共查询到20条相似文献,搜索用时 15 毫秒
1.
Konstantin Hartmann Michael Laumann Paavo Bergmann Michael Heethoff Sebastian Schmelzle 《Journal of morphology》2016,277(4):537-548
Small arthropods show a highly condensed central nervous system, which is accompanied by the loss of the ancestral metameric organization. This results in the formation of one solid mass, a synganglion. Although numerous studies investigated the morphology of Archegozetes longisetosus, the organization of the nervous system is to date unknown. Using synchrotron X‐ray microtomography, we investigated the organization of the nervous system in the adult stage and the development of the synganglion over all five free‐living life stages (larva, proto‐, deuto‐, tritonymph and adult). The general morphology of the synganglion resembles that of other studied mites (in the classic sense) and ticks, being subdivided into a sub‐ and supraesophageal region, and consisting of cortex and neuropil. All nerves entering the walking legs except the first consist of two rami. This split is not based on a functional division into a motor and a sensory ramus, but both rami contain motor and sensory neurites. Within the synganglion, we found structures that resemble the ancestral metameric organization of the nervous system of arthropods. The development of the synganglion of A. longisetosus shows a more or less linear increase in volume, but cortex and neuropil grow at different rates over the five life stages. Between the second and third nymphal stage, the volume of the neuropil increases at a faster rate than the cortex. J. Morphol. 277:537–548, 2016. © 2016 Wiley Periodicals, Inc. 相似文献
2.
We used propagation phase contrast X‐ray synchrotron microtomography to study the three‐dimensional (3D) histology of scales of two osteostracans, Tremataspis and Oeselaspis, members of a jawless vertebrate group often cited as the sister group of jawed vertebrates. 3D‐models of the canal systems and other internal structures are assembled based on the virtual thin section datasets and compared with previous models based on real thin sections. The primary homology framework of the canal systems in the two taxa is revised and new histological details are revealed based on the results of this work. There is no separation of vascular canals and lower mesh canals in the Tremataspis scale, contrary to previous results. The secondary upper mesh canals have a limited distribution to the anterior region of the Tremataspis scale. The upper and lower mesh canal systems of Tremataspis have different geometries, inferred to reflect different developmental origins: we interpret the upper system as a probable epithelial invagination, the lower system as entirely vascular. Oeselaspis has no equivalent of the upper mesh canal system. The upper mesh canal system of Tremataspis may have been sensory in function. In Oeselaspis, numerous polyp‐shaped structures opening from the canal system onto the surface of the scale resemble the innervation tracts for neuromast organs. The growth of the Oeselaspis scale proceeds by addition of small odontodes containing unmineralized lacunae, which may further mineralize and become more compact. Our results highlight that 3D‐histological investigation on scales and other dermal skeletons of osteostracans is necessary to fully appreciate the diversity of skeletal histologies in the group. Traditional 3D‐models based on thin sections alone are not reliable and should no longer be used as the basis for homology assessments or functional hypotheses. J. Morphol. 276:873–888, 2015. © 2015 Wiley Periodicals, Inc. 相似文献
3.
Jean‐David Moreau Didier Néraudeau Bernard Gomez Paul Tafforeau Éric Dépré 《Lethaia: An International Journal of Palaeontology and Stratigraphy》2014,47(3):313-322
Here, we report flint nodules bearing fossil plant inclusions from the early Cenomanian of the Font‐de‐Benon sand quarry, between the villages of Archingeay and Les Nouillers, Charente‐Maritime, western France. The broken‐open surfaces of these dense siliceous rocks only partly show the whole diversity, which is established using a non‐destructive, multi‐scale approach based on propagation phase‐contrast X‐ray synchrotron microtomography. The conifer genera Brachyphyllum, Frenelopsis, Geinitzia, and Glenrosa have three‐dimensional preservation, and vegetative and reproductive organs are in connection in some cases. The flint nodules formed by silicification of Cenomanian sediments, probably as a result of an intensive period of soil alteration and leaching under warm and wet climate during the Eocene. Although the time was long between the Cenomanian sedimentation and the Eocene silicification, the fossil plants show three‐dimensional external morphology. These mineralizations are interpreted as fine silica microcrystallization over the cell walls and thus are examples of late silica permineralization. The association of foraminifers, echinoids, sponge spicules, and conifers suggests that the Cenomanian sediments were deposited in a coastal and open to the sea palaeoenvironment, near a conifer‐dominated mangrove. 相似文献
4.
