首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study global changes in gene expression were monitored in Bacillus subtilis cells entering stationary growth phase owing to starvation for glucose. Gene expression was analysed in growing and starving cells at different time points by full-genome mRNA profiling using DNA macroarrays. During the transition to stationary phase we observed extensive reprogramming of gene expression, with ~1000 genes being strongly repressed and ~900 strongly up-regulated in a time-dependent manner. The genes involved in the response to glucose starvation can be assigned to two main classes: (i) general stress/starvation genes which respond to various stress or starvation stimuli, and (ii) genes that respond specifically to starvation for glucose. The first class includes members of the B-dependent general stress regulon, as well as 90 vegetative genes, which are strongly down regulated in the course of the stringent response. Among the genes in the second class, we observed a decrease in the expression of genes encoding proteins required for glucose uptake, glycolysis and the tricarboxylic acid cycle. Conversely, many carbohydrate utilisation systems that depend on phosphotransferase systems (PTS) or ABC transporters were activated. The expression of genes required for utilisation or generation of acetate indicates that acetate constitutes an important energy source for B. subtilis during periods of glucose starvation. Finally, genome wide mRNA profiling data can be used to predict new metabolic pathways in B. subtilis. Thus, our data suggest that glucose-starved cells are able to degrade branched-chain fatty acids to pyruvate and succinate via propionyl-CoA using the methylcitrate pathway. This pathway appears to link lipid degradation to gluconeogenesis in glucose-starved cells.This revised version was published online in May 2005 with corrections to the list of authors  相似文献   

2.
3.
4.
In order to analyze the response of Saccharomyces cerevisiae to starvation on a gene expression level, microarray experiments were performed using a yeast whole genome array. It is well known that under stress conditions like heat, high salt concentrations, pressure or the presence of toxins, special stress response genes are induced in Saccharomyces cerevisiae. This includes the genes encoding the typical heat shock proteins as well as numerous genes concerning cell membrane composition, central carbon metabolism or cell cycle. In this contribution, the Saccharomyces cerevisiae starvation‐stress response is analyzed. Starvation is a living condition often experienced by yeast in natural surroundings. As Saccharomyces cerevisiae is an eukaryote, many results from the gene expression analysis are valid for mammalians as well. The understanding of response of the yeast to the absence of a nutrient is also important for the development of feeding strategies in cultivations. Therefore, knowledge about the gene expression during starvation is important for both research and industrial applications. The regulation of 233 genes, which are involved in the stress response according to the literature, was examined via microarray experiments. In addition, a screening was carried out identifying 115 genes, which are hitherto not known to be comprised in the stress response, but which were significantly up‐regulated during starvation.  相似文献   

5.
It is known that Bacillus subtilis releases membrane vesicles (MVs) during the SOS response, which is associated with cell lysis triggered by the PBSX prophage-encoded cell-lytic enzymes XhlAB and XlyA. In this study, we demonstrate that MVs are released under various stress conditions: sucrose fatty acid ester (SFE; surfactant) treatment, cold shock, starvation, and oxygen deficiency. B. subtilis possesses four major host-encoded cell wall-lytic enzymes (autolysins; LytC, LytD, LytE, and LytF). Deletions of the autolysin genes abolished autolysis and the consequent MV production under these stress conditions. In contrast, deletions of xhlAB and xlyA had no effect on autolysis-triggered MV biogenesis, indicating that autolysis is a novel and prophage-independent pathway for MV production in B. subtilis. Moreover, we found that the cell lysis induced by the surfactant treatment was effectively neutralized by the addition of exogenous purified MVs. This result suggests that the MVs can serve as a decoy for the cellular membrane to protect the living cells in the culture from membrane damage by the surfactant. Our results indicate a positive effect of B. subtilis MVs on cell viability and provide new insight into the biological importance of the autolysis phenomenon in B. subtilis.  相似文献   

