首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants can respond to insect herbivory in various ways to avoid reductions in fitness. However, the effect of herbivory on plant performance can vary depending on the seasonal timing of herbivory. We investigated the effects of the seasonal timing of herbivory on the performance of sagebrush (Artemisia tridentata). Sagebrush is known to induce systemic resistance by receiving volatiles emitted from clipped leaves of the same or neighboring plants, which is called volatile communication. Resistance to leaf herbivory is known to be induced most effectively after volatile communication in spring. We experimentally clipped 25 % of leaves of sagebrush in May when leaves were expanding, or in July when inflorescences were forming. We measured the growth and flower production of clipped plants and neighboring plants which were exposed to volatiles emitted from clipped plants. The treatment conducted in spring reduced the growth of clipped plants. This suggests that early season leaf herbivory is detrimental because it reduces the opportunities for resource acquisition after herbivory, resulting in strong induction of resistance in leaves. On the other hand, the late season treatment increased flower production in plants exposed to volatiles, which was caused mainly by the increase in the number of inflorescences. Because the late season treatment occurred when sagebrush produces inflorescences, sagebrush may respond to late herbivory by increasing compensation ability and/or resistance in inflorescences rather than in leaves. Our results suggest that sagebrush can change responses to herbivory and subsequent volatile communication seasonally and that the seasonal variation in responses may reduce the cost of induced resistance.  相似文献   

2.
Animals have the ability to distinguish self from non-self, which has allowed them to evolve immune systems and, in some instances, to act preferentially towards individuals that are genetically identical or related. Self-recognition is less well known for plants, although recent work indicates that physically connected roots recognize self and reduce competitive interactions. Sagebrush uses volatile cues emitted by clipped branches of self or different neighbours to increase resistance to herbivory. Here, we show that plants that received volatile cues from genetically identical cuttings accumulated less natural damage than plants that received cues from non-self cuttings. Volatile communication is required to coordinate systemic processes such as induced resistance and plants respond more effectively to self than non-self cues. This self/non-self discrimination did not require physical contact and is a necessary first step towards possible kin recognition and kin selection.  相似文献   

3.
Airborne communication can affect systemic induced resistance to herbivory on neighboring branches and individual plants. Sagebrush is the best known example of this phenomenon although the mechanisms of this communication system remain unidentified. We do not know the timing of emission or the chemical nature of the active cue. We investigated the timing of this phenomenon by using plastic bags to prevent propagation of volatile compounds and experimentally manipulated the timing of removal of these bags. We found that blocking the volatiles prevented systemic induced resistance. Experimentally allowing clipped branches to release cues for up to 3 days after clipping caused a reduction in damage in neighboring branches on the clipped plants. This indicates that active cues are released from the time we clipped for the next 3 days or that cues released immediately remained active over this time period. As we continue to evaluate potential chemicals as active cues in plant communication, this prolonged effectiveness may provide an important screen against which to evaluate any putative signals. Handling editor: Robert Glinwood  相似文献   

4.
Shiojiri K  Karban R 《Oecologia》2006,149(2):214-220
Plants progress through a series of distinct stages during development, although the role of plant ontogeny in their defenses against herbivores is poorly understood. Recent work indicates that many plants activate systemic induced resistance after herbivore attack, although the relationship between resistance and ontogeny has not been a focus of this work. In addition, for sagebrush and a few other species, individuals near neighbors that experience simulated herbivory become more resistant to subsequent attack. Volatile, airborne cues are required for both systemic induced resistance among branches and for communication among individuals. We conducted experiments in stands of sagebrush of mixed ages to determine effects of plant age on volatile signaling between branches and individuals. Young and old control plants did not differ in levels of chewing damage that they experienced. Systemic induced resistance among branches was only observed for young plants. Young plants showed strong evidence of systemic resistance only if airflow was permitted among branches; plants with only vascular connections showed no systemic resistance. We also found evidence for volatile communication between individuals. For airborne communication, young plants were more effective emitters of cues as well as more responsive receivers of volatile cues.  相似文献   

