more likely to be woody (63%) than were temperate species (40%). Surprisingly we found a similar proportion of animal‐dispersed seeds in the two regions, although we expected animal‐dispersed seeds to be more prevalent in the tropics. We also found similar proportions of simple‐ and compound‐leaved species between the two regions. All of our findings were consistent between cross‐species and phylogenetic analyses indicating that patterns in present‐day species are reflected in the evolutionary history of Australian climbers. Multivariate analyses suggested that there is a spectrum of variation among climbing plants, with tropical species having greater seed mass, leaf size and woody growth compared with temperate climbing plant species. Main conclusions Tropical and temperate climbers of Australia exhibit a mixture of similar and contrasting traits and ecological strategies. Understanding strategy variation along latitudinal gradients will be particularly informative for predicting ecosystem and community structure with climate change.  相似文献   

18.
Question: Several mechanisms have been proposed that control the spatio‐temporal pattern of species coexistence. Among others, the species pool hypothesis states that the large‐scale species pool is an important factor in controlling small‐scale species richness through filtering of species that can persist within a species assemblage on the basis of their tolerance of the abiotic environment. Because of the process of environmental filtering, co‐occurring species that experience similar environmental conditions are likely to be more taxonomically similar than ecologically distant species. This is because, due to the conservatism of many species traits during evolutionary diversification, the ability of species to colonize the same ecological space is thought to depend at least partially on their taxonomic similarity. The question for this study is: Under the assumption of trait conservatism, does environmental filtering lead to nonrandom species assemblages with respect to their taxonomic structure? Methods: The significance of taxonomic filtering in regulating species coexistence is tested using data from 15 local species assemblages from the urban flora of Rome (Italy). To find out whether the taxonomic structure of the selected’ local’ species assemblages was significantly different from random, we used a Monte Carlo simulation in which for each local species assemblage, the actual taxonomic diversity was compared to the taxonomic diversity of 1000 virtual species lists of the same size extracted at random from a larger ‘regional’ species pool. Results: We found that in most cases the local species assemblages have a higher degree of taxonomic similarity than would be expected by chance showing a phenomenon of ‘species condensation’ in a small number of higher‐level taxa. Conclusions: Our observations support the species pool hypothesis and imply that environmental filtering is an important mechanism in shaping the taxonomic structure of species assemblages. Therefore, the incorporation of taxonomic diversity into landscape and community ecology may be beneficial for a better understanding of the processes that regulate species coexistence.  相似文献   

19.
Bradley J. Butterfield 《Oikos》2015,124(10):1374-1382
Species distributions are theorized to be more intensively constrained by abiotic factors in severe than in benign environments. A similar concept can be applied to assemblages of species: environmental filtering is expected to increase in intensity in colder and drier environments. To assess the filtering effects of climate on vegetation at a regional scale, climate niche values were estimated for 338 woody species across 93 vegetation types from arid sub‐tropical to alpine ecosystems of the southwest USA. The standardized range and spacing of climatic niche values in each vegetation type – used as estimates of the intensity of climatic and micro‐environmental filtering, respectively – were correlated with the mean niche values of those vegetation types – used as surrogates for climatic gradients – in order to assess how filtering of vegetation composition varies along broad climatic gradients. The range of climatic niche values was narrower than expected in most vegetation types, indicating significant climatic filtering, with frost having the strongest average effect. Niche spacing differed little from null expectations. Variation in the intensity of climatic filtering along gradients of the same climate variable was primarily asymmetrical, and provided support for the hypothesis that abiotic filtering is most intense in cold and growing season dry environments. However, filtering patterns of at least one climatic factor along gradients of other climatic factors ran counter to the trend of increasing filter intensity in cold or dry environments. In other words, climatic factors exhibited interactive effects on vegetation filtering, often in antagonistic ways. The majority of these interactions were compatible with interspecific niche relationships that correspond with anatomical and physiological tradeoffs among drought, frost and heat tolerances. Filtering patterns and interspecific tradeoffs are likely to vary across taxa and biomes, and application of the methods presented here could help to explain such variation.  相似文献   

20.
Understanding the influence of the environment on the functional structure of ecological communities is essential to predict the response of biodiversity to global change drivers. Ecological theory suggests that multiple environmental factors shape local species assemblages by progressively filtering species from the regional species pool to local communities. These successive filters should influence the various components of community functional structure in different ways. In this paper, we tested the relative influence of multiple environmental filters on various metrics of plant functional trait structure (i.e. ‘community weighted mean trait’ and components of functional trait diversity, i.e. functional richness, evenness and divergence) in 82 vegetation plots in the Guisane Valley, French Alps. For the 211 sampled species we measured traits known to capture key aspects of ecological strategies amongst vascular plant species, i.e. leaf traits, plant height and seed mass (LHS). A comprehensive information theory framework, together with null model based resampling techniques, was used to test the various environmental effects. Particular community components of functional structure responded differently to various environmental gradients, especially concerning the spatial scale at which the environmental factors seem to operate. Environmental factors acting at a large spatial scale (e.g. temperature) were found to predominantly shape community weighted mean trait values, while fine‐scale factors (topography and soil characteristics) mostly influenced functional diversity and the distribution of trait values among the dominant species. Our results emphasize the hierarchical nature of ecological forces shaping local species assemblage: large‐scale environmental filters having a primary effect, i.e. selecting the pool of species adapted to a site, and then filters at finer scales determining species abundances and local species coexistence. This suggests that different components of functional community structure will respond differently to environmental change, so that predicting plant community responses will require a hierarchical multi‐facet approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号