首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
AIM: Understanding the basis for the heterogeneous (or bistable) expression patterns of competence development and sporulation in Bacillus subtilis. METHODS AND RESULTS: Using flow cytometric analyses of various promoter-GFP fusions, we have determined the single-cell gene expression patterns of competence development and initiation of sporulation in a chemically defined medium (CDM) and in biofilms. CONCLUSIONS: We show that competence development and initiation of sporulation in a CDM are still initiated in a bistable manner, as is the case in complex media, but are sequential in their timing. Furthermore, we provide experimental proof that competence and sporulation can develop under conditions that normally do not trigger these processes. SIGNIFICANCE AND IMPACT OF THE STUDY: Some pathogens are able to develop natural competence, which is a serious medical problem with the increased acquired multi-drug resistance of these organisms. Another adaptive microbial response is spore formation. Because of their heat resistance and hydrophobicity, spores of a variety of species are of major concern for the food industry. Using the model organism B. subtilis, we show that competence development and sporulation are initiated in a bistable and sequential manner. We furthermore show that both processes may be noise-based, which has major implications for the control of unwanted differentiation processes in pathogenic and food-spoilage micro-organisms.  相似文献   

2.
3.
Genome engineering reveals large dispensable regions in Bacillus subtilis   总被引:7,自引:0,他引:7  
Bacterial genomes contain 250 to 500 essential genes, as suggested by single gene disruptions and theoretical considerations. If this view is correct, the remaining nonessential genes of an organism, such as Bacillus subtilis, have been acquired during evolution in its perpetually changing ecological niches. Notably, approximately 47% of the approximately 4,100 genes of B. subtilis belong to paralogous gene families in which several members have overlapping functions. Thus, essential gene functions will outnumber essential genes. To answer the question to what extent the most recently acquired DNA contributes to the life of B. subtilis under standard laboratory growth conditions, we initiated a "reconstruction" of the B. subtilis genome by removing prophages and AT-rich islands. Stepwise deletion of two prophages (SPbeta, PBSX), three prophage-like regions, and the largest operon of B. subtilis (pks) resulted in a genome reduction of 7.7% and elimination of 332 genes. The resulting strain was phenotypically characterized by metabolic flux analysis, proteomics, and specific assays for protein secretion, competence development, sporulation, and cell motility. We show that genome engineering is a feasible strategy for functional analysis of large gene clusters, and that removal of dispensable genomic regions may pave the way toward an optimized Bacillus cell factory.  相似文献   

4.
5.
6.
7.
8.
After inactivation of the ypaA gene in Bacillus subtilis, the phenotypic pattern obtained showed that this gene controls a system for active flavin transport and, possibly, riboflavin excretion under the conditions of constitutive synthesis.  相似文献   

9.
Bacillus subtilis responds to phosphate starvation stress by inducing the PhoP and SigB regulons. While the PhoP regulon provides a specific response to phosphate starvation stress, maximizing the acquisition of phosphate (P(i)) from the environment and reducing the cellular requirement for this essential nutrient, the SigB regulon provides nonspecific resistance to stress by protecting essential cellular components, such as DNA and membranes. We have characterized the phosphate starvation stress response of B. subtilis at a genome-wide level using DNA macroarrays. A combination of outlier and cluster analyses identified putative new members of the PhoP regulon, namely, yfkN (2',3' cyclic nucleotide 2'-phosphodiesterase), yurI (RNase), yjdB (unknown), and vpr (extracellular serine protease). YurI is thought to be responsible for the nonspecific degradation of RNA, while the activity of YfkN on various nucleotide phosphates suggests that it could act on substrates liberated by YurI, which produces 3' or 5' phosphoribonucleotides. The putative new PhoP regulon members are either known or predicted to be secreted and are likely to be important for the recovery of inorganic phosphate from a variety of organic sources of phosphate in the environment.  相似文献   

10.
11.
The application of safe and cheap inducers is important in the field of fermentation technology, which persuades employing new expression systems. In this study, a Bacillus subtilis expression system was induced by applying starvation and environmental stresses to produce xylanase. The expression plasmid harbors SigB-dependent ohrB promoter. The target gene was expressed by inoculating the recombinant strain into glucose-limited synthetic medium resulting in a sharp increase of xylanase activity at the end of logarithmic growth phase. The recombinant strain was able to express the xylanase enzyme 14-fold higher than that of the control one. The induction was also performed by exposing the recombinant strain to NaCl and ethanol stresses, and heat shock; the strain growing in LB showed 5-, 15- and 6-fold increases in xylanase activity, respectively. The best induction using environmental stresses was achieved by applying the salt stress in the synthetic medium. The maximum expression for NaCl and ethanol stresses occurred after 40 min of induction. All observed inductions were related to activation of SigB protein causing expression of the SigB-dependent xylanase gene. This SigB-dependent expression system can be considered as a biotechnology tool and an alternative to eliminate the cost of conventional inducers.  相似文献   