DANIELA N. SCHMIDT EMILY J. RAYFIELD ALEXANDRA COCKING FEDERICA MARONE 《Palaeontology》2013,56(4):741-749
Abstract: Making the link between evolutionary processes and development in extinct organisms is usually hampered by the lack of preservation of ontogenetic stages in the fossil record. Planktic foraminifers, which grow by adding chambers, are an ideal target organism for such studies as their test incorporates all prior developmental stages. Previously, studies of development in these organisms were limited by the small size of their early chambers. Here, we describe the application of synchrotron radiation X‐ray tomographic microscopy (SRXTM) to document the ontogenetic history of the foraminifers Globigerinoides sacculifer and Globorotalia menardii. Our SRXTM scans permit resolution at submicrometre scale, thereby displaying additional internal structures such as pores, dissolution patterns and complexity of the wall growth. Our methods provide a powerful tool to pick apart the developmental history of these microfossils and subsequently assist in inferring phylogenetic relationships and evolutionary processes. 相似文献
5.
Ricinuleid functional mouthparts are the cucullus, the chelicerae, the pedipalps, and the labrum. These structures are movably jointed to the rest of the prosoma, most likely protruded upon hydrostatic hemolymph pressure and retracted by prosomal muscles. Seta‐like protrusions from the labrum and the pedipalpal coxae form a sieve‐like filter inside the preoral cavity and the mouth. Although the tip of the labrum can be elevated upon muscle constriction, ingestion of large, solid food particles is unlikely. The mouth has a crescent‐shaped cross section. The cuticle‐lined, also crescent‐shaped pharynx is equipped with a large dilator muscle but lacks antagonistic constrictor muscles. It represents a precerebral sucking pump. The triangular to Y‐shaped, cuticle‐lined esophagus is equipped with constrictor and dilator muscles. Its posterior part represents a postcerebral sucking pump. Four blind ending diverticula ramify from the anterior prosomal part of the entodermal midgut tube. Two of these diverticula remain inside the prosoma and form few short branches. The other two extend through the pedicel into the opisthosoma and ramify and coil there. A stercoral pocket protrudes ventrally out of the midgut tube. The most distal part of the midgut tube is modified into a contractile rectal gland. Its secretions may have defensive or physiological functions. A short anal atrium is formed by the cuticle‐lined ectodermal hindgut which opens at the end of the three‐segmented metasoma. The telescoping segments of the metasoma are protruded by hemolymph pressure and retracted by muscles. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc. 相似文献
6.
Trilobites were capable of enroling in different ways based on the flexible articulation of thoracic segments and associated interlocking devices; the type of enrolment (spiral or sphaeroidal) is thought to have largely depended on the coaptative devices that each trilobite used to enclose the body. Based on X‐ray microtomography scans of complete enrolled specimens from the Cambrian, we created three‐dimensional (3D) computer models to assess the kinematics needed to achieve both enrolment types. We demonstrate that closely related trilobites with little morphological variation (Bailiaspis?, Conocoryphe and Parabailiella) developed different enrolment types as a result of small variations in the number of thoracic segments and the angle between adjacent segments. Moreover, our models indicate that sphaeroidal enrolment, which is associated with a smaller number of thoracic segments, enabled faster encapsulation. This supports the hypothesis that there was a trend in the evolution of trilobites towards reduction in the number of thoracic segments in phylogenetically derived taxa in order to enhance the efficiency of enrolment. 相似文献
7.