6.
7.
8.
9.
Protection against antimicrobial peptides (AMPs) often involves the parallel production of multiple, well‐characterized resistance determinants. So far, little is known about how these resistance modules interact and how they jointly protect the cell. Here, we studied the interdependence between different layers of the envelope stress response of Bacillus subtilis when challenged with the lipid II cycle‐inhibiting AMP bacitracin. The underlying regulatory network orchestrates the production of the ABC transporter BceAB, the UPP phosphatase BcrC and the phage‐shock proteins LiaIH. Our systems‐level analysis reveals a clear hierarchy, allowing us to discriminate between primary (BceAB) and secondary (BcrC and LiaIH) layers of bacitracin resistance. Deleting the primary layer provokes an enhanced induction of the secondary layer to partially compensate for this loss. This study reveals a direct role of LiaIH in bacitracin resistance, provides novel insights into the feedback regulation of the Lia system, and demonstrates a pivotal role of BcrC in maintaining cell wall homeostasis. The compensatory regulation within the bacitracin network can also explain how gene expression noise propagates between resistance layers. We suggest that this active redundancy in the bacitracin resistance network of B. subtilis is a general principle to be found in many bacterial antibiotic resistance networks.  相似文献   

10.
The stringent response is a universal adaptive mechanism to protect bacteria from nutritional and environmental stresses. The role of the stringent response during lipid starvation has been studied only in Gram‐negative bacteria. Here, we report that the stringent response also plays a crucial role in the adaptation of the model Gram‐positive Bacillus subtilis to fatty acid starvation. B. subtilis lacking all three (p)ppGpp‐synthetases (RelBs, RelP and RelQ) or bearing a RelBs variant that no longer synthesizes (p)ppGpp suffer extreme loss of viability on lipid starvation. Loss of viability is paralleled by perturbation of membrane integrity and function, with collapse of membrane potential as the likely cause of death. Although no increment of (p)ppGpp could be detected in lipid starved B. subtilis, we observed a substantial increase in the GTP/ATP ratio of strains incapable of synthesizing (p)ppGpp. Artificially lowering GTP with decoyinine rescued viability of such strains, confirming observations that low intracellular GTP is important for survival of nutritional stresses. Altogether, our results show that activation of the stringent response by lipid starvation is a broadly conserved response of bacteria and that a key role of (p)ppGpp is to couple biosynthetic processes that become detrimental if uncoordinated.  相似文献   

11.
12.
13.
14.
Constant levels of amino acids enhanced the velocity of Bacillus subtilis 60015 cells about 2-fold and stimulated the response in motility assays. The stimulation of velocity did not occur via the receptors for chemotaxis. Cysteine and methionine, general inhibitors of chemotaxis, both completely inhibited the smooth response in a temporal gradient of attractant. After methionine starvation B. subtilis 60015 showed no measurable response in a temporal gradient of attractant, this in contrast to the effect observed with some other bacteria. Addition of methionine to starved cells restored the response toward attractant. Revertants of B. subtilis 60015 for methionine requirement could not be starved and showed a normal behavior toward temporal gradients of attractant.Abbreviation O.D.600 optical density measured at 600 nm  相似文献   

15.
Bacillus subtilis cells respond almost immediately to different stress conditions by increasing the production of general stress proteins (GSPs). The genes encoding the majority of the GSPs that are induced by heat, ethanol, salt stress or by starvation for glucose, oxygen or phosphate belong to the σB-dependent general stress regulon. Despite a good understanding of the complex regulation of the activity of σB and knowledge of a very large number of general stress genes controlled by σB, first insights into the physiological role of this non-specific stress response have been obtained only very recently. To explore the physiological role of this regulon, we and others identified σB-dependent general stress genes and compared the stress tolerance of wild-type cells with mutants lacking σB or general stress proteins. The proteins encoded by σB-dependent general stress genes can be divided into at least five functional groups that most probably provide growth-restricted B. subtilis cells with a multiple stress resistance in anticipation of future stress. In particular, sigB mutants are impaired in non-specific resistance to oxidative stress, which requires the σB-dependent dps gene encoding a DNA-protecting protein. Protection against oxidative damage of membranes, proteins or DNA could be the most essential component of σB-mediated general stress resistance in growth-arrested aerobic Gram-positive bacteria. Other general stress genes have both a σB-dependent induction pathway and a second σB-independent mechanism of stress induction, thereby partially compensating for a σB deficiency in a sigB mutant. In contrast to sigB mutants, null mutations in genes encoding those proteins, such as clpP or clpC, cause extreme sensitivity to salt or heat.  相似文献   

