首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of fish communities in 15 different-types estuaries was assessed based on the data collected as a result of 90 surveys (860 seine stations) conducted in Primorye in 2002–2015. The main contribution to production was made by semi-anadromous species (the so-iuy mullet Liza haematocheilus, Far Eastern redfins Tribolodon spp., and Japanese smelt Hypomesus nipponensis, etc.). In both external (EP ext) and internal (EP int) polyhaline estuaries (EP) a substantial portion of the production was provided by resident marine species (mainly by the saffron cod Eleginus gracilis, Far Eastern smooth flounder Liopsetta pinnifasciata, and tidepool gunnel Pholis nebulosa) and southern immigrants (flathead grey mullet Mugil cephalus, dotted gizzard shad Konosirus punctatus, Japanese halfbeak Hyporhamphus sajori, and Pacific needlefish Strongylura anastomella). In mesohaline (EM) and oligohaline (EO) estuaries, the proportion of marine residents and southern immigrants was reduced to a minimum, while that of freshwater species (bighead gudgeon Gobio macrocephalus, Prussian carp Carassius gibelio, minnow Phoxinus spp., Amur bitterling Rhodeus sericeus, spiny bitterlings Acanthorhodeus spp., etc.) substantially added to the production of semi-anadromous fish. The mean fish biomass for the vegetation season varied in the 143–1463 mgC/m2 range; the mean annual production was 174–4267 mgC/m2 and the mean P/B ratio was 0.2–3.2. In 2007, the high annual production in the Artemovka River estuary, 9356 mgC/m2, was formed by the juvenile so-iuy mullet of the strong yearclass that hatched in 2006. The lowest mean production and P/B values were typical mainly for the water bodies with a salinity more often close to that of the barrier zones (5–8‰ for α-horohalinicum and 22–26‰ for β-horohalinicum), i.e., for EM and EP ext. This relationship is explained by the features of the osmotic regulation in fish of various origins and its ontogenetic variations. In particularly, the salinity in EM is more frequently close to the critical salinity (5–8‰, α-horohalinicum); thus, the proportion of juveniles of most of the species in the catches decreases (as their resistance to salinity variations is lower). This results in higher mean values of the specific and absolute production of fish communities in EP int and EO as compared to those in EM. The conclusion was made that the estimates of fish production in the estuaries of Primorye are similar to those in the well-studied estuaries of the temperate, subtropical, and tropical zones. Moreover, they are comparable to the fish production estimates for mesotrophic and eutrophic lakes in northwestern Russia, substantially lower than those for large lowland rivers, and higher than those for small rivers. The fish production in seas, including the Japan/East Sea (0.20 gC/m2) and, particularly, Peter the Great Bay (0.28 gC/m2), is mostly lower than that in Primorye estuaries.  相似文献   

2.
Spin–spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob’s ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict 1 J O H , 2 J H H and 2h J O O couplings, while 1h J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for 1 J O H and 2 J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods.
Graphical Abstract Evaluation of the additive effect of the hydrogen bond on spin-spin coupling constants of water using WF and DFT methods.
  相似文献   

3.
We present a theoretical study on the detailed mechanism and kinetics of the H+HCN →H+HNC process. The potential energy surface was calculated at the complete basis set quantum chemical method, CBS-QB3. The vibrational frequencies and geometries for four isomers (H2CN, cis-HCNH, trans-HCNH, CNH2), and seven saddle points (TSn where n = 1 ? 7) are very important and must be considered during the process of formation of the HNC in the reaction were calculated at the B3LYP/6-311G(2d,d,p) level, within CBS-QB3 method. Three different pathways (PW1, PW2, and PW3) were analyzed and the results from the potential energy surface calculations were used to solve the master equation. The results were employed to calculate the thermal rate constant and pathways branching ratio of the title reaction over the temperature range of 300 up to 3000 K. The rate constants for reaction H + HCN → H + HNC were fitted by the modified Arrhenius expressions. Our calculations indicate that the formation of the HNC preferentially occurs via formation of cis–HCNH, the fitted expression is k P W2(T) = 9.98 × 10?22 T 2.41 exp(?7.62 kcal.mol?1/R T) while the predicted overall rate constant k O v e r a l l (T) = 9.45 × 10?21 T 2.15 exp(?8.56 kcal.mol?1/R T) in cm 3 molecule ?1 s ?1.
Graphical Abstract (a) Potential energy surface, (b) thermal rate constants as a function of temperature and (c) the branching ratios (%) of PW1, PW2, PW3 pathways involved in rm H + HCN → H + HNC process.
  相似文献   