The search for superior‐energy‐density electrode materials for rechargeable batteries is prompted by the continuously growing demand for new electric vehicles and large energy‐storage grids. The structural properties of electrode materials affect their electrochemical performance because their functionality is correlated to their structure at the atomic scale. Although challenging, a deeper and comprehensive understanding of the basic structural operating units of electrode materials may contribute to the advancement of new energy‐storage technologies and many other technologies. Therefore, we must strategically control both the structure and kinetics of electrode materials to achieve optimal electrochemical performance. In this contribution, advancements in synchrotron radiation techniques, specifically in situ/operando experiments on electrode materials for rechargeable batteries, are presented and discussed. Indeed, the latest synchrotron radiation methods offer deeper insights into pristine and chemically modified electrode materials, opening new opportunities to optimize these materials and exploit new technologies. In particular, the most recent results from in situ/operando synchrotron radiation measurements, which play a critical role in the fundamental understanding of the kinetics processes that occur in rechargeable batteries, are discussed. 相似文献
8.
Sanna Sevanto Max Ryan L. Turin Dickman Dominique Derome Alessandra Patera Thijs Defraeye Robert E. Pangle Patrick J. Hudson William T. Pockman 《Plant, cell & environment》2018,41(7):1551-1564
Plants close their stomata during drought to avoid excessive water loss, but species differ in respect to the drought severity at which stomata close. The stomatal closure point is related to xylem anatomy and vulnerability to embolism, but it also has implications for phloem transport and possibly phloem anatomy to allow sugar transport at low water potentials. Desiccation‐tolerant plants that close their stomata at severe drought should have smaller xylem conduits and/or fewer and smaller interconduit pits to reduce vulnerability to embolism but more phloem tissue and larger phloem conduits compared with plants that avoid desiccation. These anatomical differences could be expected to increase in response to long‐term reduction in precipitation. To test these hypotheses, we used tridimensional synchroton X‐ray microtomograph and light microscope imaging of combined xylem and phloem tissues of 2 coniferous species: one‐seed juniper (Juniperus monosperma) and piñon pine (Pinus edulis) subjected to precipitation manipulation treatments. These species show different xylem vulnerability to embolism, contrasting desiccation tolerance, and stomatal closure points. Our results support the hypothesis that desiccation tolerant plants require higher phloem transport capacity than desiccation avoiding plants, but this can be gained through various anatomical adaptations in addition to changing conduit or tissue size. 相似文献
9.
Thomas Gorniak Tamás Haraszti Heikki Suhonen Yang Yang Adam Hedberg‐Buenz Demelza Koehn Ruth Heine Michael Grunze Axel Rosenhahn Michael G. Anderson 《Pigment cell & melanoma research》2014,27(5):831-834
Melanin within melanosomes exists as eumelanin or pheomelanin. Distributions of these melanins have been studied extensively within tissues, but less often within individual melanosomes. Here, we apply X‐ray fluorescence analysis with synchrotron radiation to survey the nanoscale distribution of metals within purified melanosomes of mice. The study allows a discovery‐based characterization of melanosomal metals, and, because Cu is specifically associated with eumelanin, a hypothesis‐based test of the ‘casing model’ predicting that melanosomes contain a pheomelanin core surrounded by a eumelanin shell. Analysis of Cu, Ca, and Zn shows variable concentrations and distributions, with Ca/Zn highly correlated, and at least three discrete patterns for the distribution of Cu vs. Ca/Zn in different melanosomes – including one with a Cu‐rich shell surrounding a Ca/Zn‐rich core. Thus, the results support predictions of the casing model, but also suggest that in at least some tissues and genetic contexts, other arrangements of melanin may co‐exist. 相似文献
10.