5.
The possibility of communication between plants was proposed nearly 20 years ago, although previous demonstrations have suffered from methodological problems and have not been widely accepted. Here we report the first rigorous, experimental evidence demonstrating that undamaged plants respond to cues released by neighbors to induce higher levels of resistance against herbivores in nature. Sagebrush plants that were clipped in the field released a pulse of an epimer of methyl jasmonate that has been shown to be a volatile signal capable of inducing resistance in wild tobacco. Wild tobacco plants with clipped sagebrush neighbors had increased levels of the putative defensive oxidative enzyme, polyphenol oxidase, relative to control tobacco plants with unclipped sagebrush neighbors. Tobacco plants near clipped sagebrush experienced greatly reduced levels of leaf damage by grasshoppers and cutworms during three field seasons compared to unclipped controls. This result was not caused by an altered light regime experienced by tobacco near clipped neighbors. Barriers to soil contact between tobacco and sagebrush did not reduce the difference in leaf damage although barriers that blocked air contact negated the effect. Received: 15 February 2000 / Accepted: 1 April 2000  相似文献   

6.
Volatile communication allows plants to coordinate systemic induced resistance against herbivores. The mechanisms responsible and nature of the cues remain poorly understood. It is unknown how plants distinguish between reliable cues and misinformation. Previous experiments in which clipped sagebrush branches were bagged suggested that cues are emitted or remain active for up to 3 days. We conducted experiments using plastic bags to block emission of cues at various times following experimental clipping. We also collected headspace volatiles from clipped and unclipped branches for 1 h, transferred those volatiles to assay branches, and incubated the assays for either 1 or 6 h. We found that assay branches that received volatile cues for less than 1 h following clipping of neighbors failed to induce resistance. Assay branches that received volatile cues for more than 1 h experienced reduced herbivory throughout the season. Branches incubated for 6 h with volatiles that had been collected during the first hour following clipping showed induced resistance. These results indicate that sagebrush must receive cues for an extended time (>1 h) before responding; they suggest that the duration of cue reception is an important and overlooked process in communication allowing plants to avoid unreliable, ephemeral cues.  相似文献   

7.
Plants can use induced volatiles to detect herbivore‐ and pathogen‐attacked neighbors and prime their defenses. Several individual volatile priming cues have been identified, but whether plants are able to integrate multiple cues from stress‐related volatile blends remains poorly understood. Here, we investigated how maize plants respond to two herbivore‐induced volatile priming cues with complementary information content, the green leaf volatile (Z)‐3‐hexenyl acetate (HAC) and the aromatic volatile indole. In the absence of herbivory, HAC directly induced defence gene expression, whereas indole had no effect. Upon induction by simulated herbivory, both volatiles increased jasmonate signalling, defence gene expression, and defensive secondary metabolite production and increased plant resistance. Plant resistance to caterpillars was more strongly induced in dual volatile‐exposed plants than plants exposed to single volatiles.. Induced defence levels in dual volatile‐exposed plants were significantly higher than predicted from the added effects of the individual volatiles, with the exception of induced plant volatile production, which showed no increase upon dual‐exposure relative to single exposure. Thus, plants can integrate different volatile cues into strong and specific responses that promote herbivore defence induction and resistance. Integrating multiple volatiles may be beneficial, as volatile blends are more reliable indicators of future stress than single cues.  相似文献   