4.
Designing and synthesizing novel electron-donor polymers with the high photovoltaic performances has remained a major challenge and hot issue in organic electronics. In this work, the exciton-dissociation (k dis ) and charge-recombination (k rec ) rates for the PC61BM-PTDPPSe system as a promising polymer-based solar cell candidate have been theoretically investigated by means of density functional theory (DFT) calculations coupled with the non-adiabatic Marcus charge transfer model. Moreover, a series of regression analysis has been carried out to explore the rational structure–property relationship. Results reveal that the PC61BM-PTDPPSe system possesses the large open-circuit voltage (0.77 V), middle-sized exiton binding energy (0.457 eV), and relatively small reorganization energies in exciton-dissociation (0.273 eV) and charge-recombination (0.530 eV) processes. With the Marcus model, the k dis , k rec , and the radiative decay rate (k s ), are estimated to be 3.167×1011 s?1, 3.767×1010 s?1, and 7.930×108 s?1 respectively in the PC61BM-PTDPPSe interface. Comparably, the k dis is as 1~3 orders of magnitude larger than the k rec and the k s , which indicates a fast and efficient photoinduced exciton-dissociation process in the PC61BM-PTDPPSe interface.
Graphical Abstract PTDPPSe is predicted to be a promising electron donor polymer, and the PC61BM-PTDPPSe system is worthy of further device research by experiments.
  相似文献   

5.
6.
7.
The mechanism of phenanthridines synthesis from the nitrogenation of 2-acetylbiphenyls (1) by TMSN3 in TFA has been studied by DFT calculations. Results at the B3LYP/6-311G(d) level showed that: 1) reaction of TMSN3/HN3 with the protonated form of 1 (1H+), which generates the key intermediate C x+ by removal of TMSOH/H2O, is the rate determining step, and TMSN3 as the nitrogen source is certainly preferred over HN3. 2) from C x+, the two pathways leading to 2 x H+ and 3 x H+ are both thermodynamically and kinetically feasible and competitive to each other. 3) The high barriers of the reverse reactions suggest that the ratio of the final products 2 x :3 x is determined by the branching ratio of reaction rates of C x+ to intermediates D x+ in pass_I and E x+ in pass_II.
Graphical Abstract DFT results indicate that the replacement of -OH by -N3 which generates C x+ controls the consumption rate of 1 x H+, and the ratio of C x+ transforms to D x+ and C x+ transforms to E x+ (k:k') determines the final ratio of products 2x:3x.
  相似文献   

8.
The absorption and emission spectra of three azo sulfonamide compounds in different solvents were investigated theoretically by using response functions combined with density functional theory (DFT), while the solvent effect on the structure and the electronic transitions was determined using the integral equation formalism for the polarizable continuum model (IEF-PCM). The results show that the applied different exchange-correlation functionals can reproduce the experimental values well. DFT calculations of the title compounds showed that the H-bond formed between the solute and solvent molecules is one of the major causes of the reversible solvatochromism observed in measured spectra. This is due to a better stabilization of the neutral form than the zwitterionic form in the polar protic solvents, which is characteristic of the hypsochromic shift. On the other hand, the molecules considered exhibit a monotonic behavior regarding the polarity of the low-lying excited state (Δμg–CT) as a function of the solvent polarity. This dependence occurs in the case of the positive solvatochromism and confirms the thesis regarding the H-bond solute–solvent interactions. Theoretically determined values of the two-photon cross section revealed that the (σ OF (2) ) shows similar trends with changes in λ abs, in contrast to 〈δ OF〉 values. In conclusion, the results demonstrate that the investigated molecules can be used successfully as fluorochromes in bioimaging.  相似文献   