16.
Since starvation for carbon sources is a common condition for bacteria in nature and it can also occur in industrial fermentation processes due to mixing zones, knowledge about the response of cells to carbon starvation is beneficial. The preferred carbon source for bacilli is glucose. The response of Bacillus pumilus cells to glucose starvation using metabolic labeling and quantitative proteomics was analyzed. Glucose starvation led to an extensive reprogramming of the protein expression pattern in B. pumilus. The amounts of proteins of the central carbon metabolic pathways (glycolysis and TCC) remained stable in starving cells. Proteins for gluconeogenesis were found in higher amounts during starvation. Furthermore, many proteins involved in acquisition and usage of alternative carbon sources were present in elevated amounts in starving cells. Enzymes for fatty acid degradation and proteases and peptidases were also found in higher abundance when cells entered stationary phase. Among the proteins found in lower amounts were many enzymes involved in amino acid and nucleotide synthesis and several NRPS and PKS proteins.  相似文献   

17.
Allicin, a broad‐spectrum antimicrobial agent from garlic, disrupts thiol and redox homeostasis, proteostasis, and cell membrane integrity. Since medicine demands antimicrobials with so far unexploited mechanisms, allicin is a promising lead structure. While progress is being made in unraveling its mode of action, little is known on bacterial adaptation strategies. Some isolates of Pseudomonas aeruginosa and Escherichia coli withstand exposure to high allicin concentrations due to as yet unknown mechanisms. To elucidate resistance and sensitivity‐conferring cellular processes, the acute proteomic responses of a resistant P. aeruginosa strain and the sensitive species Bacillus subtilis are compared to the published proteomic response of E. coli to allicin treatment. The cellular defense strategies share functional features: proteins involved in translation and maintenance of protein quality, redox homeostasis, and cell envelope modification are upregulated. In both Gram‐negative species, protein synthesis of the majority of proteins is downregulated while the Gram‐positive B. subtilis responded by upregulation of multiple regulons. A comparison of the B. subtilis proteomic response to a library of responses to antibiotic treatment reveals 30 proteins specifically upregulated by allicin. Upregulated oxidative stress proteins are shared with nitrofurantoin and diamide. Microscopy‐based assays further indicate that in B. subtilis cell wall integrity is impaired.  相似文献   

18.
19.
20.
Aims: To find out membrane tolerance strategy to ethanol in Bacillus subtilis that possesses a powerful system of protection against environmental stresses. Methods and Results: Cytoplasmic membranes of B. subtilis were severely affected by even short‐term exposure to 3% (v/v) ethanol: the growth rate and membrane protein synthesis were markedly reduced, and no adaptive alterations in phospholipids were detected. Simultaneously, steady‐state DPH fluorescence anisotropy (rss) showed that the membrane rigidity increased substantially. Analysis of the membrane phosphoproteome using in vitro labelling with [γ‐32P]ATP revealed the association of DnaK and GroEL chaperones with membrane, indicating a stress induction process. Upon a long‐term 3% (v/v) ethanol stress, the cell growth accelerated slightly and the composition of polar head groups and fatty acids of membrane phospholipids underwent an extensive reconstruction. Correspondingly, membrane fluidity turned back to the original rss values of the control cells. Conclusions: In B. subtilis, the adaptive response to short‐term ethanol stress comprises the recruitment of molecular chaperones on the impaired membrane structure; consequently, the phospholipid synthesis is restored and membrane fluidity adapts properly to the continuing ethanol stress. Significance and Impact of the Study: These findings underline the role of membrane lipids in establishing tolerance towards ethanol and also suggest the contribution of molecular chaperones to the membrane and cell recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号