8.
Plants emit volatile compounds that can act as a communication method to insects, neighboring plants and pathogens. Plants respond to leaf and root damage by herbivores and pathogens by emitting these compounds. The volatile compounds can deter the herbivores or pathogens directly or indirectly by attracting their natural enemies to kill them. The simultaneous damage of plants by herbivores and pathogens can influence plant defense. The induced plant volatiles can also make neighboring plants ready for defense or induce defense in parts distant from the damaged area of the same plant. Belowground root herbivory can alter the defense response to aboveground leaf herbivory. In addition, most plants normally emit volatile compounds from their flowers that directly attract foraging mutualistic insects for nectar, which in turn perform the very important function of pollination for subsequent reproduction. The volatile compounds emitted from the floral and vegetative parts of plants belong to three main classes of compounds: terpenoids, phenylpropanoids/benzenoids, and C6-aldehydes (green-leaf volatiles). The volatile phytohormones methyl salicylate and methyl jasmonate serve as important signaling molecules for communication purposes, and interact with each other to optimize the plant defense response. Here we discuss and integrate the current knowledge on all types of communication between plants and insects, neighboring plants and pathogens that are mediated through plant volatiles.  相似文献   

9.
Interplant communication in nature is beginning to look like a reality with the field demonstration that tobacco plants downwind of damaged sagebrush suffer less herbivory, a response that appears to be mediated by an airborne signal. Sagebrush constitutively releases methyl jasmonate (MeJA), a compound that is highly active in inducing a number of physiological responses in plants. Damage increases the absolute quantity of the MeJA released as well as the proportion of MeJA in the isomeric cis form. Several studies have shown that volatile MeJA, when released in sufficient quantities, can simulate responses elicited by direct MeJA applications. Additionally, the thermodynamically unstable cis isomer, which is responsible for the characteristic jasmine odor, is thought to be the biologically active form of MeJA. To examine the hypothesis that the cis-MeJA release is responsible for the apparent inter-plant communication, we developed methods to: (1) entrain sagebrush constituents in water which preserved the isomeric shift in the MeJA released after damage; (2) chemically manipulate the MeJA trans : cis ratio; and (3) isolate nearly pure cis-MeJA by HPLC. These treatments were applied as aqueous sprays to a natural population of tobacco plants, however, an outbreak of specialist herbivores consumed all treated plants and chemical analysis on previously harvested treated leaf material was inconclusive. The hypothesis is currently being carefully investigated with laboratory experiments.  相似文献   

10.
Damage to sagebrush attracts predators but this does not reduce herbivory   总被引:2,自引:0,他引:2  
Emissions of volatiles increase following herbivory from many plant species and volatiles may serve multiple functions. Herbivore‐induced volatiles attract predators and parasitoids of herbivores and are often assumed to benefit plants by facilitating top‐down control of herbivores; this benefit of induced emissions has been tested only a few times. Volatile compounds released by experimentally clipped sagebrush shoots have been shown to reduce levels of chewing damage experienced by other shoots on the same plant and on neighboring sagebrush plants. In this study, I asked whether experimental clipping attracted predators of herbivorous insects to sagebrush shoots. I also evaluated aphid populations and chewing damage on clipped and unclipped shoots and whether predators were likely to have caused differences in aphids and chewing damage. Shoots that had been clipped recruited more generalist predators, particularly coccinellids and Geocoris spp. in visual surveys conducted during two seasons. Clipping also caused increased numbers of parasitized aphids in one season. Ants were common tending aphids but were not significantly affected by clipping. Despite the increase in generalist predators, clipped plants were more likely to support populations of aphids that increased during both seasons compared to aphids on unclipped control plants. Clipped shoots suffered less damage by chewing herbivores in the 1‐year in which this was measured. Chewing damage was not correlated with numbers of predators. These results suggest that predators and parasitoids were attracted to experimentally clipped sagebrush plants but that these predators were not effective at reducing net damage to the plant. This conclusion is not surprising as much of the herbivory is inflicted by grasshoppers and deer, herbivores that are not vulnerable to the predators attracted to sagebrush volatiles. More generally, it should not be assumed that predators that are attracted by herbivore‐induced volatiles necessarily benefit the plant without testing this hypothesis under field conditions.  相似文献   