Rhythmic body contraction is a phenomenon in the Porifera, which is only partly understood. As a foundation for the understanding of the functional morphology of the highly contractile Tethya wilhelma, we performed a qualitative and quantitative volumetric 3D-analysis of the morphology of a complete non-contracted specimen at resolutions of 5.2 and 6.9 μm, using synchrotron radiation based X-ray computed microtomography (SR-μCT). For the first time, we were able to visualize all three major body structures of a complete poriferan without dissection of the shock-frozen, fixed and contrasted specimen in a near-to-life confirmation: poriferan tissue, mineral skeleton and aquiferous system. Applying a ‘virtual cast’ technique allowed us to analyze the structural details of the complete canal structure. Our results imply an extensive re-circulation of water inside the poriferan due to well-developed by-pass-canals, connecting excurrent and incurrent system. Nevertheless, the oscule region is strictly separated from the incurrent system. Based on our data, we developed a hypothetical flow regime for T. wilhelma, which explains the necessity of by-pass canals to minimize pressure boosts in the canal system during contraction. Additionally, re-circulation optimizes nutrient uptake, within small-sized poriferans, like T. wilhelma. Quantitative analysis allowed us to measure volumes and surfaces, displaying remarkable organizational differences between choanosome and cortex, by means of distribution of morphological elements. The surface-to-volume ratio proved to be very high, underlining the importance of the poriferan pinacoderm. We support a pinacoderm-contraction hypothesis.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .Dedicated to Prof. Dr. Michele Sarà (Genova, Italy), in honour of his 80th birthday in 2006. 相似文献
11.
Olejniczak AJ Tafforeau P Smith TM Temming H Hublin JJ 《American journal of physical anthropology》2007,134(1):130-134
Modern micro-computed tomography techniques allow the accurate visualization of internal dental structures, and are becoming widely used within (paleo-) anthropological dental studies. There exist several types and name brands of microtomographic systems, however, which have been demonstrated to produce images that vary in resolution and signal-to-noise ratio. As a growing body of dental research using disparate microtomographic techniques is likely to continue accumulating, it is imperative that different systems are compared to ensure that results are comparable and not machine-dependent. In the present study, we compare volume, surface area, and linear measurements recorded on a sample of modern and fossil teeth using four microtomographic systems (three laboratory scanners, and the ID19 beamline of the European Synchrotron Radiation Facility). Results indicate that measurements are comparable between systems (within 3%), but that synchrotron radiation is superior to the other systems because its monochromatic X-rays prevent beam hardening and its parallel beam prevents geometric artifacts in the resultant images, making it easier to record measurements and see fine details at the enamel cervix or dentine horn tips. Although the synchrotron produces higher resolution images with less artifacts, results indicate that for gross morphological measurements (e.g., enamel cap volume, intercuspal distances), each of the scanners produces approximately the same measurements. Combining measurements of teeth from multiple microCT systems presupposes that measurements from each system are comparable; the research presented here indicates that this is the case when teeth are not severely diagenetically remineralized. 相似文献
12.
Xiaohan Wu Juliette Billaud Iwan Jerjen Federica Marone Yuya Ishihara Masaki Adachi Yoshitaka Adachi Claire Villevieille Yuki Kato 《Liver Transplantation》2019,9(34)
All‐solid‐state batteries (SSBs) are considered as attractive options for next‐generation energy storage owing to the favorable properties (unit transference number and thermal stabilities) of solid electrolytes. However, there are also serious concerns about mechanical deformation of solid electrolytes leading to the degradation of the battery performance. Therefore, understanding the mechanism underlying the electromechanical properties in SSBs is essentially important. Here, 3D and time‐resolved measurements of an all‐solid‐state cell using synchrotron radiation X‐ray tomographic microscopy are shown. The gradient of the electrochemical reaction and the morphological evolution in the composite layer can be clearly observed. Volume expansion/compression of the active material (Sn) is strongly oriented along the thickness of the electrode. While this results in significant deformation (cracking) in the solid electrolyte region, organized cracking patterns depending on the particle size and their arrangements is also found. This study based on operando visualization therefore opens the door toward rational design of particles and electrode morphology for all‐solid‐state batteries. 相似文献
13.
14.
Moses Kodur Rishi E. Kumar Yanqi Luo Deniz N. Cakan Xueying Li Michael Stuckelberger David P. Fenning 《Liver Transplantation》2020,10(26)
X‐ray microscopy can provide unique chemical, electronic, and structural insights into perovskite materials and devices leveraging bright, tunable synchrotron X‐ray sources. Over the last decade, fundamental understanding of halide perovskites and their impressive performance in optoelectronic devices has been furthered by rigorous research regarding their structural and chemical properties. Herein, studies of perovskites are reviewed that have used X‐ray imaging, spectroscopy, and scattering microscopies that have proven valuable tools toward understanding the role of defects, impurities, and processing on perovskite material properties and device performance. Together these microscopic investigations have augmented the understanding of the internal workings of perovskites and have helped to steer the perovskite community toward promising directions. In many ways, X‐ray microscopy of perovskites is still in its infancy, which leaves many exciting paths unexplored including new ptychographic, multimodal, in situ, and operando experiments. To explore possibilities, pioneering X‐ray microscopy along these lines is briefly highlighted from other semiconductor systems including silicon, CdTe, GaAs, CuInxGa1?xSe2, and organic photovoltaics. An overview is provided on the progress made in utilizing X‐ray microscopy for perovskites and present opportunities and challenges for future work. 相似文献
15.