12.
Endospore formation by Bacillus subtilis involves three differentiating cell types, the predivisional cell, the mother cell, and the forespore. Here we report the program of gene expression in the forespore, which is governed by the RNA polymerase sigma factors sigma(F) and sigma(G) and the DNA-binding proteins RsfA and SpoVT. The sigma(F) factor turns on about 48 genes, including the gene for RsfA, which represses a gene in the sigma(F) regulon, and the gene for sigma(G). The sigma(G) factor newly activates 81 genes, including the gene for SpoVT, which turns on (in nine cases) or stimulates (in 11 cases) the expression of 20 genes that had been turned on by sigma(G) and represses the expression of 27 others. The forespore line of gene expression consists of many genes that contribute to morphogenesis and to the resistance and germination properties of the spore but few that have metabolic functions. Comparative genomics reveals a core of genes in the sigma(F) and sigma(G) regulons that are widely conserved among endospore-forming species but are absent from closely related, but non-spore-forming Listeria spp. Two such partially conserved genes (ykoU and ykoV), which are members of the sigma(G) regulon, are shown to confer dry-heat resistance to dormant spores. The ykoV gene product, a homolog of the non-homologous end-joining protein Ku, is shown to associate with the nucleoid during germination. Extending earlier work on gene expression in the predivisional cell and the mother cell, we present an integrated overview of the entire program of sporulation gene expression.  相似文献   

13.
Patterns of gene expression in Bacillus subtilis colonies.   总被引:2,自引:2,他引:0       下载免费PDF全文
Bacillus subtilis 5:7, a derivative of macrofiber-producing strain FJ7, carries the lacZ reporter gene within Tn917 at an unknown location in the host genome. Expression of the host gene carrying lacZ within colonies of 5:7 was observed by examining growth under different conditions in the presence of 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal). At a high plating density small colonies arose that expressed the host gene early and throughout the colony, whereas at a low density large colonies were produced that expressed the host gene late in development and only in cells forming a ring pattern close to the colony periphery. A highly regulated spatial and temporal gene expression pattern was observed in growth from cross-streaks, suggesting that gene expression is responsive to concentration gradient fields established by neighboring growth. Colonies cultured on agar blocks revealed that expression was governed by depletion of a medium component and also by the geometry of the substrate upon which the colonies grew. At least three factors influenced the control of expression: (i) the concentration of a diffusible component of the medium exhausted by cell growth, (ii) a spatial-temporal factor related to growth within the colony, and (iii) the geometry of the growth substrate.  相似文献   

14.
15.
16.
Carboxylesterase NP of Bacillus subtilis Thai I-8, characterized in 1992 as a very enantioselective (S)-naproxen esterase, was found to show no enantiopreference towards (S)-1,2-O-isopropylideneglycerol (IPG) esters. The ybfK gene was identified by the B. subtilis genome project as an unknown gene with homology to carboxylesterase NP. The purpose of the present study was to characterize the ybfK gene product in order to determine whether this paralogue of carboxylesterase NP had an altered or enhanced stereospecificity. The ybfK gene was cloned and expressed in B. subtilis using a combination of two strong promoters in a multicopy vector. The enzyme was purified from the cytoplasm of B. subtilis by means of anion exchange and hydrophobic interaction chromatography. The purified YbfK is an enzyme of 296 amino acids and shows an apparent molecular mass of 32 kDa (SDS/PAGE). Comparison of the activities of YbfK and carboxylesterase NP towards caprylate esters of IPG revealed that YbfK produces (S)-IPG with 99.9% enantioselectivity. Therefore, we conclude that we have isolated a paralogue of carboxylesterase NP that can be used for the enantioselective production of (S)-IPG.  相似文献   

17.
We have adapted immunofluorescence microscopy for use in Bacillus subtilis and have employed this procedure for visualizing cell-specific gene expression at early to intermediate stages of sporulation. Sporangia were doubly stained with propidium iodide to visualize the forespore and mother cell nucleoids and with fluorescein-conjugated antibodies to visualize the location of beta-galactosidase produced under the control of the sporulation RNA polymerase sigma factors sigma E and sigma F. In confirmation and extension of earlier reports, we found that expression of a lacZ fusion under the control of sigma E was confined to the mother cell compartment of sporangia at the septation (II) and engulfment (III) stages of morphogenesis. Conversely, sigma F-directed gene expression was confined to the forespore compartment of sporangia at postseptation stages of development. Little indication was found for sigma E- or sigma F-directed gene expression prior to septation or in both compartments of postseptation sporangia. Gene expression under the control of the forespore sigma factor sigma G also exhibited a high level of compartmentalization. A high proportion of sporangia exhibited fluorescence in our immunostaining protocol, which should be suitable for the subcellular localization of sporulation proteins for which specific antibodies are available.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号