9.
Although a high number of chickens carry Campylobacter jejuni, the mechanistic action of colonization in the intestine is still poorly understood. The current study was therefore designed to investigate the effects of C. jejuni on glucose uptake, amino acids availability in digesta, and intracellular calcium [Ca2+]i signaling in the intestines of broiler chickens. For this, we compared: control birds (n?=?60) and C. jejuni-infected birds (n?=?60; infected orally with 1?×?108 CFU of C. jejuni NCTC 12744 at 14 days of age). Our results showed that glucose uptake was reduced due to C. jejuni infection in isolated jejunal, but not in cecal mucosa at 14 days postinfection (dpi). The decrease in intestinal glucose absorption coincided with a decrease in body weight gain during the 2-week post-infectious period. A reduction in the amount of the amino acids (serine, proline, valine, leucine, phenylalanine, arginine, histidine, and lysine) in ileal digesta of the infected birds at 2 and/or 7 dpi was found, indicating that Campylobacter utilizes amino acids as a carbon source for their multiplication. Applying the cell-permeable Ca2+ indicator Fluo-4 and two-photon microscopy, we revealed that [Ca2+]i was increased in the jejunal and cecal mucosa of infected birds. The muscarinic agonist carbachol induced an increase in [Ca2+]i in jejunum and cecum mucosa of control chickens, a response absent in the mucosa of infected chickens, demonstrating that the modulation of [Ca2+]i by Campylobacter might be involved in facilitating the necessary cytoskeletal rearrangements that occur during the bacterial invasion of epithelial cells. In conclusion, this study demonstrates the multifaceted interactions of C. jejuni with the gastrointestinal mucosa of broiler chickens. For the first time, it could be shown that a Campylobacter infection could interfere with intracellular Ca2+ signaling and nutrient absorption in the small intestine with consequences on intestinal function, performance, and Campylobacter colonization. Altogether, these findings indicate that Campylobacter is not entirely a commensal and can be recognized as an important factor contributing to an impaired chicken gut health.  相似文献   

10.
The upper efficiency of heterojunction organic photovoltaics depends on the increased open-circuit voltage (V oc) and short-circuit current (J sc). So, a higher lowest unoccupied molecular orbital (LUMO) level is necessary for organic acceptor material to possess higher V oc and more photons absorbsorption in the solar spectrum is needed for larger J sc. In this article, we theoretically designed some small molecule acceptors (2~5) based on fluorene (F), benzothiadiazole, and cyano group (CN) referring to the reported acceptor material 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile (1), the crucial parameters affecting photoelectrical properties of compounds 2~5 were evaluated by the density functional theory (DFT) and time dependent density functional theory (TDDFT) methods. The results reveal that compared with 1, 3 and 4 could have the better complementary absorption spectra with P3HT, the increased LUMO level, the improved V oc, and the decreased electronic organization energy (λ e). From the simulation of transition density matrix, it is very clear that the excitons of molecules 3 and 4 are easier to separate in the material surface. Therefore, 3 and 4 may become potential acceptor candidates for organic photovoltaic cells. In addition, with the increased number of CN, the optoelectronic properties of the molecules show a regular change, mainly improve the LUMO level, energy gap, V oc, and absorption intensity. In summary, reasonably adjusting CN can effectively improve the photovoltaic properties of small molecule acceptors.
Graphical Abstract Structure–property relationship of small molecule acceptors could be rationally evaluated in the article. The changes of conjugate length and CN are important strategies to alter the photovoltaic properties of small molecule acceptors. Therefore, taking the K12/1 as a reference, we have theoretically designed a series of small molecule acceptors (2–4). The calculated results by means of DFT and TDDFT manifest that molecules 3 and 4 have the better complementary absorption spectra with P3HT, the increased LUMO level, the improved V oc, the decreased electronic organization energy and the easier separation in the material surface than 1. In summary, reasonably increasing conjugate length and decreasing CN can effectively improve the PCE, which will provide a theoretical guideline for the design and synthesis of new small molecule acceptors.
  相似文献   

11.
Recently, a series of xanthone analogues has been identified as α-glucosidase inhibitors. To provide deeper insight into the three-dimensional (3D) structural requirements for the activities of these molecules, CoMFA and CoMSIA approaches were employed on 54 xanthones to construct 3D-QSAR models. Their bioactive conformations were first investigated by docking studies and optimized by subsequent molecular dynamics (MD) simulations using the homology modeled structure of the target protein. Based on the docking/MD-determined conformers, 3D-QSAR studies generated several significant models in terms of 47 molecules as the training set. The best model (CoMSIA-SHA) yielded q 2 of 0.713, r 2 of 0.967 and F of 140.250. The robustness of the model was further externally confirmed by a test set of the remaining molecules (q 2 = 0.793, r 2 = 0.902, and k = 0.905). Contour maps provided much information for future design and optimization of new compounds with high inhibitory activities towards α-glucosidase.
Graphical Abstract CoMSIA/SHA contour map of xanthone α-glucosidase inhibitor
  相似文献   