11.
The ability to distinguish self from nonself allows organisms to protect themselves against attackers. Sagebrush plants use volatile cues emitted by clipped neighbors to adjust their defenses against herbivores. Recently, we reported that cues from genetically identical ‘self’ clones were more effective at reducing damage than were cues from ‘nonself’ clones. This indicates that plants can distinguish self from non-self through volatiles and respond differentially. Identity recognition may be an essential step in enabling plants to behave cooperatively. Emission of cues which enable other plant tissues (on the same or other individual) to respond appropriately to herbivore risk may have evolved if cues are aimed primarily at self tissue.Key words: communication, eavesdropping, herbivory, kin recognition, self/nonself, volatilesThe ability to recognize self from nonself is a fundamental property of individuals of all multicellular organisms. Distinguishing between molecules that are part of one''s own tissues and those of an invader provides a first step towards the evolution of a functioning immune system. An immune system responds differently towards self and nonself tissues, destroying the later. In addition to immune responses, many other sophisticated behaviors have been described for animals that differentiate self from non-self and even kin from strangers.1 For example, social behaviors including altruism can be favored by natural selection when animals are able to first distinguish kin from non-kin and respond differently to individuals in these two categories.2 Although plant behavior is far less well studied, plants too display many sophisticated and context-dependent behaviors.3Plant biologists have described various situations in which plants exhibit different behaviors based on identity. It has been known for some years that many angiosperms choose mates based on genetic identity.4 Numerous mechanisms have been described, primarily involving differential germination of pollen, growth of pollen tubes through stigmatic tissue, and production of competent zygotes. More recently, several workers have found that plants may differentiate self from non-self and alter their morphologies in response to cues from these two types of sources. Plants appeared to recognize their own roots and to grow fewer and shorter roots when they contacted self roots compared to non-self roots (reviewed in references 57). A common feature of these experimental studies is that roots only showed self-recognition when they were physically attached. These experimental studies may be subject to alternate explanations.8,9Recently we reported that sagebrush plants induced resistance more effectively against their herbivores in response to the volatile cues emitted by self clones compared to the cues of non-self clones.10 We had previously found that experimental clipping to branches caused systemic induced resistance within an individual against herbivores only when volatile cues were transmitted.11 To evaluate self/non-self discrimination we first produced clones of 60 parent plants in the field by root crown division. These potted clones were propagated and then placed back in the field near either their genetically identical parent (self treatment) or a genetically different parent (nonself treatment). The potted clones were experimentally clipped in spring for both treatments and the damage that accumulated over the growing season was recorded for parents near self and non-self clones. We found that plants near clipped self clones received approximately 42% less damage by their herbivores than plants near clipped non-self clones (Fig. 1, One-way ANOVA, F1,58 = 8.72, p = 0.005).Open in a separate windowFigure 1The mean number of leaves that were damaged by herbivores (grasshoppers, caterpillars and deer) on assay branches of sagebrush (±1 se). Cuttings were either genetically identical (self) or different (non-self) from the assay branch; assay branches were within 5 cm of potted cuttings but not in physical contact. Cuttings were experimentally clipped to simulate herbivory in May and herbivore damage accumulated on the assay branches until season''s end in September when damage was assayed.This result is novel in several ways. Past results showing self/nonself recognition between roots required that they be in physical contact for discrimination to occur; physical contact was not required in this case. In addition, this is the first identity study to measure responses in terms of damage by herbivores rather than plant morphology or reproduction. This result is more robust than the changes in root morphology because changes attributed to self or non-self volatiles cannot be explained by alternative hypotheses involving potentially confounding differences in resource availability or pot size.8,9 The ability of plants to differentiate self from non-self is important because it may enable differential treatment towards ramets that share genes.Recent work has also suggested that plants may be able to discriminate between kin and strangers. Cakile edentula and Impatiens pallida changed their morphologies depending upon whether their roots contacted kin or strangers.12,13 These altered morphologies were consistent with the notion that kin cooperated and non-kin competed. Examination of self/non-self recognition and kin/stranger recognition patterns in Arabidopsis thaliana indicated that these two forms of identity discrimination were affected differently by inhibitors and therefore suggested that they may involve different signaling mechanisms.14Plants that emit volatile cues that other individuals can use to adjust their defenses (eavesdropping) may be at a selective disadvantage.15 Why should a plant dispense information that allows its neighbors to fine tune their defenses against herbivory? One possible answer to this conundrum may be that plants emit volatile cues to coordinate their own defenses since volatile cues are active over relatively short distances. A second possible answer is that greater sensitivity to self volatiles reduces the cost of eaves-dropping. In designing our sagebrush experiment we cloned plants as a means of producing physically separate pairs of plants that were either genetically identical or different. Early genetic work indicated that populations of sagebrush were highly structured genetically.16 In other words, relatedness decreased as a function of the distance between individuals, also known as population viscosity. Recent genetic analyses of microsatellites indicate that vegetative reproduction by rhizomes also occurs in this species and some neighbors in nature are genetically identical (Ishizaki, et al. in review). Population viscosity has been considered to increase the likelihood of cooperation, in part because neighbors already share genes.2,17 Applying similar logic, communication is facilitated by kin recognition if relatives are better able to communicate than non-kin. Communication may be favored if the tissue emitting cue is surrounded by primarily self tissue or if the exchange of cues is more effective and likely to occur between self tissues. In conclusion, plant communication using volatile cues may have evolved because individual plants were communicating primarily with themselves.  相似文献   