Most extant Chelicerata are characterized by external digestion and the ingestion of fluid food. Exceptions include the marine taxa, most Opiliones, and the mite groups Opilioacarida (Parasitiformes) and Sarcoptiformes (Acariformes), which ingest particulate food. This leads to different physiological and morphological adaptations for food processing, including the production and extrusion of solid fecal pellets, which are rather large in sarcoptiform mites. Few studies have investigated the defecation of such large fecal pellets, and available information is contradictory. We use a combination of non invasive microscopical techniques and in vivo examination to investigate the complex functional morphology of the anal region of the oribatid mite Archegozetes longisetosus Aoki. The opening of the anus is at least initiated by indirect muscular action via an increase of hemolymph pressure, through the action of dorsoventral muscles (dvm). Extrusion of the fecal pellet is accomplished by the prerectal muscle collar, with full opening of the anus and rotation and bowing of the plates probably resulting from pressure of the pellet. The sequential nature of these actions was demonstrated by many observations in which the anus opened only partially; these were concomitant with dmv contraction but pellets were not being extruded. All muscles directly connected to the anal and adanal regions assist in keeping the anus closed; they are antagonists to hydrostatic forces that are necessary for normal activity. Based on the literature, no obvious similarities were noted with defecation musculature in other particle‐feeding chelicerates, but most muscles can be homologized with those of more specialized oribatid mites. The function of the outer anal muscles has been modified in both Euphthiracaridae and Brachypylina to assist in providing general hemolymph pressure. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc. 相似文献
16.
Martin Kreuzer Stefan Stamenkovi Si Chen Pavle Andjus Tanja Du
i 《Journal of biophotonics》2020,13(10)
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, causing death of motor neurons controlling voluntary muscles. The pathological mechanisms of the disease are only partially understood. The hSOD1‐G93A ALS rat model is characterized by an overexpression of human mutated SOD1, causing increased vulnerability by forming intracellular protein aggregates, inducing excitotoxicity, affecting oxidative balance and disturbing axonal transport. In this study we followed the bio‐macromolecular organic composition and compartmentalization together with trace metal distribution in situ in single astrocytes from the ALS rat model and compared them to the control astrocytes from nontransgenic littermates by simultaneous use of two synchrotron radiation‐based methods: Fourier transform infrared microspectroscopy (SR‐FTIR) and hard X‐ray fluorescence microscopy (XRF). We show that ALS cells contained more Cu, which colocalized with total lipids, increased carbonyl groups and oxidized lipids, thus implying direct involvement of Cu in oxidative stress of lipidic components without direct connection to protein aggregation in situ. 相似文献
17.
Ursula M. Paredes Robert
Prys‐Jones Mark Adams Jim Groombridge Samit Kundu Paul‐Michael Agapow Richard L. Abel 《Journal of Zoological Systematics and Evolutionary Research》2012,50(3):247-250
Most zoological systematics studies are currently based on morphological features, molecular traits or a combination of both to reconstruct animals’ phylogenetic history. Increasingly, morphological studies of museum specimens are using X‐ray computed tomography to visualize internal morphology, because of its ‘non‐destructive’ nature. However, it is not known whether CT can fragment the size of DNA extracted from museum specimens, as has been demonstrated to occur in living cells. This question is of paramount importance for collections based research because X‐rays may reduce the amount of data obtainable from specimens. In our study, we tested whether exposure of museum bird skins to typical CT X‐ray energies (for visualization of the skeleton) increased DNA strand fragmentation, a key factor for the success of downstream molecular applications. For the present study, we extracted DNA from shavings of 24 prepared and dried bird skins (100+ years) footpads before and after CT scanning. The pre‐ and post‐CT fragmentation profiles were assessed using a capillary electrophoresis high‐precision instrument (Agilent Bioanalyzer). Comparison of the most common strand length in each DNA sample (relative mass) revealed no significant difference unexposed and exposed tissue (paired t‐test p = 0.463). In conclusion, we found no further quantifiable degradation of DNA strand length under standard X‐ray exposure obtained from our bird skins sample. Differences in museum preservation techniques probably had a greater effect on variation of pre‐CT DNA fragmentation. 相似文献
18.