12.
13.
Nutrient concentration in wheat and soil under allelopathy treatments   总被引:2,自引:0,他引:2  
Allelopathy is related to soil nutrient availability and allelochemicals can change the soil and therefore the plant nutrient status. Wheat is one of the most important crops for the production of human food in the world. Alhagi maurorum and Cardaria draba are the most important weeds in wheat fields. We performed experiments to assess the allelopathic effect of A. maurorum and C. draba shoots on mineral nutrient concentrations in pot-grown wheat plants and soil. The presence of dry powder of A. maurorum and C. draba shoots reduced concentrations of macronutrients (NO3 ?, K+, Ca2+ and P) and micronutrients (Fe2+ and Cu2+) in roots and shoots of wheat plants, whereas it did not affect concentrations of Mg2+, Mn2+ and Zn2+. Allelopathic effect of A. maurorum was significantly greater than that of C. draba. There was a significantly positive correlation between wheat growth and ion concentration. There was a significantly negative correlation between the soil nutrient concentration and plant nutrient concentration across the treatments. These results suggest that allelopathy increases the nutrient availability in the soil because of the decrease in absorption by plants.  相似文献   

14.
The purpose of this study was to investigate the short-term effects of maize (Zea mays)-fallow rotation, residue management, and soil water on carbon mineralization in a tropical cropping system in Ghana. After 15 months of the trial, maize–legume rotation treatments had significantly (P?C 0 (μg CO2–C g?1) than maize–elephant grass (Pennisetum purpureum) rotations. The C 0 for maize–grass rotation treatments was significantly related to the biomass input (r?=?0.95; P?=?0.05), but that for the maize–legume rotation was not. The soil carbon mineralization rate constant, k (per day), was also significantly related to the rotation treatments (P?k values for maize–grass and maize–legume rotation treatments were 0.025 and 0.036 day?1 respectively. The initial carbon mineralization rate, m 0 (μg CO2–C g?1 day ?1), was significantly (P?θ. The m 0 ranged from 3.88 to 18.67 and from 2.30 to 15.35 μg CO2–C g?1 day?1 for maize–legume and maize–grass rotation treatments, respectively, when the soil water varied from 28% to 95% field capacity (FC). A simple soil water content (θ)-based factor, f w, formulated as: \(f_{\text{w}} = \left[ {\frac{{\theta - \theta _{\text{d}} }}{{\theta _{{\text{FC}}} - \theta _{\text{d}} }}} \right]\), where θ d and θ FC were the air-dry and field capacity soil water content, respectively, adequately described the variation of the m 0 with respect to soil water (R 2?=?0.91; RMSE?=?1.6). Such a simple relationship could be useful for SOC modeling under variable soil water conditions.  相似文献   

15.
16.
The slow oxidation of alkanes (from methane to hexane) in their stoichiometric mixtures with oxygen or air under the action of nanosecond pulsed discharges was investigated. The discharges were excited in a tube of diameter 5 cm and length of 20 cm by 25-ns voltage pulses with an amplitude of 10 kV and a repetition rate of 40 Hz. The initial pressure in the mixture was varied in the range 0.76–10.1 torr. The current, the electric field strength, and the power deposited in a discharge were measured with a nanosecond time resolution. In time-resolved and time-integrated measurements, the intensities of the following bands were determined: CO 2 + (B2Σ → X2Π, δv=0), CH(A2Δ, v′=0 → X2Π, v″=0), OH(A2Σ, v′=0 → X2Π, v″=0), CO(B1Σ, v′=0 → A1Π, v″=2), NO(A2Σ → X2Π, δv=3), N2(C3Π, v′=1 → B3Π, v″=7), N2(B3Π, v′=6 → A3Σ, v″=3), and N 2 + (B2Σ, v′=0 → X2Σ, v″=2). The methane concentration was measured from the absorption of He-Ne laser radiation. Based on the results of optical measurements, the times of the complete oxidation of hydrocarbons were determined.  相似文献   