12.
Numerous plant species respond to volatile cues to adjust their defenses against herbivores. Some volatile chemicals, such as terpenoids and green leaf volatiles, that are responsible for communication between plants and arthropods are also required for intraspecific communication between plants and for coordination among branches within a single plant. We are now aware that some ‘receiver’ plants are able to eavesdrop on their neighbors and tailor their defenses to their current and expected risks caused by herbivores. By contrast, a suite of volatiles also serve as natural herbicides (allelochemicals) that are detrimental for receiver plants. Since various molecular and ecological mechanisms underlying these phenomena have been clarified, it is time to ask whether more plants eavesdrop on infochemical cues, and if these cues that allow them to adjust their defenses to suit their risk also increase their fitness as a result.  相似文献   

13.
Plant volatiles serve as key foraging and oviposition cues for insect herbivores as well as their natural enemies, but little is known about how genetic variation within plant populations influences volatile-mediated interactions among plants and insects. Here, we explore how inbred and outbred plants from three maternal families of the native weed horsenettle (Solanum carolinense) vary in the emission of volatile organic compounds during the dark phase of the photoperiod, and the effects of this variation on the oviposition preferences of Manduca sexta moths, whose larvae are specialist herbivores of Solanaceae. Compared with inbred plants, outbred plants consistently released more total volatiles at night and more individual compounds—including some previously reported to repel moths and attract predators. Female moths overwhelmingly chose to lay eggs on inbred (versus outbred) plants, and this preference persisted when olfactory cues were presented in the absence of visual and contact cues. These results are consistent with our previous findings that inbred plants recruit more herbivores and suffer greater herbivory under field conditions. Furthermore, they suggest that constitutive volatiles released during the dark portion of the photoperiod can convey accurate information about plant defence status (and/or other aspects of host plant quality) to foraging herbivores.  相似文献   