Xiaotian Yang Hongchen He Yuan Zhou Yujing Zhou Qiang Gao Pu Wang Chengqi He 《Bioelectromagnetics》2017,38(3):227-238
19.
José M. Torres‐Ruiz Hervé Cochard Maurizio Mencuccini Sylvain Delzon Eric Badel 《Plant, cell & environment》2016,39(12):2774-2785
Xylem embolism is one of the main processes involved in drought‐related plant mortality. Although its consequences for plant physiology are already well described, embolism formation and spread are poorly evaluated and modelled, especially for tracheid‐based species. The aim of this study was to assess the embolism formation and spread in Pinus sylvestris as a case study using X‐ray microtomography and hydraulics methods. We also evaluated the potential effects of cavitation fatigue on vulnerability to embolism and the micro‐morphology of the bordered pits using scanning electron microscopy (SEM) to test for possible links between xylem anatomy and embolism spread. Finally, a novel model was developed to simulate the spread of embolism in a 2D anisotropic cellular structure. Results showed a large variability in the formation and spread of embolism within a ring despite no differences being observed in intertracheid pit membrane anatomical traits. Simulations from the model showed a highly anisotropic tracheid‐to‐tracheid embolism spreading pattern, which confirms the major role of tracheid‐to‐tracheid air seeding to explain how embolism spreads in Scots pine. The results also showed that prior embolism removal from the samples reduced the resistance to embolism of the xylem and could result in overestimates of vulnerability to embolism. 相似文献
20.
Anna Nele Herdina Hanns Plenk Jr. Petr Benda Peter H. C. Lina Barbara Herzig‐Straschil Helge Hilgers Brian D. Metscher 《Journal of morphology》2015,276(6):695-706
Detailed knowledge of histomorphology is a prerequisite for the understanding of function, variation, and development. In bats, as in other mammals, penis and baculum morphology are important in species discrimination and phylogenetic studies. In this study, nondestructive 3D‐microtomographic (microCT, µCT) images of bacula and iodine‐stained penes of Pipistrellus pipistrellus were correlated with light microscopic images from undecalcified surface‐stained ground sections of three of these penes of P. pipistrellus (1 juvenile). The results were then compared with µCT‐images of bacula of P. pygmaeus, P. hanaki, and P. nathusii. The Y‐shaped baculum in all studied Pipistrellus species has a proximal base with two club‐shaped branches, a long slender shaft, and a forked distal tip. The branches contain a medullary cavity of variable size, which tapers into a central canal of variable length in the proximal baculum shaft. Both are surrounded by a lamellar and a woven bone layer and contain fatty marrow and blood vessels. The distal shaft consists of woven bone only, without a vascular canal. The proximal ends of the branches are connected with the tunica albuginea of the corpora cavernosa via entheses. In the penis shaft, the corpus spongiosum‐surrounded urethra lies in a ventral grove of the corpora cavernosa, and continues in the glans under the baculum. The glans penis predominantly comprises an enlarged corpus spongiosum, which surrounds urethra and baculum. In the 12 studied juvenile and subadult P. pipistrellus specimens the proximal branches of the baculum were shorter and without marrow cavity, while shaft and distal tip appeared already fully developed. The present combination with light microscopic images from one species enabled a more reliable interpretation of histomorphological structures in the µCT‐images from all four Pipistrellus species. J. Morphol. 276:695–706, 2015. © 2015 Wiley Periodicals, Inc. 相似文献