17.
Biocidal natural substances of botanical origin offer a promising ecofriendly option for controlling toxic cyanobacteria. Herein, we study 11 essential oils and some of their major components for their activity on Aphanizomenon gracile. On the basis of our results we support that Origanum vulgare and O. dictamnus, Ocimum basilicum, Eucalyptus meliodora, Melissa officinalis, and Pimpinella anisum exhibited the strongest activities, and the IC50/1d values of the extracts were calculated to be between 168.43 and 241.97 μg mL?1. When the major components of the biocidal essential oils were tested individually, (E)-anethole was found active, exhibiting an IC50/1d value of 71.35 μg mL?1. On the other hand, the half-life (t 1/2 ) of (E)-anethole was calculated at 1 h. A preliminary attempt of (E)-anethole microencapsulation was conducted, in order to slowly release this biocidal agent, increasing the residual life under open air conditions and thus the biological activity. Results were promising since the microencapsulated product exhibited better activity than did the non-formulated (E)-anethole. This is a first report on the biocidal activity of EOs and (E)-anethole on A. gracile and a preliminary indication of the microencapsulated (E)-anethole potential use as a natural biocidal in fresh waters.
Graphical abstract Filaments of Aphanizomenon gracile capable of bloom forming (strain SAG 31.79, in a batch culture) and (E)-anethole
  相似文献   

18.
The earlier established structures of the acidic O-specific polysaccharides from two typical strains of the Shigella dysenteriae bacterium were revised using modern NMR spectroscopy techniques. In particular, the configurations of the glycosidic linkages of GlcNAc (S. dysenteriae type 4) and mannose (S. dysenteriae type 5) residues were corrected. In addition, the location of the sites of non-stoichiometric O-acetylation in S. dysenteriae type 4 was determined: the lateral fucose residue was shown to be occasionally O-acetylated; also, theposition of the O-acetyl group present at the stoichiometric quantity in S. dysenteriae type 5 was corrected. The revised structures of the polysaccharides studied are shown below. The known identity of the O-specific polysaccharide structures of S. dysenteriae type 5 and Escherichia coli O58 was confirmed by 13C NMR spectroscopy and, hence, the structure of the E. coli O58 polysaccharide should be revised in the same manner.
where L-Rhap3Rlac2Ac is 2-O-acetyl-3-O-[(R-1-carboxyethyl]-L-rhamnose
  相似文献   

19.
The cytochrome b 6 f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b 6 f is 10–20 fold higher than that observed for the analogous respiratory cytochrome bc1 complex. The types of ROS produced (O2??, 1O2, and, possibly, H2O2) and the site(s) of ROS production within the b 6 f complex have been the subject of some debate. Proposed sources of ROS have included the heme b p , PQ p ?? (possible sources for O2??), the Rieske iron–sulfur cluster (possible source of O2?? and/or 1O2), Chl a (possible source of 1O2), and heme c n (possible source of O2?? and/or H2O2). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b 6 f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b 6 f complex.  相似文献   

20.
There are two close empirical scalings, namely, the T-11 and neo-Alcator ones, that provide correct estimates for the energy confinement time in tokamaks in ohmic heating regimes in the linear part of the dependence τ E (\(\bar n_e \)) in the range of low values of \(\bar n_e \) and 〈ν e * 〉 ≤ 1. The similar character of electron energy confinement in this range, which expands with increasing magnetic field B 0, has stimulated the search for dimensionless parameters and simple physical models that would explain the experimentally observed dependences χ e ~ 1/n e and τ Ee \(\bar n_e \). In 1987, T. Okhawa showed that the experimental data were satisfactorily described by the formula χe = (c 2 pe 2 )ν e /qR, in deriving of which the random spatial leap along the radius r on the electron trajectory was assumed to be the same as that in the coefficient of the poloidal field diffusion, while the repetition rate of these leaps was assumed to be ν e /qR. In 2004, J. Callen took into account the decrease in the fraction of transient electrons with increasing toroidal ratio ? = r/R and corrected the coefficient c 2 pe 2 in Okhawa equation by the factor σ Sp neo . If one takes into account this correction and assumes that the frequency of the stochastic process is equal to the reciprocal of the half-period of rotation of a trapped electron along its banana trajectory, then the resulting expression for χe will coincide with the T-11 scaling: χ e an ∞ ?1.75(T e /A i )0.5/(n e qR) at A i = 1. If the same stochastic process also involves ions, it may result in the opening of the orbit of a trapped ion at the distance ~(c pe )(m i /m e )1/4. In this case, the calculated coefficient of electron and ion diffusion D is close to D an ≈ χ e an /2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号