14.
Seasonal changes in herbivore numbers and in plant defenses are well known to influence plant–herbivore interactions. Some plant defenses are induced in response to herbivore attack or cues correlated with risk of attack although seasonal variation in these defenses is relatively poorly known. We previously reported that sagebrush becomes more resistant to its herbivores when neighboring plants have been experimentally clipped with scissors. In this study we asked whether herbivory to leaves of sagebrush varied seasonally and whether there was seasonal variation in natural levels of damage when neighbors were clipped. We found that sagebrush accumulated most chewing damage early in the season, soon after the spring flush of new leaves. This damage was caused by generalist grasshoppers, deer, specialist caterpillars, beetles, gall makers, and other less common herbivores. Sagebrush showed no evidence of preferentially abscising leaves that had been experimentally clipped. Experimental clipping by Trirhabda pilosa beetle larvae caused neighbors to accumulate less herbivore damage later that season, similar to results in which clipping was done with scissors. Induced resistance caused by experimentally clipping a neighbor was affected by season; plants with neighbors clipped in May accumulated less damage throughout the season relative to plants with unclipped neighbors or neighbors clipped later in the summer. We found a correlation between seasonal herbivore pressure, damage accumulated by plants, and induced responses to experimentally clipping neighbors. The causal mechanisms responsible for this correlation are unknown although a strong seasonal effect was clear.  相似文献   

15.
Whether plants respond to cues produced by neighbors has been a topic of much debate. Recent evidence suggests that wild tobacco plants transplanted near experimentally clipped sagebrush neighbors suffer less leaf herbivory than tobacco controls with unclipped neighbors. Here we expand these results by showing evidence for induced resistance in naturally rooted tobacco when sagebrush neighbors are clipped either with scissors or damaged with actual herbivores. Tobacco plants with sagebrush neighbors clipped in both ways had enhanced activity levels of polyphenol oxidase (PPO), a chemical marker of induced resistance in many solanaceous plants. Eavesdropping was found for plants that were naturally rooted, although only when sagebrush and tobacco grew within 10 cm of each other. Although tobacco with clipped neighbors experienced reduced herbivory, tobacco that grew close to sagebrush had lower production of capsules than plants that grew far from sagebrush. When neighboring tobacco rather than sagebrush was clipped, neither levels of PPO nor levels of leaf damage to tobacco were affected. Eavesdropping on neighboring sagebrush, but not neighboring tobacco, may result from plants using a jasmonate signaling system. These results indicate that plants eavesdrop in nature and that this behavior can increase resistance to herbivory although it does not necessarily increase plant fitness.  相似文献   

16.
Herbivore‐induced volatiles are widespread in plants. They can serve as alert signals that enable neighbouring leaves and plants to pre‐emptively increase defences and avoid herbivory damage. However, our understanding of the factors mediating volatile organic compound (VOC) signal interpretation by receiver plants and the degree to which multiple herbivores affect VOC signals is still limited. Here we investigated whether plant responses to damage‐induced VOC signals were population specific. As a secondary goal, we tested for interference in signal production or reception when plants were subjected to multiple types of herbivore damage. We factorially crossed the population sources of paired Phaseolus lunatus plants (same versus different population sources) with a mechanical damage treatment to one member of the pair (i.e. the VOC emitter, damaged versus control), and we measured herbivore damage to the other plant (the VOC receiver) in the field. Prior to the experiment, both emitter and receiver plants were naturally colonized by aphids, enabling us to test the hypothesis that damage from sap‐feeding herbivores interferes with VOC communication by including emitter and receiver aphid abundances as covariates in our analyses. One week after mechanical leaf damage, we removed all the emitter plants from the field and conducted fortnightly surveys of leaf herbivory. We found evidence that receiver plants responded using population‐specific ‘dialects’ where only receivers from the same source population as the damaged emitters suffered less leaf damage upon exposure to the volatile signals. We also found that the abundance of aphids on both emitter and receiver plants did not alter this volatile signalling during both production and reception despite well‐documented defence crosstalk within individual plants that are simultaneously attacked by multiple herbivores. Overall, these results show that plant communication is highly sensitive to genetic relatedness between emitter and receiver plants and that communication is resilient to herbivore co‐infestation.  相似文献   

17.
When plants receive volatiles from a damaged plant, the receivers become more resistant to herbivory. This phenomenon has been reported in many plant species and called plant-plant communication. Lab experiments have suggested that several compounds may be functioning as airborne signals. The objective of this study is to identify potential airborne signals used in communication between sagebrush (Artemisia tridentata) individuals in the field. We collected volatiles of one branch from each of 99 sagebrush individual plants. Eighteen different volatiles were detected by GC-MS analysis. Among these, 4 compounds; 1.8-cineol, β-caryophyllene, α-pinene and borneol, were investigated as signals of communication under natural conditions. The branches which received either 1,8-cineol or β-caryophyllene tended to get less damage than controls. These results suggested that 1,8-cineol and β-caryophyllene should be considered further as possible candidates for generalized airborne signals in sagebrush.  相似文献   

18.
Plant volatiles play important roles in signalling between plants and insects, but their role in communication among plants remains controversial. Previous research on plant–plant communication has focused on interactions between neighbouring plants, largely overlooking the possibility that volatiles function as signals within plants. Here, we show that volatiles released by herbivore-wounded leaves of hybrid poplar ( Populus deltoides  ×  nigra ) prime defences in adjacent leaves with little or no vascular connection to the wounded leaves. Undamaged leaves exposed to volatiles from wounded leaves on the same stem had elevated defensive responses to feeding by gypsy moth larvae ( Lymantria dispar L.) compared with leaves that did not receive volatiles. Volatile signals may facilitate systemic responses to localized herbivory even when the transmission of internal signals is constrained by vascular connectivity. Self-signalling via volatiles is consistent with the short distances over which plant response to airborne cues has been observed to occur and has apparent benefits for emitting plants, suggesting that within-plant signalling may have equal or greater ecological significance than signalling between plants.  相似文献   

19.
Plants respond to herbivory through different defensive mechanisms. The induction of volatile emission is one of the important and immediate response of plants to herbivory. Herbivore-induced plant volatiles (HIPVs) are involved in plant communication with natural enemies of the insect herbivores, neighboring plants, and different parts of the damaged plant. Release of a wide variety of HIPVs in response to herbivore damage and their role in plant-plant, plant-carnivore and intraplant communications represents a new facet of the complex interactions among different trophic levels. HIPVs are released from leaves, flowers, and fruits into the atmosphere or into the soil from roots in response to herbivore attack. Moreover, HIPVs act as feeding and/or oviposition deterrents to insect pests. HIPVs also mediate the interactions between the plants and the microorganisms. This review presents an overview of HIPVs emitted by plants, their role in plant defense against herbivores and their implications for pest management.  相似文献   

20.

Background and Aims

The combination of clonality and a mating system promoting outcrossing is considered advantageous because outcrossing avoids the fitness costs of selfing within clones (geitonogamy) while clonality assures local persistence and increases floral display. The spatial spread of genetically identical plants (ramets) may, however, also decrease paternal diversity (the number of sires fertilizing a given dam) and fertility, particularly towards the centre of large clumped clones. This study aimed to quantify the impact of extensive clonal growth on fine-scale paternity patterns in a population of the allogamous Convallaria majalis.

Methods

A full analysis of paternity was performed by genotyping all flowering individuals and all viable seeds produced during a single season using AFLP. Mating patterns were examined and the spatial position of ramets was related to the extent of multiple paternity, fruiting success and seed production.

Key Results

The overall outcrossing rate was high (91 %) and pollen flow into the population was considerable (27 %). Despite extensive clonal growth, multiple paternity was relatively common (the fraction of siblings sharing the same father was 0·53 within ramets). The diversity of offspring collected from reproductive ramets surrounded by genetically identical inflorescences was as high as among offspring collected from ramets surrounded by distinct genets. There was no significant relationship between the similarity of the pollen load received by two ramets and the distance between them. Neither the distance of ramets with respect to distinct genets nor the distance to the genet centre significantly affected fruiting success or seed production.

Conclusions

Random mating and considerable pollen inflow most probably implied that pollen dispersal distances were sufficiently high to mitigate local mate scarcity despite extensive clonal spread. The data provide no evidence for the intrusion of clonal growth on fine-scale plant mating patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号